Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: allow view right for XWiki.Profiles (Lynxmotion).BETA Testers
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
-
Objects (0 modified, 3 added, 0 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 - lynxmotion-smart-servo.WebHome1 +Lynxmotion Smart Servo (LSS).WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -xwiki:XWiki. RB11 +xwiki:XWiki.ENantel - Content
-
... ... @@ -1,25 +1,19 @@ 1 1 (% class="wikigeneratedid" id="HTableofContents" %) 2 -** Page Contents**2 +**Table of Contents** 3 3 4 4 {{toc depth="3"/}} 5 5 6 -= SerialProtocol =6 += Protocol Concepts = 7 7 8 -The customLynxmotion Smart Servo (LSS)serialprotocol was created in order to be as simple and straightforward as possible from a user perspective("human readable format"), while at the same timeThe protocolwas based on Lynxmotion'sSSC-32 RC servo controllerand almosteverything one might expect to be able to configure for a smart servo motor is available.8 +The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available. 9 9 10 -In order to have servos react differently when commands are sent to all servos in a serial bus, the first step a user should take is to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol. 11 - 12 12 == Session == 13 13 14 14 A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 15 15 16 -Note #1: For a given session, the action related to a specific commands overrides the stored value in EEPROM. 17 -Note #2: During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s). 18 -You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended. 19 - 20 20 == Action Commands == 21 21 22 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent aredescribed below, andthey cannotbe combined with other commandssuch as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any"memory" of previous actionsor virtual positions (described below on this page). Actioncommandsaresent serially to the servo's Rx pin and must be sent in the following format:16 +Action commands are sent serially to the servo's Rx pin and must be set in the following format: 23 23 24 24 1. Start with a number sign # (U+0023) 25 25 1. Servo ID number as an integer ... ... @@ -30,11 +30,15 @@ 30 30 ((( 31 31 Ex: #5PD1443<cr> 32 32 33 - This sends a serial command to all servo's Rx pins which areconnected to the busand only servo(s)with ID #5will movetoin tenthsofdegrees ("PD") of144.3 degrees.Any servo on the bus which does not have ID 5 will take no action when receiving this command.27 +Move servo with ID #5 to a position of 144.3 degrees. 34 34 29 +Action commands cannot be combined with query commands, and only one action command can be sent at a time. 30 + 31 +Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page). 32 + 35 35 == Action Modifiers == 36 36 37 - Only two commands can be used as action modifiers: Timed Move(T)and Speed(S) described below.Action modifiers can only be used with certain action commands.The formattoinclude a modifier is:35 +Two commands can be used as action modifiers only: Timed Move and Speed. The format is: 38 38 39 39 1. Start with a number sign # (U+0023) 40 40 1. Servo ID number as an integer ... ... @@ -46,12 +46,32 @@ 46 46 47 47 Ex: #5P1456T1263<cr> 48 48 49 -This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds. 47 +Results in the servo rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds. 48 + 49 +Action modifiers can only be used with certain commands. 50 50 ))) 51 51 52 +== Configuration Commands == 53 + 54 +Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. 55 + 56 +1. Start with a number sign # (U+0023) 57 +1. Servo ID number as an integer 58 +1. Configuration command (two to three letters, no spaces, capital or lower case) 59 +1. Configuration value in the correct units with no decimal 60 +1. End with a control / carriage return '<cr>' 61 + 62 +Ex: #5CO-50<cr> 63 + 64 +Assigns an absolute origin offset of -5.0 degrees (with respect to factory origin) to servo #5 and changes the offset for that session to -5.0 degrees. 65 + 66 +Configuration commands are not cumulative, in that if two configurations are sent at any time, only the last configuration is used and stored. 67 + 68 +*Important Note: the one exception is the baud rate - the servo's current session retains the given baud rate. The new baud rate will only be in place when the servo is power cycled. 69 + 52 52 == Query Commands == 53 53 54 -Query commands request information from the servo. They are received via the Rx pinoftheservo,and the servo's replyis sentviathe servo'sTx pin.Using separate lines for Tx andRx is called "full duplex". Query commandsarealso similartoactionand configuration commands and must use the following format:72 +Query commands are sent serially to the servo's Rx pin and must be set in the following format: 55 55 56 56 1. Start with a number sign # (U+0023) 57 57 1. Servo ID number as an integer ... ... @@ -63,61 +63,49 @@ 63 63 ))) 64 64 65 65 ((( 66 -The query will return a serialstring (almost instantaneously)via theservo'sTx pin with the following format:84 +The query will return a value via the Tx pin with the following format: 67 67 68 -1. Start with an asterisk *(U+002A)86 +1. Start with an asterisk (U+002A) 69 69 1. Servo ID number as an integer 70 70 1. Query command (one to three letters, no spaces, capital letters) 71 71 1. The reported value in the units described, no decimals. 72 72 1. End with a control / carriage return '<cr>' 73 73 74 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be: 75 - 76 76 ((( 77 77 Ex: *5QD1443<cr> 78 78 ))) 79 79 80 - This indicates that servo #5 is currently at 144.3 degrees(1443 tenths of degrees).96 +Indicates that servo #5 is currently at 144.3 degrees. 81 81 82 -== Configuration Commands == 83 - 84 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 85 - 86 -1. Start with a number sign # (U+0023) 87 -1. Servo ID number as an integer 88 -1. Configuration command (two to three letters, no spaces, capital or lower case) 89 -1. Configuration value in the correct units with no decimal 90 -1. End with a control / carriage return '<cr>' 91 - 92 -Ex: #5CO-50<cr> 93 - 94 -This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below. 95 - 96 96 **Session vs Configuration Query** 97 97 98 -By default, the query command returns the sessions' value . Should no action commands have been sent to changethe session value, it will return the value saved in EEPROMwhich will either be the servo's default, ormodified with a configuration command. Inorderto query thevaluestoredin EEPROM (configuration),add a '1' to the querycommand:100 +By default, the query command returns the sessions' value; should no action commands have been sent to change, it will return the value saved in EEPROM from the last configuration command. 99 99 100 - Ex:#5CSR20<cr> immediatelysets themaximum speedfor servo #5 to 20rpm (explainedbelow)andchangesthevalueinmemory.102 +In order to query the value in EEPROM, add a '1' to the query command. 101 101 102 - After RESET,a command of#5SR4<cr> sets thesession'sspeedto4rpm,but doesnotchangetheconfigurationvaluein memory.Therefore:104 +Ex: #5CSR20<cr> sets the maximum speed for servo #5 to 20rpm upon RESET (explained below). 103 103 104 - #5QSR<cr> would return*5QSR4<cr>which represents thevalue for thatsession,whereas106 +After RESET: #5SR4<cr> sets the session's speed to 4rpm. 105 105 108 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session. 109 + 106 106 #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 107 107 108 108 == Virtual Angular Position == 109 109 110 - The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more.Invirtualposition mode, the "absolute position" would be the angle of the output shaft withrespect toa 360.0 degree circle, and can be obtained by taking the modulus(with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).114 +{In progress} 111 111 116 +A "virtual position" is one which allows for multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to 360.0 degrees. 117 + 112 112 [[image:LSS-servo-positions.jpg]] 113 113 114 - In this example,the gyre direction(explainedbelow, a.k.a. "rotationdirection") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees.The following command is sent:120 +Example: Gyre direction / rotation is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. 115 115 116 -#1D-300<cr> Th is causestheservo to move to -30.0 degrees (green arrow)122 +#1D-300<cr> The servo is sent a command to move to -30.0 degrees (green arrow) 117 117 118 118 #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow) 119 119 120 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 126 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees, stopping at an absolute position of 60.0 degrees (420.0-360.0), with a virtual position of -420.0 degrees. 121 121 122 122 Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 123 123 ... ... @@ -130,75 +130,64 @@ 130 130 131 131 = Command List = 132 132 133 -== Regular == 139 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes|=(% style="width: 50px;" %)Default 140 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none| |(% style="text-align:center" %) 141 +| 2|[[**H**alt & Hold>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none| |(% style="text-align:center" %) 142 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds| Modifier only (P, D, MD)|(% style="text-align:center" %) 143 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds / second| Modifier only (P)|(% style="text-align:center" %) 144 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %) 145 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %)((( 146 +00 134 134 135 -|= #|=Description|=Mod|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 136 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| | L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 137 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| | H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 138 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]|T| | | | | | ✓|milliseconds|(% style="width:510px" %)Modifier only for {P, D, MD}. Time is estimated and can change based on load|(% style="text-align:center; width:113px" %) 139 -| 4|[[**S**peed>>||anchor="H4.Speed28S29modifier"]]|S/SD| |QS| | | | ✓|microseconds per second / degrees per second|(% style="width:510px" %)S modifier only for {P}. SD modifier only for {D, MD}.|(% style="text-align:center; width:113px" %) 140 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| | MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 141 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| | O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 142 -0 148 +0.0 degrees 143 143 ))) 144 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| | AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 145 -1800 146 -))) 147 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| | P| QP| | | | ✓|microseconds|(% style="width:510px" %)((( 148 -Inherited from SSC-32 serial protocol 149 -)))|(% style="text-align:center; width:113px" %) 150 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| | D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 151 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| | WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 152 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| | WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 153 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| | SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)((( 154 -QSD: Add modifier "2" for instantaneous speed. 150 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %)((( 151 +1800 155 155 156 -SD overwrites SR / CSD overwrites CSR and vice-versa. 157 -)))|(% style="text-align:center; width:113px" %)Max per servo 158 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| | SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 159 -QSR: Add modifier "2" for instantaneous speed 160 - 161 -SR overwrites SD / CSR overwrites CSD and vice-versa. 162 -)))|(% style="text-align:center; width:113px" %)Max per servo 163 -| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| | LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 7)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)0 (OFF) 164 -| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| | G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 165 -| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0 166 -| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)115200 167 -| 18|//{coming soon}//| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 168 - 153 +180.0 degrees 169 169 ))) 170 -| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstA0Position28Degrees29"]]| | | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)No Value 171 -| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)|(% style="text-align:center; width:113px" %) 172 -| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 173 -| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 174 -| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 175 -| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 176 -| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 177 -| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 178 -| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | | |CRC|✓| | ✓|none|(% style="width:510px" %)((( 179 -Change to RC mode 1 (position) or 2 (wheel). 180 -)))|(% style="text-align:center; width:113px" %)Serial 181 -| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 182 -| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 183 -| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 184 - 185 -== Advanced == 186 - 187 -|= #|=(% style="width: 182px;" %)Description|=(% style="width: 56px;" %)Mod|=(% style="width: 70px;" %) Action|=(% style="width: 71px;" %) Query|=(% style="width: 77px;" %) Config|=(% style="width: 77px;" %)Session|=(% style="width: 56px;" %) RC|=(% style="width: 151px;" %) Serial|= Units|=(% style="width: 510px;" %) Notes 188 -| A1|(% style="width:182px" %)[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|(% style="width:56px" %) |(% style="width:70px" %)AS|(% style="width:71px" %)QAS|(% style="width:77px" %)CAS|(% style="width:77px" %)✓|(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4 189 -| A2|(% style="width:182px" %)[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|(% style="width:56px" %) |(% style="width:70px" %)AH|(% style="width:71px" %)QAH|(% style="width:77px" %)CAH|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|none (integer -10 to +10)|(% style="width:510px" %)Effect is different between serial and RC 190 -| A3|(% style="width:182px" %)[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|(% style="width:56px" %) |(% style="width:70px" %)AA|(% style="width:71px" %)QAA|(% style="width:77px" %)CAA|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared 191 -| A4|(% style="width:182px" %)[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|(% style="width:56px" %) |(% style="width:70px" %)AD|(% style="width:71px" %)QAD|(% style="width:77px" %)CAD|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared 192 -| A5|(% style="width:182px" %)[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|(% style="width:56px" %) |(% style="width:70px" %)EM|(% style="width:71px" %)QEM|(% style="width:77px" %) |(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %) ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable 193 -| A6|(% style="width:182px" %)[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]|(% style="width:56px" %) |(% style="width:70px" %) |(% style="width:71px" %)QLB|(% style="width:77px" %) CLB|(% style="width:77px" %) |(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer from 0 to 63)|(% style="width:510px" %)((( 194 -0=No blinking, 63=Always blink; 195 - 196 -Blink while: 1=Limp; 2=Holding; 4=Accel; 8=Decel; 16=Free 32=Travel; 155 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|((( 156 +See details below 157 +)))|(% style="text-align:center" %) 158 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %) 159 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center" %) 160 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center" %) 161 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD| CSD| ✓| ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed|(% style="text-align:center" %) 162 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR| CSR| ✓| ✓|rpm|QSR: Add modifier "2" for instantaneous speed|(% style="text-align:center" %) 163 +| 14|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4|(% style="text-align:center" %)0 164 +| 15|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0. |(% style="text-align:center" %) 165 +|15b|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared|(% style="text-align:center" %) 166 +|15c|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared|(% style="text-align:center" %) 167 +|15d|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles|(% style="text-align:center" %) 168 +| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center" %)7 169 +| 16b|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center" %) 170 +| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center" %)0 171 +| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)| |(% style="text-align:center" %)9600 172 +| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center" %)1 Clowckwise 173 +| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none | |(% style="text-align:center" %)((( 174 +Limp 197 197 ))) 198 -| A7|(% style="width:182px" %)[[**C**urrent **H**alt & **H**old>>||anchor="HA7.CurrentHalt26Hold28CH29"]]|(% style="width:56px" %)CH|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR 199 -| A8|(% style="width:182px" %)[[**C**urrent **L**imp>>||anchor="HA8.CurrentLimp28CL29"]]|(% style="width:56px" %)CL|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR 176 +| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none | |(% style="text-align:center" %)Limp 177 +| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %) 178 +| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)| Recommended to determine the model|(% style="text-align:center" %) | 179 +| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)| Returns a raw value representing the three model inputs (36 bit)|(% style="text-align:center" %) | 180 +| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)| |(% style="text-align:center" %) 181 +| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)| |(% style="text-align:center" %) 182 +| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)| See command description for details|(% style="text-align:center" %) 183 +| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)| |(% style="text-align:center" %) 184 +| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)|(% style="text-align:center" %) 185 +| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)| |(% style="text-align:center" %) 186 +| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|((( 187 +CRC: Add modifier "1" for RC-position mode. 188 +CRC: Add modifier "2" for RC-wheel mode. 189 +Any other value for the modifier results in staying in smart mode. 190 +Puts the servo into RC mode. To revert to smart mode, use the button menu. 191 +)))|(% style="text-align:center" %)Serial 192 +|31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|Soft reset. See command for details.|(% style="text-align:center" %) 193 +|32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|Revert to firmware default values. See command for details|(% style="text-align:center" %) 194 +|33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|Update firmware. See command for details.|(% style="text-align:center" %) 200 200 201 -== Details - Basic==196 +== Details == 202 202 203 203 ====== __1. Limp (**L**)__ ====== 204 204 ... ... @@ -210,31 +210,22 @@ 210 210 211 211 Example: #5H<cr> 212 212 213 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angularposition.208 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position. 214 214 215 -====== __3. Timed move (**T**) modifier__ ======210 +====== __3. Timed move (**T**)__ ====== 216 216 217 217 Example: #5P1500T2500<cr> 218 218 219 -Timed move can be used only as a modifier for a position (P , D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensurethat the move is performed entirely at the desired velocity, though differences in torquemay cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.214 +Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 220 220 221 221 Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 222 222 223 -====== __4. Speed (**S** , **SD**)modifier__ ======218 +====== __4. Speed (**S**)__ ====== 224 224 225 225 Example: #5P1500S750<cr> 226 -Example: #5D0SD180<cr> 227 227 228 - Modifier(S) isonly for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.222 +This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 229 229 230 -Modifer (S) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second. 231 - 232 -Query Speed (**QS**) 233 - 234 -Example: #5QS<cr> might return *5QS300<cr> 235 - 236 -This command queries the current speed in microseconds per second. 237 - 238 238 ====== __5. (Relative) Move in Degrees (**MD**)__ ====== 239 239 240 240 Example: #5MD123<cr> ... ... @@ -245,11 +245,11 @@ 245 245 246 246 Example: #5O2400<cr> 247 247 248 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session.As withall action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).234 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position. The setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. Note that for a given session, the O command overrides the CO command. In the first image, the origin at factory offset '0' (centered). 249 249 250 250 [[image:LSS-servo-default.jpg]] 251 251 252 -In the second image, the origin, a ndthecorrespondingangular range (explained below) have been shifted by+240.0 degrees:238 +In the second image, the origina, as well as the angular range (explained below) have been shifted by 240.0 degrees: 253 253 254 254 [[image:LSS-servo-origin.jpg]] 255 255 ... ... @@ -257,33 +257,33 @@ 257 257 258 258 Example: #5QO<cr> Returns: *5QO-13 259 259 260 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.246 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. 261 261 262 262 Configure Origin Offset (**CO**) 263 263 264 264 Example: #5CO-24<cr> 265 265 266 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.252 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. 267 267 268 268 ====== __7. Angular Range (**AR**)__ ====== 269 269 270 270 Example: #5AR1800<cr> 271 271 272 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image belowshows a standard-180.0 to +180.0 range,with no offset:258 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). In the first image, 273 273 274 274 [[image:LSS-servo-default.jpg]] 275 275 276 - Below, the angular rangeis restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.262 +Here, the angular range has been restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 277 277 278 278 [[image:LSS-servo-ar.jpg]] 279 279 280 - Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action commandre used to move both the center and limit the angular range:266 +The angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) an be used to move both the center and limit the angular range: 281 281 282 282 [[image:LSS-servo-ar-o-1.jpg]] 283 283 284 284 Query Angular Range (**QAR**) 285 285 286 -Example: #5QAR<cr> might return *5AR 1800, indicating the total angular range is 180.0 degrees.272 +Example: #5QAR<cr> might return *5AR2756 287 287 288 288 Configure Angular Range (**CAR**) 289 289 ... ... @@ -293,7 +293,7 @@ 293 293 294 294 Example: #5P2334<cr> 295 295 296 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.282 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected to end points. 297 297 298 298 Query Position in Pulse (**QP**) 299 299 ... ... @@ -304,7 +304,7 @@ 304 304 305 305 ====== __9. Position in Degrees (**D**)__ ====== 306 306 307 -Example: #5D1456<cr> 293 +Example: #5PD1456<cr> 308 308 309 309 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction. 310 310 ... ... @@ -316,13 +316,6 @@ 316 316 317 317 This means the servo is located at 13.2 degrees. 318 318 319 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 320 -Query Target Position in Degrees (**QDT**) 321 - 322 -Ex: #5QDT<cr> might return *5QDT6783<cr> 323 - 324 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 325 - 326 326 ====== __10. Wheel Mode in Degrees (**WD**)__ ====== 327 327 328 328 Ex: #5WD900<cr> ... ... @@ -347,22 +347,22 @@ 347 347 348 348 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 349 349 350 -====== __12. MaxSpeed in Degrees (**SD**)__ ======329 +====== __12. Speed in Degrees (**SD**)__ ====== 351 351 352 352 Ex: #5SD1800<cr> 353 353 354 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage.TheSDaction command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD)received is what the servo uses for that session.333 +This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session. 355 355 356 356 Query Speed in Degrees (**QSD**) 357 357 358 358 Ex: #5QSD<cr> might return *5QSD1800<cr> 359 359 360 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a nSD/SR command is processed.339 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed. 361 361 If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 362 362 363 363 |**Command sent**|**Returned value (1/10 °)** 364 364 |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 365 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM(set by CSD/CSR)344 +|ex: #5QSD1<cr>|Configured maximum speed (set by CSD/CSR) 366 366 |ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 367 367 |ex: #5QSD3<cr>|Target travel speed 368 368 ... ... @@ -372,22 +372,22 @@ 372 372 373 373 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 374 374 375 -====== __13. MaxSpeed in RPM (**SR**)__ ======354 +====== __13. Speed in RPM (**SR**)__ ====== 376 376 377 377 Ex: #5SD45<cr> 378 378 379 -This command sets the servo's maximum speed for motionreceived is what the servo uses for that session.358 +This command sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session. 380 380 381 381 Query Speed in Degrees (**QSR**) 382 382 383 383 Ex: #5QSR<cr> might return *5QSR45<cr> 384 384 385 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a nSD/SR command is processed.364 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed. 386 386 If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 387 387 388 388 |**Command sent**|**Returned value (1/10 °)** 389 389 |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 390 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM(set by CSD/CSR)369 +|ex: #5QSR1<cr>|Configured maximum speed (set by CSD/CSR) 391 391 |ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 392 392 |ex: #5QSR3<cr>|Target travel speed 393 393 ... ... @@ -395,344 +395,286 @@ 395 395 396 396 Ex: #5CSR45<cr> 397 397 398 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.377 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 399 399 400 -====== __14. LED Color (**LED**)__ ======379 +====== __14. Angular Stiffness (**AS**)__ ====== 401 401 402 - Ex:#5LED3<cr>381 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 403 403 404 - Thisactionsets theservo's RGB LED color for that session.The LED can beusedforaesthetics, or (based onser code) to provide visualstatusupdates. Usingtiming can create patterns.383 +A positive value of "angular stiffness": 405 405 406 -0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White; 385 +* The more torque will be applied to try to keep the desired position against external input / changes 386 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 407 407 408 - QueryLEDColor(**QLED**)388 +A negative value on the other hand: 409 409 410 -Ex: #5QLED<cr> might return *5QLED5<cr> 390 +* Causes a slower acceleration to the travel speed, and a slower deceleration 391 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back 411 411 412 -This simplequery returns theindicatedservo'sLEDcolor.393 +The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior. 413 413 414 - Configure LEDColor(**CLED**)395 +Ex: #5AS-2<cr> 415 415 416 - ConfiguringtheLED colorviatheCLEDcommandsets the startupcolor oftheservo afteraresetrpowercycle.Notethatitalsochanges the session'sLEDcolor immediatelyaswell.397 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 417 417 418 - ======__15. Gyre Rotation Direction (**G**)__ ======399 +Ex: #5QAS<cr> 419 419 420 - "Gyre" is defined as a circular courseormotion. Theeffectof changing thegyre direction isas if youwereto usea mirror imageof a circle. CW = 1; CCW = -1. The factory default isclockwise(CW).401 +Queries the value being used. 421 421 422 -Ex: #5 G-1<cr>403 +Ex: #5CAS<cr> 423 423 424 - This command will cause servo #5's positions to beinverted, effectively causingtheservo to rotate in the opposite direction given the same command.For example ina 2WD robot, servos are often physically installed back to back, thereforesetting one ofthe servos to anegative gyration, thesame wheel command (ex WR30) to bothservos will cause the robottomoveforward or backward rather than rotate.405 +Writes the desired angular stiffness value to memory. 425 425 426 - QueryGyreDirection (**QG**)407 +====== __15. Angular Hold Stiffness (**AH**)__ ====== 427 427 428 - Ex:#5QG<cr>might return*5QG-1<cr>409 +The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 429 429 430 - Thevalue returned above means the servo is in acounter-clockwise gyration.411 +Ex: #5AH3<cr> 431 431 432 - ConfigureGyre(**CG**)413 +This sets the holding stiffness for servo #5 to 3 for that session. 433 433 434 - Ex:#5CG-1<cr>415 +Query Angular Hold Stiffness (**QAH**) 435 435 436 - Thischangesthegyredirectionas described above and also writes to EEPROM.417 +Ex: #5QAH<cr> might return *5QAH3<cr> 437 437 438 - ======__16. IdentificationNumber (**ID**)__ ======419 +This returns the servo's angular holding stiffness value. 439 439 440 - A servo's identification numbercannot beset "onthe fly" and must be configured via the CID command described below. The factorydefault ID number for allservos is 0.Since smartservos areintended to be daisy chained, in order to respond differently from oneanother, the user mustset different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands(assuming same baud rate).421 +Configure Angular Hold Stiffness (**CAH**) 441 441 442 - QueryIdentification (**QID**)423 +Ex: #5CAH2<cr> 443 443 444 - EX:#254QID<cr> mightreturn*QID5<cr>425 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM 445 445 446 - Whenusing the query ID command, it isbestto only have one servoconnected and thus receive only oneeply. This is useful when youare notsure of the servo's ID, but don't want to changeit. Using the broadcast command(ID 254)with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.427 +====== __15b: Angular Acceleration (**AA**)__ ====== 447 447 448 - ConfigureID(**CID**)429 +{More details to come} 449 449 450 - Ex:#4CID5<cr>431 +====== __15c: Angular Deceleration (**AD**)__ ====== 451 451 452 - Setting a servo's ID in EEPROMis done via the CID command. All servos connectedto the same serial bus will be assignedthat ID. In most situationseach servo mustbe setaunique ID, which means each servo must be connected individually to theserialbus and receive a unique CID number. Itis best todo this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternativemethod you like. The servo must be RESET or power cycled in order for the new ID to take effect.433 +{More details to come} 453 453 454 -====== __1 7. BaudRate__ ======435 +====== __15d: Motion Control (**EM**)__ ====== 455 455 456 - A servo's baudratecannot be set "on the fly" andmust beconfigured viathe CB command described below. The factory default baud rate for allservosis 115200. Since smartservosare intended to be daisychained, inorder to respond to the sameserial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200. The baud rates are currently restricted to those above.437 +{More details to come} 457 457 458 - QueryBaudRate(**QB**)439 +====== __16. RGB LED (**LED**)__ ====== 459 459 460 -Ex: #5 QB<cr>might return *5QB115200<cr>441 +Ex: #5LED3<cr> 461 461 462 - Sincethecommandtoquerythebaud ratemustbedoneattheservo'sexisting baud rate,itcansimplybe usedto confirmtheCB configurationcommand wascorrectlyreceivedbeforetheservoispowercycledandthe newbaudratetakeseffect.443 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. 463 463 464 - ConfigureBaudRate(**CB**)445 +0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE 465 465 466 - Important Note: the servo's current sessionretainsthegiven baud rate and the new baud rate willonly take effect when the servois powercycled / RESET.447 +Query LED Color (**QLED**) 467 467 468 -Ex: #5 CB9600<cr>449 +Ex: #5QLED<cr> might return *5QLED5<cr> 469 469 470 - Sending thiscommand will changethebaudrateassociatedwithservoID5 to 9600 bits per second.451 +This simple query returns the indicated servo's LED color. 471 471 472 - ====== __18. {//Comingsoon//}__======453 +Configure LED Color (**CLED**) 473 473 474 -Command co ming soon....455 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 475 475 476 -====== __1 9.First Position (Degrees)__ ======457 +====== __16b. Configure LED Blinking (**CLB**)__ ====== 477 477 478 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. 459 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 460 +You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 479 479 480 - QueryFirstPosition inDegrees(**QFD**)462 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 481 481 482 -Ex: #5QFD<cr> might return *5QFD64<cr> 464 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 465 +Ex: #5CLB1<cr> only blink when limp 466 +Ex: #5CLB2<cr> only blink when holding 467 +Ex: #5CLB12<cr> only blink when accel or decel 468 +Ex: #5CLB48<cr> only blink when free or travel 469 +Ex: #5CLB63<cr> blink in all status 483 483 484 - Thereplyaboveindicates that servo with ID 5 has afirstpositionpulse of 1550microseconds. If thereis no first position value stored, the reply will be DIS471 +====== __17. Identification Number__ ====== 485 485 486 - ConfigureFirstPosition inDegrees(**CFD**)473 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 487 487 488 - Ex:#5CD64<cr>475 +Query Identification (**QID**) 489 489 490 - This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex.#5CFD<cr>)results in the servo remaininglimp upon power up. In ordertoremovethe first position,send no value, ex: #5CFD<cr>477 +EX: #254QID<cr> might return *QID5<cr> 491 491 492 - ======__20.QueryModelString (**QMS**)__======479 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply using the broadcast command (ID 254). Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 493 493 494 - Ex: #5QMS<cr> might return*5QMSLSS-HS1<cr>481 +Configure ID (**CID**) 495 495 496 - Thisreply means the servo model is LSS-HS1, meaning a high speed servo, first revision.483 +Ex: #4CID5<cr> 497 497 498 - ======__21.QuerySerialNumber(**QN**)__======485 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. 499 499 500 - Ex:#5QN<cr>mightreturn*5QN12345678<cr>487 +====== __18. Baud Rate__ ====== 501 501 502 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user. 489 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 490 +\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. 503 503 504 - ====== __22.QueryFirmware (**QF**)__ ======492 +Query Baud Rate (**QB**) 505 505 506 -Ex: #5Q F<cr> might return *5QF411<cr>494 +Ex: #5QB<cr> might return *5QB9600<cr> 507 507 508 - The numberrepresentsthe firmwareversion,in thisexamplebeing 411.496 +Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled. 509 509 510 - ====== __23. QueryStatus(**Q**)__ ======498 +Configure Baud Rate (**CB**) 511 511 512 - Thestatus query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use theCLBadvanced command to have the LED blink forcertain statuses.500 +Ex: #5CB9600<cr> 513 513 514 - Ex: #5Q<cr> mightreturn*5Q6<cr>,whichindicates themotorisholding aposition.502 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 515 515 516 -|***Value returned (Q)**|**Status**|**Detailed description** 517 -|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 518 -|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 519 -|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely 520 -|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 521 -|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 522 -|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 523 -|ex: *5Q6<cr>|6: Holding|Keeping current position 524 -|ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 525 -|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 526 -|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 527 -|ex: *5Q10<cr>|10: Safe Mode|((( 528 -A safety limit has been exceeded (temperature, peak current or extended high current draw). 504 +====== __19. Gyre Rotation Direction__ ====== 529 529 530 -Send a Q1 command to know which limit has been reached (described below). 531 -))) 506 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 532 532 533 -(% class="wikigeneratedid" %) 534 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 508 +{images showing before and after with AR and Origin offset} 535 535 536 -|***Value returned (Q1)**|**Status**|**Detailed description** 537 -|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 538 -|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 539 -|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 540 -|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 510 +Query Gyre Direction (**QG**) 541 541 542 - ======__24.QueryVoltage(**QV**)__ ======512 +Ex: #5QG<cr> might return *5QG-1<cr> 543 543 544 - Ex:#5QV<cr>mightreturn*5QV11200<cr>514 +The value returned above means the servo is in a counter-clockwise gyration. 545 545 546 - The number returned hasone decimal, so in the case above, servo with ID 5 has an input voltageof 11.2V (perhaps a threecell LiPo battery).516 +Configure Gyre (**CG**) 547 547 548 - ======__25. Query Temperature (**QT**)__ ======518 +Ex: #5CG-1<cr> 549 549 550 - Ex: #5QT<cr> might return*5QT564<cr>520 +This changes the gyre direction as described above and also writes to EEPROM. 551 551 552 - Theunitsarein tenths of degreesCelcius,so inhe exampleabove, theservo'sinternal temperatureis 56.4 degrees C. Toconvertfrom degrees Celciusto degreesFarenheit, multiply by 1.8 and add 32. Therefore 56.4C=133.52F.522 +====== __20. First / Initial Position (pulse)__ ====== 553 553 554 - ======__26.QueryCurrent (**QC**)__======524 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 555 555 556 - Ex: #5QC<cr>mightreturn *5QC140<cr>526 +Query First Position in Pulses (**QFP**) 557 557 558 - Theunits areinmilliamps, so in the example above,theservo is consuming140mA, or0.14A.528 +Ex: #5QFP<cr> might return *5QFP1550<cr> 559 559 560 - ======__27.ConfigureRCMode (**CRC**)__ ======530 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If no first position has been set, servo will respond with DIS ("disabled"). 561 561 562 - This command puts the servo into RCmode (positionor continuous), where it will onlyrespondtoRC pulses. Note that because this isthe case, the servo will nolongeraccept serial commands.The servo can be placed back intosmart modeby usingthe button menu.532 +Configure First Position in Pulses (**CFP**) 563 563 564 -|**Command sent**|**Note** 565 -|ex: #5CRC1<cr>|Change to RC position mode. 566 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 567 -|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode. 534 +Ex: #5CP1550<cr> 568 568 569 - EX:#5CRC2<cr>536 +This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 570 570 571 - Thiscommandwould place the servoin RC wheel mode aftera RESET or power cycle. Notethatafter a RESET or power cycle, the servo will be inRC mode and will notreply to serialcommands. Usingthe command #5CRC<cr> or #5CRC3<cr> which requests that the servoremainin serial modestill requiresa RESET command.538 +====== __21. First / Initial Position (Degrees)__ ====== 572 572 573 -I mportantnote:****TorevertfromRCmodebacktoserialmode,the[[LSS-ButtonMenu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]]isrequired.Shouldthebuttonbeinaccessible (orbroken)when theservois in RCmodeand theuserneedstochangetoserialmode,a 5V constant HIGH needs to be sent to the servo'sRx pin(RC PWM pin),ensuringacommon GND and waitfor 30 seconds.NormalRC PWM pulses shouldnot exceed2500 milliseconds.After30 seconds,theservowill interpret thisasa desired modechangeand changeto serialmode.Thishasbeen implementedas afailsafe.540 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 574 574 575 - ======__28.**RESET**__ ======542 +Query First Position in Degrees (**QFD**) 576 576 577 -Ex: #5 RESET<cr>or#5RS<cr>544 +Ex: #5QFD<cr> might return *5QFD64<cr> 578 578 579 -This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 580 -Note: after a RESET command is received the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details. 546 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. 581 581 582 - ======__29.**DEFAULT**&CONFIRM__ ======548 +Configure First Position in Degrees (**CFD**) 583 583 584 -Ex: #5D EFAULT<cr>550 +Ex: #5CD64<cr> 585 585 586 -This command setsin motion theresetofall values to thedefaultvaluesincludedwith the versionofthefirmwareinstalledonthat servo.Theservo thenwaitsfor theCONFIRMcommand.Any other commandreceived will causethe servotoexittheDEFAULT function.552 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up. 587 587 588 - EX:#5DEFAULT<cr>followedby#5CONFIRM<cr>554 +====== __22. Query Target Position in Degrees (**QDT**)__ ====== 589 589 590 - Sinceit it notcommon to have torestoreall configurations,a confirmation command is needed after a firmware command is sent. Should any command otherthanCONFIRM be received by the servo after the firmware command has been received, it will exit the command.556 +Ex: #5QDT<cr> might return *5QDT6783<cr> 591 591 592 - Note that after theCONFIRMcommandissent, the servowillautomaticallyperform aRESET.558 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 593 593 594 -====== __3 0. **UPDATE**& CONFIRM__ ======560 +====== __23. Query Model String (**QMS**)__ ====== 595 595 596 -Ex: #5 UPDATE<cr>562 +Ex: #5QMS<cr> might return *5QMSLSS-HS1cr> 597 597 598 -This command setsinmotion theequivalent of a long button presswhenthe servois not powered in order to enter firmware update mode.Thisisusefulshould thebuttonbe brokenorinaccessible. The servothen waitsforheCONFIRM command. Any othercommand received will cause the servo to exit the UPDATE function.564 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 599 599 600 - EX:#5UPDATE<cr>followedby #5CONFIRM<cr>566 +====== __23b. Query Model (**QM**)__ ====== 601 601 602 - Sinceit it notcommon to have to update firmware,a confirmation command is needed afteran UPDATE command is sent. Should any command otherthanCONFIRMbe received by the servo after the firmware command has been received, it will leave the firmware action.568 +Ex: #5QM<cr> might return *5QM68702699520cr> 603 603 604 - Note thataftertheCONFIRM command issent, the servowillautomaticallyperforma RESET.570 +This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision. 605 605 606 -== Details- Advanced==572 +====== __24. Query Serial Number (**QN**)__ ====== 607 607 608 - Themotioncontrollerused in serialmodeis not the same asthemotion controller use in RC mode. RC mode is intended to add functionalityto what would beconsidered "normal" RC behavior based on PWM input.574 +Ex: #5QN<cr> might return *5QN~_~_<cr> 609 609 610 - ======__A1. AngularStiffness(**AS**)__======576 +The number in the response is the servo's serial number which is set and cannot be changed. 611 611 612 - Theservo'srigidity / angular stiffness can be thought of as (though not identical to) a damped springin which the value affects the stiffness and embodies howmuch,and how quickly the servo triedkeepthe requested position against changes. There are no units.578 +====== __25. Query Firmware (**QF**)__ ====== 613 613 614 - Apositive valueof "angularstiffness":580 +Ex: #5QF<cr> might return *5QF11<cr> 615 615 616 -* The more torque will be applied to try to keep the desired position against external input / changes 617 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 582 +The integer in the reply represents the firmware version with one decimal, in this example being 1.1 618 618 619 - Anegative valueonthe otherhand:584 +====== __26. Query Status (**Q**)__ ====== 620 620 621 -* Causes a slower acceleration to the travel speed, and a slower deceleration 622 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back 586 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 623 623 624 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 588 +|*Value returned|**Status**|**Detailed description** 589 +|ex: *5Q0<cr>|Unknown|LSS is unsure 590 +|ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely 591 +|ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 592 +|ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed 593 +|ex: *5Q4<cr>|Traveling|Moving at a stable speed 594 +|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position. 595 +|ex: *5Q6<cr>|Holding|Keeping current position 596 +|ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque 597 +|ex: *5Q8<cr>|Outside limits|{More details coming soon} 598 +|ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 599 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 625 625 626 - Ex:#5AS-2<cr>601 +====== __27. Query Voltage (**QV**)__ ====== 627 627 628 - Thisreduces the angularstiffness to -2 for that session, allowing the servo to deviatemore around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effectis desired. Upon reset, the servo willuse the value stored inmemory, based on the lastconfiguration command.603 +Ex: #5QV<cr> might return *5QV11200<cr> 629 629 630 - Ex:#5QAS<cr>605 +The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 631 631 632 -Quer iesthevaluebeingused.607 +====== __28. Query Temperature (**QT**)__ ====== 633 633 634 -Ex: #5 CAS<cr>609 +Ex: #5QT<cr> might return *5QT564<cr> 635 635 636 - Writes the desiredangularstiffnessaluetomemory.611 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 637 637 638 -====== __ A2.AngularHolding Stiffness(**AH**)__ ======613 +====== __29. Query Current (**QC**)__ ====== 639 639 640 - Theangularholding stiffness determines the servo's abilityto hold a desired positionunderload. The default value for stiffnessdepending on the firmware may be 0 or1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4and above +4. Maximum values are -10to +10. Note that whenconsidering altering a stiffness value, the end effect depends on the mode being tested.615 +Ex: #5QC<cr> might return *5QC140<cr> 641 641 642 - Ex:#5AH3<cr>617 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 643 643 644 - Thissetstheholding stiffnessforservo #5 to 3 for that session.619 +====== __30. RC Mode (**CRC**)__ ====== 645 645 646 - QueryAngularHoldStiffness(**QAH**)621 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 647 647 648 -Ex: #5QAH<cr> might return *5QAH3<cr> 623 +|**Command sent**|**Note** 624 +|ex: #5CRC<cr>|Stay in smart mode. 625 +|ex: #5CRC1<cr>|Change to RC position mode. 626 +|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 627 +|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode. 649 649 650 - Thisreturns the servo's angular holding stiffness value.629 +EX: #5CRC<cr> 651 651 652 - ConfigureAngularHoldStiffness(**CAH**)631 +====== __31. RESET__ ====== 653 653 654 -Ex: #5 CAH2<cr>633 +Ex: #5RESET<cr> or #5RS<cr> 655 655 656 -This writes theangular holdingstiffnessof servo #5to2 toEEPROM. Note thatwhen consideringalteringa stiffness value,the end effectdepends onthemodebeingtested.635 +This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 657 657 658 -====== __ A3:AngularAcceleration (**AA**)__ ======637 +====== __32. DEFAULT & CONFIRM__ ====== 659 659 660 - The default value for angular acceleration is 100, which is the same as the maximumdeceleration.Accepts values of between 1 and 100. Increments of 10 degrees per second squared.639 +Ex: #5DEFAULT<cr> 661 661 662 - Ex:#5AA30<cr>641 +This command sets in motion the reset all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 663 663 664 - QueryAngularAcceleration(**QAD**)643 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 665 665 666 - Ex:#5QA<cr>might return*5QA30<cr>645 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 667 667 668 - ConfigureAngularAcceleration(**CAD**)647 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 669 669 670 -E x:#5CA30<cr>649 +====== __33. UPDATE & CONFIRM__ ====== 671 671 672 - ====== __A4:AngularDeceleration (**AD**)__ ======651 +Ex: #5UPDATE<cr> 673 673 674 -Th edefault valueforangulardecelerationis100,whichisthesame as themaximumacceleration.Valuesbetween1and15have thegreatestimpact.653 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. 675 675 676 -E x: #5AD8<cr>655 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr> 677 677 678 - QueryAngularDeceleration(**QAD**)657 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 679 679 680 -Ex: #5QD<cr> might return *5QD8<cr> 681 - 682 -Configure Angular Deceleration (**CAD**) 683 - 684 -Ex: #5CD8<cr> 685 - 686 -====== __A5: Motion Control (**EM**)__ ====== 687 - 688 -The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller. 689 - 690 -Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used. 691 - 692 -====== __A6. Configure LED Blinking (**CLB**)__ ====== 693 - 694 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value: 695 - 696 -(% style="width:195px" %) 697 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 698 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 699 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1 700 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2 701 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 702 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 703 -|(% style="width:134px" %)Free|(% style="width:58px" %)16 704 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 705 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63 706 - 707 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 708 - 709 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 710 -Ex: #5CLB1<cr> only blink when limp (1) 711 -Ex: #5CLB2<cr> only blink when holding (2) 712 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12) 713 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48) 714 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32) 715 - 716 -RESETTING the servo is needed. 717 - 718 -====== __A7. Current Halt & Hold (**CH**)__ ====== 719 - 720 -This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR. 721 - 722 -Ex: #5D1423CH400<cr> 723 - 724 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position. 725 - 726 -====== __A8. Current Limp (**CL**)__ ====== 727 - 728 -This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR. 729 - 730 -Ex: #5D1423CH400<cr> 731 - 732 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp. 733 - 734 -= RGB LED Patterns = 735 - 736 -The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] 737 - 738 -[[image:LSS - LED Patterns.png]] 659 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
- LSS - LED Patterns.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.RB1 - Size
-
... ... @@ -1,1 +1,0 @@ 1 -116.3 KB - Content
- XWiki.XWikiRights[0]
-
- Allow/Deny
-
... ... @@ -1,0 +1,1 @@ 1 +Allow - Groups
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.XWikiAdminGroup - Levels
-
... ... @@ -1,0 +1,1 @@ 1 +view
- XWiki.XWikiRights[1]
-
- Allow/Deny
-
... ... @@ -1,0 +1,1 @@ 1 +Allow - Groups
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.XWikiAdminGroup - Levels
-
... ... @@ -1,0 +1,1 @@ 1 +view
- XWiki.XWikiRights[2]
-
- Allow/Deny
-
... ... @@ -1,0 +1,1 @@ 1 +Allow - Groups
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Profiles (Lynxmotion).BETA Testers - Levels
-
... ... @@ -1,0 +1,1 @@ 1 +view