Last modified by Eric Nantel on 2025/06/06 07:47

From version < 163.1 >
edited by Brahim Daouas
on 2020/03/23 10:28
To version < 97.1 >
edited by Coleman Benson
on 2019/02/01 16:06
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -lynxmotion-smart-servo.WebHome
1 +Lynxmotion Smart Servo (LSS).WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.BDaouas
1 +xwiki:XWiki.CBenson
Content
... ... @@ -1,9 +1,9 @@
1 1  (% class="wikigeneratedid" id="HTableofContents" %)
2 -**Page Contents**
2 +**Table of Contents**
3 3  
4 4  {{toc depth="3"/}}
5 5  
6 -= Serial Protocol =
6 += Serial Protocol Concept =
7 7  
8 8  The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 RC servo controller and almost everything one might expect to be able to configure for a smart servo motor is available.
9 9  
... ... @@ -13,9 +13,7 @@
13 13  
14 14  A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
15 15  
16 -Note #1: For a given session, the action related to a specific commands overrides the stored value in EEPROM.
17 -Note #2: During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).
18 -You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended.
16 +Note that for a given session, the action related to a specific commands overrides the stored value in EEPROM.
19 19  
20 20  == Action Commands ==
21 21  
... ... @@ -81,7 +81,7 @@
81 81  
82 82  == Configuration Commands ==
83 83  
84 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
82 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
85 85  
86 86  1. Start with a number sign # (U+0023)
87 87  1. Servo ID number as an integer
... ... @@ -130,75 +130,73 @@
130 130  
131 131  = Command List =
132 132  
133 -== Regular ==
134 -
135 -|= #|=Description|=Mod|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
136 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| | L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
137 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| | H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
138 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]|T| | | | | | ✓|milliseconds|(% style="width:510px" %)Modifier only for {P, D, MD}. Time is estimated and can change based on load|(% style="text-align:center; width:113px" %)
139 -| 4|[[**S**peed>>||anchor="H4.Speed28S2CSD29modifier"]]|S/SD| |QS| | | | ✓|microseconds per second / degrees per second|(% style="width:510px" %)S modifier only for {P}. SD modifier only for {D, MD}.|(% style="text-align:center; width:113px" %)
140 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| | MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
141 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| | O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
131 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
132 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
133 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
134 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)
135 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)
136 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
137 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| __CO__| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
142 142  0
143 143  )))
144 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| | AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
140 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
145 145  1800
146 146  )))
147 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| | P| QP| | | | ✓|microseconds|(% style="width:510px" %)(((
143 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(% style="width:510px" %)(((
148 148  Inherited from SSC-32 serial protocol
149 149  )))|(% style="text-align:center; width:113px" %)
150 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| | D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
151 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| | WD| QWD| | | | ✓|degrees per second|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
152 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| | WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
153 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| | SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)(((
146 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
147 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
148 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
149 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)(((
154 154  QSD: Add modifier "2" for instantaneous speed.
155 155  
156 156  SD overwrites SR / CSD overwrites CSR and vice-versa.
157 157  )))|(% style="text-align:center; width:113px" %)Max per servo
158 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| | SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
154 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
159 159  QSR: Add modifier "2" for instantaneous speed
160 160  
161 161  SR overwrites SD / CSR overwrites CSD and vice-versa.
162 162  )))|(% style="text-align:center; width:113px" %)Max per servo
163 -| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| | LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 7)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)0 (OFF)
164 -| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| | G| QG| CG|✓| | ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
165 -| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0
166 -| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)115200
167 -| 18|//{coming soon}//| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
168 -
159 +| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
160 +| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0
161 +| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
162 +| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| | ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
163 +| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | | |none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((
164 +Limp
169 169  )))
170 -| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstA0Position28Degrees29"]]| | | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)No Value
171 -| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)|(% style="text-align:center; width:113px" %)
172 -| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
173 -| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
174 -| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
175 -| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
176 -| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
177 -| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
178 -| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | | |CRC|✓| | ✓|none|(% style="width:510px" %)(((
179 -Change to RC mode 1 (position) or 2 (wheel).
166 +| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp
167 +| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
168 +| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %)
169 +| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
170 +| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
171 +| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
172 +| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
173 +| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
174 +| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
175 +| 30a|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1| | ✓|none|(% style="width:510px" %)(((
176 +Puts the servo into RC mode. To revert to smart mode, use the button menu.
180 180  )))|(% style="text-align:center; width:113px" %)Serial
181 -| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
182 -| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
183 -| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
178 +| 30b|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2| | ✓| |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
179 +| 31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
180 +| 32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
181 +| 33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
184 184  
185 185  == Advanced ==
186 186  
187 -|= #|=(% style="width: 182px;" %)Description|=(% style="width: 56px;" %)Mod|=(% style="width: 70px;" %) Action|=(% style="width: 71px;" %) Query|=(% style="width: 77px;" %) Config|=(% style="width: 77px;" %)Session|=(% style="width: 56px;" %) RC|=(% style="width: 151px;" %) Serial|= Units|=(% style="width: 510px;" %) Notes
188 -| A1|(% style="width:182px" %)[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|(% style="width:56px" %) |(% style="width:70px" %)AS|(% style="width:71px" %)QAS|(% style="width:77px" %)CAS|(% style="width:77px" %)✓|(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4
189 -| A2|(% style="width:182px" %)[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|(% style="width:56px" %) |(% style="width:70px" %)AH|(% style="width:71px" %)QAH|(% style="width:77px" %)CAH|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|none (integer -10 to +10)|(% style="width:510px" %)Effect is different between serial and RC
190 -| A3|(% style="width:182px" %)[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|(% style="width:56px" %) |(% style="width:70px" %)AA|(% style="width:71px" %)QAA|(% style="width:77px" %)CAA|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
191 -| A4|(% style="width:182px" %)[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|(% style="width:56px" %) |(% style="width:70px" %)AD|(% style="width:71px" %)QAD|(% style="width:77px" %)CAD|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
192 -| A5|(% style="width:182px" %)[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|(% style="width:56px" %) |(% style="width:70px" %)EM|(% style="width:71px" %)QEM|(% style="width:77px" %) |(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %) ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable
193 -| A6|(% style="width:182px" %)[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]|(% style="width:56px" %) |(% style="width:70px" %) |(% style="width:71px" %)QLB|(% style="width:77px" %) CLB|(% style="width:77px" %) |(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer from 0 to 63)|(% style="width:510px" %)(((
185 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
186 +| A1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0
187 +| A2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1
188 +| A3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
189 +| A4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
190 +| A5|[[**E**nable **M**otion Control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %)
191 +| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)(((
194 194  0=No blinking, 63=Always blink;
195 195  
196 -Blink while: 1=Limp; 2=Holding; 4=Accel; 8=Decel; 16=Free 32=Travel;
197 -)))
198 -| A7|(% style="width:182px" %)[[**C**urrent **H**alt & **H**old>>||anchor="HA7.CurrentHalt26Hold28CH29"]]|(% style="width:56px" %)CH|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR
199 -| A8|(% style="width:182px" %)[[**C**urrent **L**imp>>||anchor="HA8.CurrentLimp28CL29"]]|(% style="width:56px" %)CL|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR
194 +Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
195 +)))|(% style="text-align:center; width:113px" %)
200 200  
201 -== Details - Basic ==
197 +== Details ==
202 202  
203 203  ====== __1. Limp (**L**)__ ======
204 204  
... ... @@ -212,7 +212,7 @@
212 212  
213 213  This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position.
214 214  
215 -====== __3. Timed move (**T**) modifier__ ======
211 +====== __3. Timed move (**T**)__ ======
216 216  
217 217  Example: #5P1500T2500<cr>
218 218  
... ... @@ -220,21 +220,12 @@
220 220  
221 221  Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
222 222  
223 -====== __4. Speed (**S**, **SD**) modifier__ ======
219 +====== __4. Speed (**S**)__ ======
224 224  
225 225  Example: #5P1500S750<cr>
226 -Example: #5D0SD180<cr>
227 227  
228 -Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
223 +This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
229 229  
230 -Modifer (S) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second.
231 -
232 -Query Speed (**QS**)
233 -
234 -Example: #5QS<cr> might return *5QS300<cr>
235 -
236 -This command queries the current speed in microseconds per second.
237 -
238 238  ====== __5. (Relative) Move in Degrees (**MD**)__ ======
239 239  
240 240  Example: #5MD123<cr>
... ... @@ -293,7 +293,7 @@
293 293  
294 294  Example: #5P2334<cr>
295 295  
296 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.
283 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected to end points.
297 297  
298 298  Query Position in Pulse (**QP**)
299 299  
... ... @@ -304,7 +304,7 @@
304 304  
305 305  ====== __9. Position in Degrees (**D**)__ ======
306 306  
307 -Example: #5D1456<cr>
294 +Example: #5PD1456<cr>
308 308  
309 309  This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction.
310 310  
... ... @@ -316,13 +316,6 @@
316 316  
317 317  This means the servo is located at 13.2 degrees.
318 318  
319 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
320 -Query Target Position in Degrees (**QDT**)
321 -
322 -Ex: #5QDT<cr> might return *5QDT6783<cr>
323 -
324 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
325 -
326 326  ====== __10. Wheel Mode in Degrees (**WD**)__ ======
327 327  
328 328  Ex: #5WD900<cr>
... ... @@ -347,22 +347,22 @@
347 347  
348 348  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
349 349  
350 -====== __12. Max Speed in Degrees (**SD**)__ ======
330 +====== __12. Speed in Degrees (**SD**)__ ======
351 351  
352 352  Ex: #5SD1800<cr>
353 353  
354 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
334 +This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
355 355  
356 356  Query Speed in Degrees (**QSD**)
357 357  
358 358  Ex: #5QSD<cr> might return *5QSD1800<cr>
359 359  
360 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed.
340 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed.
361 361  If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
362 362  
363 363  |**Command sent**|**Returned value (1/10 °)**
364 364  |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
365 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
345 +|ex: #5QSD1<cr>|Configured maximum speed  (set by CSD/CSR)
366 366  |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
367 367  |ex: #5QSD3<cr>|Target travel speed
368 368  
... ... @@ -372,22 +372,22 @@
372 372  
373 373  Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
374 374  
375 -====== __13. Max Speed in RPM (**SR**)__ ======
355 +====== __13. Speed in RPM (**SR**)__ ======
376 376  
377 377  Ex: #5SD45<cr>
378 378  
379 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
359 +This command sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
380 380  
381 381  Query Speed in Degrees (**QSR**)
382 382  
383 383  Ex: #5QSR<cr> might return *5QSR45<cr>
384 384  
385 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed.
365 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed.
386 386  If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
387 387  
388 388  |**Command sent**|**Returned value (1/10 °)**
389 389  |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
390 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
370 +|ex: #5QSR1<cr>|Configured maximum speed  (set by CSD/CSR)
391 391  |ex: #5QSR2<cr>|Instantaneous speed (same as QWR)
392 392  |ex: #5QSR3<cr>|Target travel speed
393 393  
... ... @@ -395,344 +395,288 @@
395 395  
396 396  Ex: #5CSR45<cr>
397 397  
398 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
378 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
399 399  
400 -====== __14. LED Color (**LED**)__ ======
380 +====== __14. Angular Stiffness (**AS**)__ ======
401 401  
402 -Ex: #5LED3<cr>
382 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
403 403  
404 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
384 +A positive value of "angular stiffness":
405 405  
406 -0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;
386 +* The more torque will be applied to try to keep the desired position against external input / changes
387 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
407 407  
408 -Query LED Color (**QLED**)
389 +A negative value on the other hand:
409 409  
410 -Ex: #5QLED<cr> might return *5QLED5<cr>
391 +* Causes a slower acceleration to the travel speed, and a slower deceleration
392 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back
411 411  
412 -This simple query returns the indicated servo's LED color.
394 +The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior.
413 413  
414 -Configure LED Color (**CLED**)
396 +Ex: #5AS-2<cr>
415 415  
416 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
398 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
417 417  
418 -====== __15. Gyre Rotation Direction (**G**)__ ======
400 +Ex: #5QAS<cr>
419 419  
420 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
402 +Queries the value being used.
421 421  
422 -Ex: #5G-1<cr>
404 +Ex: #5CAS<cr>
423 423  
424 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
406 +Writes the desired angular stiffness value to memory.
425 425  
426 -Query Gyre Direction (**QG**)
408 +====== __15. Angular Hold Stiffness (**AH**)__ ======
427 427  
428 -Ex: #5QG<cr> might return *5QG-1<cr>
410 +The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
429 429  
430 -The value returned above means the servo is in a counter-clockwise gyration.
412 +Ex: #5AH3<cr>
431 431  
432 -Configure Gyre (**CG**)
414 +This sets the holding stiffness for servo #5 to 3 for that session.
433 433  
434 -Ex: #5CG-1<cr>
416 +Query Angular Hold Stiffness (**QAH**)
435 435  
436 -This changes the gyre direction as described above and also writes to EEPROM.
418 +Ex: #5QAH<cr> might return *5QAH3<cr>
437 437  
438 -====== __16. Identification Number (**ID**)__ ======
420 +This returns the servo's angular holding stiffness value.
439 439  
440 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate).
422 +Configure Angular Hold Stiffness (**CAH**)
441 441  
442 -Query Identification (**QID**)
424 +Ex: #5CAH2<cr>
443 443  
444 -EX: #254QID<cr> might return *QID5<cr>
426 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM
445 445  
446 -When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
428 +====== __15b: Angular Acceleration (**AA**)__ ======
447 447  
448 -Configure ID (**CID**)
430 +{More details to come}
449 449  
450 -Ex: #4CID5<cr>
432 +====== __15c: Angular Deceleration (**AD**)__ ======
451 451  
452 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.
434 +{More details to come}
453 453  
454 -====== __17. Baud Rate__ ======
436 +====== __15d: Motion Control (**EM**)__ ======
455 455  
456 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200. The baud rates are currently restricted to those above.
438 +{More details to come}
457 457  
458 -Query Baud Rate (**QB**)
440 +====== __16. RGB LED (**LED**)__ ======
459 459  
460 -Ex: #5QB<cr> might return *5QB115200<cr>
442 +Ex: #5LED3<cr>
461 461  
462 -Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.
444 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
463 463  
464 -Configure Baud Rate (**CB**)
446 +0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE 
465 465  
466 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.
448 +Query LED Color (**QLED**)
467 467  
468 -Ex: #5CB9600<cr>
450 +Ex: #5QLED<cr> might return *5QLED5<cr>
469 469  
470 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
452 +This simple query returns the indicated servo's LED color.
471 471  
472 -====== __18. {//Coming soon//}__ ======
454 +Configure LED Color (**CLED**)
473 473  
474 -Command coming soon....
456 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
475 475  
476 -====== __19. First Position (Degrees)__ ======
458 +====== __16b. Configure LED Blinking (**CLB**)__ ======
477 477  
478 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.
460 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details).
461 +You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
479 479  
480 -Query First Position in Degrees (**QFD**)
463 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
481 481  
482 -Ex: #5QFD<cr> might return *5QFD64<cr>
465 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
466 +Ex: #5CLB1<cr> only blink when limp
467 +Ex: #5CLB2<cr> only blink when holding
468 +Ex: #5CLB12<cr> only blink when accel or decel
469 +Ex: #5CLB48<cr> only blink when free or travel
470 +Ex: #5CLB63<cr> blink in all status
483 483  
484 -The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If there is no first position value stored, the reply will be DIS
472 +====== __17. Identification Number__ ======
485 485  
486 -Configure First Position in Degrees (**CFD**)
474 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
487 487  
488 -Ex: #5CD64<cr>
476 +Query Identification (**QID**)
489 489  
490 -This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
478 +EX: #254QID<cr> might return *QID5<cr>
491 491  
492 -====== __20. Query Model String (**QMS**)__ ======
480 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply using the broadcast command (ID 254). Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
493 493  
494 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
482 +Configure ID (**CID**)
495 495  
496 -This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
484 +Ex: #4CID5<cr>
497 497  
498 -====== __21. Query Serial Number (**QN**)__ ======
486 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.
499 499  
500 -Ex: #5QN<cr> might return *5QN12345678<cr>
488 +====== __18. Baud Rate__ ======
501 501  
502 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
490 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.
491 +\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out.
503 503  
504 -====== __22. Query Firmware (**QF**)__ ======
493 +Query Baud Rate (**QB**)
505 505  
506 -Ex: #5QF<cr> might return *5QF411<cr>
495 +Ex: #5QB<cr> might return *5QB9600<cr>
507 507  
508 -The number in the reply represents the firmware version, in this example being 411.
497 +Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled.
509 509  
510 -====== __23. Query Status (**Q**)__ ======
499 +Configure Baud Rate (**CB**)
511 511  
512 -The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses.
501 +Important Note: the servo's current session retains the given baud rate anthe new baud rate will only be in place when the servo is power cycled.
513 513  
514 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
503 +Ex: #5CB9600<cr>
515 515  
516 -|***Value returned (Q)**|**Status**|**Detailed description**
517 -|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
518 -|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
519 -|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely
520 -|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
521 -|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
522 -|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
523 -|ex: *5Q6<cr>|6: Holding|Keeping current position
524 -|ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
525 -|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
526 -|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
527 -|ex: *5Q10<cr>|10: Safe Mode|(((
528 -A safety limit has been exceeded (temperature, peak current or extended high current draw).
505 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
529 529  
530 -Send a Q1 command to know which limit has been reached (described below).
531 -)))
507 +====== __19. Gyre Rotation Direction__ ======
532 532  
533 -(% class="wikigeneratedid" %)
534 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
509 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
535 535  
536 -|***Value returned (Q1)**|**Status**|**Detailed description**
537 -|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
538 -|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
539 -|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
540 -|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
511 +{images showing before and after with AR and Origin offset}
541 541  
542 -====== __24. Query Voltage (**QV**)__ ======
513 +Query Gyre Direction (**QG**)
543 543  
544 -Ex: #5QV<cr> might return *5QV11200<cr>
515 +Ex: #5QG<cr> might return *5QG-1<cr>
545 545  
546 -The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
517 +The value returned above means the servo is in a counter-clockwise gyration.
547 547  
548 -====== __25. Query Temperature (**QT**)__ ======
519 +Configure Gyre (**CG**)
549 549  
550 -Ex: #5QT<cr> might return *5QT564<cr>
521 +Ex: #5CG-1<cr>
551 551  
552 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
523 +This changes the gyre direction as described above and also writes to EEPROM.
553 553  
554 -====== __26. Query Current (**QC**)__ ======
525 +====== __20. First / Initial Position (pulse)__ ======
555 555  
556 -Ex: #5QC<cr> might return *5QC140<cr>
527 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
557 557  
558 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
529 +Query First Position in Pulses (**QFP**)
559 559  
560 -====== __27. Configure RC Mode (**CRC**)__ ======
531 +Ex: #5QFP<cr> might return *5QFP1550<cr>
561 561  
562 -This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
533 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If no first position has been set, servo will respond with DIS ("disabled").
563 563  
564 -|**Command sent**|**Note**
565 -|ex: #5CRC1<cr>|Change to RC position mode.
566 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode.
567 -|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode.
535 +Configure First Position in Pulses (**CFP**)
568 568  
569 -EX: #5CRC2<cr>
537 +Ex: #5CP1550<cr>
570 570  
571 -This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.
539 +This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled).
572 572  
573 -Important note:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.
541 +====== __21. First / Initial Position (Degrees)__ ======
574 574  
575 -====== __28. **RESET**__ ======
543 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
576 576  
577 -Ex: #5RESET<cr> or #5RS<cr>
545 +Query First Position in Degrees (**QFD**)
578 578  
579 -This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
580 -Note: after a RESET command is received the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.
547 +Ex: #5QFD<cr> might return *5QFD64<cr>
581 581  
582 -====== __29. **DEFAULT** & CONFIRM__ ======
549 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds.
583 583  
584 -Ex: #5DEFAULT<cr>
551 +Configure First Position in Degrees (**CFD**)
585 585  
586 -This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
553 +Ex: #5CD64<cr>
587 587  
588 -EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
555 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up.
589 589  
590 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
557 +====== __22. Query Target Position in Degrees (**QDT**)__ ======
591 591  
592 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
559 +Ex: #5QDT<cr> might return *5QDT6783<cr>
593 593  
594 -====== __30. **UPDATE** & CONFIRM__ ======
561 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
595 595  
596 -Ex: #5UPDATE<cr>
563 +====== __23. Query Model String (**QMS**)__ ======
597 597  
598 -This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
565 +Ex: #5QMS<cr> might return *5QMSLSS-HS1cr>
599 599  
600 -EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
567 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
601 601  
602 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
569 +====== __23b. Query Model (**QM**)__ ======
603 603  
604 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
571 +Ex: #5QM<cr> might return *5QM68702699520cr>
605 605  
606 -== Details - Advanced ==
573 +This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision.
607 607  
608 -The motion controller used in serial mode is not the same as the motion controller use in RC mode. RC mode is intended to add functionality to what would be considered "normal" RC behavior based on PWM input.
575 +====== __24. Query Serial Number (**QN**)__ ======
609 609  
610 -====== __A1. Angular Stiffness (**AS**)__ ======
577 +Ex: #5QN<cr> might return *5QN~_~_<cr>
611 611  
612 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.
579 +The number in the response is the servo's serial number which is set and cannot be changed.
613 613  
614 -A positive value of "angular stiffness":
581 +====== __25. Query Firmware (**QF**)__ ======
615 615  
616 -* The more torque will be applied to try to keep the desired position against external input / changes
617 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
583 +Ex: #5QF<cr> might return *5QF11<cr>
618 618  
619 -A negative value on the other hand:
585 +The integer in the reply represents the firmware version with one decimal, in this example being 1.1
620 620  
621 -* Causes a slower acceleration to the travel speed, and a slower deceleration
622 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back
587 +====== __26. Query Status (**Q**)__ ======
623 623  
624 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
589 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
625 625  
626 -Ex: #5AS-2<cr>
591 +|*Value returned|**Status**|**Detailed description**
592 +|ex: *5Q0<cr>|Unknown|LSS is unsure
593 +|ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely
594 +|ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely
595 +|ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed
596 +|ex: *5Q4<cr>|Traveling|Moving at a stable speed
597 +|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position.
598 +|ex: *5Q6<cr>|Holding|Keeping current position
599 +|ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque
600 +|ex: *5Q8<cr>|Outside limits|{More details coming soon}
601 +|ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting
602 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
627 627  
628 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
604 +====== __27. Query Voltage (**QV**)__ ======
629 629  
630 -Ex: #5QAS<cr>
606 +Ex: #5QV<cr> might return *5QV11200<cr>
631 631  
632 -Queries the value being used.
608 +The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
633 633  
634 -Ex: #5CAS<cr>
610 +====== __28. Query Temperature (**QT**)__ ======
635 635  
636 -Writes the desired angular stiffness value to memory.
612 +Ex: #5QT<cr> might return *5QT564<cr>
637 637  
638 -====== __A2. Angular Holding Stiffness (**AH**)__ ======
614 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
639 639  
640 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
616 +====== __29. Query Current (**QC**)__ ======
641 641  
642 -Ex: #5AH3<cr>
618 +Ex: #5QC<cr> might return *5QC140<cr>
643 643  
644 -This sets the holding stiffness for servo #5 to 3 for that session.
620 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
645 645  
646 -Query Angular Hold Stiffness (**QAH**)
622 +====== __30. RC Mode (**CRC**)__ ======
647 647  
648 -Ex: #5QAH<cr> might return *5QAH3<cr>
624 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
649 649  
650 -This returns the servo's angular holding stiffness value.
626 +|**Command sent**|**Note**
627 +|ex: #5CRC<cr>|Stay in smart mode.
628 +|ex: #5CRC1<cr>|Change to RC position mode.
629 +|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode.
630 +|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode.
651 651  
652 -Configure Angular Hold Stiffness (**CAH**)
632 +EX: #5CRC<cr>
653 653  
654 -Ex: #5CAH2<cr>
634 +====== __31. RESET__ ======
655 655  
656 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
636 +Ex: #5RESET<cr> or #5RS<cr>
657 657  
658 -====== __A3: Angular Acceleration (**AA**)__ ======
638 +This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
659 659  
660 -The default value for angular acceleration is 100, which is the same as the maximum deceleration. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
640 +====== __32. DEFAULT & CONFIRM__ ======
661 661  
662 -Ex: #5AA30<cr>
642 +Ex: #5DEFAULT<cr>
663 663  
664 -Query Angular Acceleration (**QAD**)
644 +This command sets in motion the reset all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
665 665  
666 -Ex: #5QA<cr> might return *5QA30<cr>
646 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
667 667  
668 -Configure Angular Acceleration (**CAD**)
648 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
669 669  
670 -Ex: #5CA30<cr>
650 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
671 671  
672 -====== __A4: Angular Deceleration (**AD**)__ ======
652 +====== __33. UPDATE & CONFIRM__ ======
673 673  
674 -The default value for angular deceleration is 100, which is the same as the maximum acceleration. Values between 1 and 15 have the greatest impact.
654 +Ex: #5UPDATE<cr>
675 675  
676 -Ex: #5AD8<cr>
656 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
677 677  
678 -Query Angular Deceleration (**QAD**)
658 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
679 679  
680 -Ex: #5QD<cr> might return *5QD8<cr>
660 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
681 681  
682 -Configure Angular Deceleration (**CAD**)
683 -
684 -Ex: #5CD8<cr>
685 -
686 -====== __A5: Motion Control (**EM**)__ ======
687 -
688 -The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller.
689 -
690 -Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used.
691 -
692 -====== __A6. Configure LED Blinking (**CLB**)__ ======
693 -
694 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:
695 -
696 -(% style="width:195px" %)
697 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
698 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0
699 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1
700 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2
701 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
702 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
703 -|(% style="width:134px" %)Free|(% style="width:58px" %)16
704 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32
705 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63
706 -
707 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
708 -
709 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
710 -Ex: #5CLB1<cr> only blink when limp (1)
711 -Ex: #5CLB2<cr> only blink when holding (2)
712 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)
713 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)
714 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)
715 -
716 -RESETTING the servo is needed.
717 -
718 -====== __A7. Current Halt & Hold (**CH**)__ ======
719 -
720 -This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR.
721 -
722 -Ex: #5D1423CH400<cr>
723 -
724 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.
725 -
726 -====== __A8. Current Limp (**CL**)__ ======
727 -
728 -This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR.
729 -
730 -Ex: #5D1423CH400<cr>
731 -
732 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.
733 -
734 -= RGB LED Patterns =
735 -
736 -The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]]
737 -
738 -[[image:LSS - LED Patterns.png]]
662 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
LSS - LED Patterns.png
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.RB1
Size
... ... @@ -1,1 +1,0 @@
1 -116.3 KB
Content
XWiki.XWikiRights[0]
Allow/Deny
... ... @@ -1,0 +1,1 @@
1 +Allow
Groups
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.XWikiAdminGroup
Levels
... ... @@ -1,0 +1,1 @@
1 +view
XWiki.XWikiRights[1]
Allow/Deny
... ... @@ -1,0 +1,1 @@
1 +Allow
Groups
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiAdminGroup
Levels
... ... @@ -1,0 +1,1 @@
1 +view
XWiki.XWikiRights[2]
Allow/Deny
... ... @@ -1,0 +1,1 @@
1 +Allow
Groups
... ... @@ -1,0 +1,1 @@
1 +XWiki.Profiles (Lynxmotion).BETA Testers
Levels
... ... @@ -1,0 +1,1 @@
1 +view
Copyright RobotShop 2018