Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2024/11/21 09:43
Change comment: Rollback to version 170.1
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -5,732 +5,952 @@ 5 5 6 6 = Serial Protocol = 7 7 8 -The customLynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servo8 +The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available. 9 9 10 -In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (e xplainedbelow). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC/checksum implemented as part of10 +In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on CID [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC or checksum implemented as part of the protocol. 11 11 12 12 == Session == 13 13 14 -A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 14 +{{html wiki="true" clean="false"}} 15 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 16 +A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.<div class="wikimodel-emptyline"></div> 15 15 16 -Note #1: For a given session, the action related to a specific commands overrides the stored value in EEPROM. 17 -Note #2: During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s). 18 -You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended. 18 +**Note #1:** For a given session, the action related to a specific commands overrides the stored value in EEPROM.<div class="wikimodel-emptyline"></div> 19 +**Note #2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).<div class="wikimodel-emptyline"></div> 20 +You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays. 21 +<div class="wikimodel-emptyline"></div></div></div> 22 +{{/html}} 19 19 20 20 == Action Commands == 21 21 22 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format: 26 +{{html wiki="true" clean="false"}} 27 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 28 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]]. Action commands are sent serially to the servo's Rx pin and must be sent in the following format:<div class="wikimodel-emptyline"></div> 23 23 24 -1. Start with a number sign # (U+0023) 30 +1. Start with a number sign **#** (Unicode Character: U+0023) 25 25 1. Servo ID number as an integer 26 -1. Action command (one tothreeletters, no spaces, capital or lower case)32 +1. Action command (one or more letters, no whitespace, capital or lower case) 27 27 1. Action value in the correct units with no decimal 28 -1. End with a c ontrol / carriage return'<cr>'34 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 29 29 30 30 ((( 31 -Ex: #5 PD1443<cr>37 +Ex: #5D1800<cr><div class="wikimodel-emptyline"></div> 32 32 33 -This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 39 +This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 40 +<div class="wikimodel-emptyline"></div></div></div> 41 +{{/html}} 34 34 35 -== ActionModifiers ==43 +== Modifiers == 36 36 37 -Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is: 45 +{{html wiki="true" clean="false"}} 46 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 47 +Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div> 38 38 39 -1. Start with a number sign # (U+0023) 49 +1. Start with a number sign **#** (Unicode Character: U+0023) 40 40 1. Servo ID number as an integer 41 41 1. Action command (one to three letters, no spaces, capital or lower case) 42 42 1. Action value in the correct units with no decimal 43 -1. Modifier command (one letter) 53 +1. Modifier command (one letter to too letters) 44 44 1. Modifier value in the correct units with no decimal 45 -1. End with a c ontrol / carriage return'<cr>'55 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 46 46 47 -Ex: #5 P1456T1263<cr>57 +Ex: #5D1800T1500<cr><div class="wikimodel-emptyline"></div> 48 48 49 -This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds. 50 -))) 59 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div> 60 +<div class="wikimodel-emptyline"></div></div></div> 61 +{{/html}} 51 51 52 52 == Query Commands == 53 53 54 -Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format: 65 +{{html wiki="true" clean="false"}} 66 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 67 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div> 55 55 56 -1. Start with a number sign # (U+0023) 69 +1. Start with a number sign **#** (Unicode Character: U+0023) 57 57 1. Servo ID number as an integer 58 -1. Query command (one to threeletters, no spaces, capital or lower case)59 -1. End with a c ontrol / carriage return'<cr>'71 +1. Query command (one to four letters, no spaces, capital or lower case) 72 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 60 60 61 -((( 62 -Ex: #5QD<cr>Query position in degrees for servo #5 63 -))) 74 +Ex: #5QD<cr> Query position in (tenth of) degrees for servo #5<div class="wikimodel-emptyline"></div> 64 64 65 -((( 66 66 The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format: 67 67 68 -1. Start with an asterisk * (U+002 A)78 +1. Start with an asterisk * (Unicode Character: U+0023) 69 69 1. Servo ID number as an integer 70 -1. Query command (one to threeletters, no spaces, capital letters)80 +1. Query command (one to four letters, no spaces, capital letters) 71 71 1. The reported value in the units described, no decimals. 72 -1. End with a c ontrol / carriage return'<cr>'82 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 73 73 74 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be: 84 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div> 75 75 76 -((( 77 -Ex: *5QD1443<cr> 78 -))) 86 +Ex: *5QD1800<cr><div class="wikimodel-emptyline"></div> 79 79 80 -This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees). 88 +This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees). 89 +<div class="wikimodel-emptyline"></div></div></div> 90 +{{/html}} 81 81 82 82 == Configuration Commands == 83 83 84 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 94 +{{html wiki="true" clean="false"}} 95 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 96 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div> 85 85 86 -1. Start with a number sign # (U+0023) 98 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div> 99 + 100 +The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div> 101 + 102 +1. Start with a number sign **#** (Unicode Character: U+0023) 87 87 1. Servo ID number as an integer 88 -1. Configuration command (two to threeletters, no spaces, capital or lower case)104 +1. Configuration command (two to four letters, no spaces, capital or lower case) 89 89 1. Configuration value in the correct units with no decimal 90 -1. End with a c ontrol / carriage return'<cr>'106 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 91 91 92 -Ex: #5CO-50 <cr>108 +Ex: #5CO-50<cr><div class="wikimodel-emptyline"></div> 93 93 94 -This configures an absolute origin offset ("CO") with respect to factory origin toservo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off andthen powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset(clears all configurations)described below.110 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div> 95 95 96 -**Session vs Configuration Query** 112 +**Session vs Configuration Query**<div class="wikimodel-emptyline"></div> 97 97 98 -By default, the query command returns the session s'114 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div> 99 99 100 -Ex: #5CSR20 <cr>immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.116 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div> 101 101 102 -After RESET, a command of #5SR4 <cr>sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:118 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div> 103 103 104 -#5QSR <cr>would return *5QSR4<cr>which represents the value for that session, whereas120 +#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas<div class="wikimodel-emptyline"></div> 105 105 106 -#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 122 +#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 123 +<div class="wikimodel-emptyline"></div></div></div> 124 +{{/html}} 107 107 108 108 == Virtual Angular Position == 109 109 110 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset). 128 +{{html wiki="true" clean="false"}} 129 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 130 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div> 111 111 112 -[[image:LSS-servo-positions.jpg]] 132 +[[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div> 113 113 114 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 134 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div> 115 115 116 -#1D-300 <cr>This causes the servo to move to -30.0 degrees (green arrow)136 +#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div> 117 117 118 -#1D2100 <cr>This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)138 +#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div> 119 119 120 -#1D-4200 <cr>This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.140 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div> 121 121 122 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 142 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.<div class="wikimodel-emptyline"></div> 123 123 124 -#1D4800 <cr>This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.144 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div> 125 125 126 -#1D3300 <cr>would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).146 +#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div> 127 127 128 -If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). 129 -))) 148 +If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°]. 149 +<div class="wikimodel-emptyline"></div></div></div> 150 +{{/html}} 130 130 131 131 = Command List = 132 132 133 - ==Regular==154 +**Latest firmware version currently : 368.29.14** 134 134 135 -|= #|=Description|=Mod|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 136 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| | L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 137 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| | H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 138 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]|T| | | | | | ✓|milliseconds|(% style="width:510px" %)Modifier only for {P, D, MD}. Time is estimated and can change based on load|(% style="text-align:center; width:113px" %) 139 -| 4|[[**S**peed>>||anchor="H4.Speed28S2CSD29modifier"]]|S/SD| |QS| | | | ✓|microseconds per second / degrees per second|(% style="width:510px" %)S modifier only for {P}. SD modifier only for {D, MD}.|(% style="text-align:center; width:113px" %) 140 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| | MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 141 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| | O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 142 -0 143 -))) 144 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| | AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 145 -1800 146 -))) 147 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| | P| QP| | | | ✓|microseconds|(% style="width:510px" %)((( 148 -Inherited from SSC-32 serial protocol 149 -)))|(% style="text-align:center; width:113px" %) 150 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| | D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 151 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| | WD| QWD| | | | ✓|degrees per second|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 152 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| | WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 153 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| | SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)((( 154 -QSD: Add modifier "2" for instantaneous speed. 156 +|(% colspan="10" style="color:orange; font-size:18px" %)**Communication Setup** 157 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 158 +| |Soft **Reset**|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Soft reset. See command for details. 159 +| |**Default** Configuration|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Revert to firmware default values. See command for details 160 +| |Firmware **Update** Mode|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Update firmware. See command for details. 161 +| |**Confirm** Changes|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 162 +| |**C**hange to **RC**|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CRC|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Change to RC mode 1 (position) or 2 (wheel). 163 +| |**ID** #|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %) |(% style="text-align:center" %)✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 164 +| |**B**audrate|(% style="text-align:center" %) |(% style="text-align:center" %)QB|(% style="text-align:center" %)CB|(% style="text-align:center" %) |(% style="text-align:center" %)✓|115200| |Reset required after change. 155 155 156 -SD overwrites SR / CSD overwrites CSR and vice-versa. 157 -)))|(% style="text-align:center; width:113px" %)Max per servo 158 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| | SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 159 -QSR: Add modifier "2" for instantaneous speed 166 +|(% colspan="10" style="color:orange; font-size:18px" %)**Motion** 167 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 168 +| |Position in **D**egrees|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 169 +| |**M**ove in **D**egrees (relative)|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 170 +| |**W**heel mode in **D**egrees|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation" 171 +| |**W**heel mode in **R**PM|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation" 172 +| |Position in **P**WM|(% style="text-align:center" %)P|(% style="text-align:center" %)QP|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|Inherited from SSC-32 serial protocol 173 +| |**M**ove in PWM (relative)|(% style="text-align:center" %)M|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us| 174 +| |**R**aw **D**uty-cycle **M**ove|(% style="text-align:center" %)RDM|(% style="text-align:center" %)QMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW 175 +| |**Q**uery Status|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1 to 8 integer|See command description for details 176 +| |**L**imp|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 177 +| |**H**alt & Hold|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 160 160 161 -SR overwrites SD / CSR overwrites CSD and vice-versa. 162 -)))|(% style="text-align:center; width:113px" %)Max per servo 163 -| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| | LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 7)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)0 (OFF) 164 -| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| | G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 165 -| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0 166 -| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)115200 167 -| 18|//{coming soon}//| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 168 - 169 -))) 170 -| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstA0Position28Degrees29"]]| | | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)No Value 171 -| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)|(% style="text-align:center; width:113px" %) 172 -| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 173 -| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 174 -| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 175 -| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 176 -| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 177 -| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 178 -| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | | |CRC|✓| | ✓|none|(% style="width:510px" %)((( 179 -Change to RC mode 1 (position) or 2 (wheel). 180 -)))|(% style="text-align:center; width:113px" %)Serial 181 -| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 182 -| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 183 -| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 179 +|(% colspan="10" style="color:orange; font-size:18px" %)**Motion Setup** 180 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 181 +| |**E**nable **M**otion Profile|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|(% style="text-align:center" %) |(% style="text-align:center" %)✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile 182 +| |**F**ilter **P**osition **C**ount|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|5| |Affects motion only when motion profile is disabled (EM0) 183 +| |**O**rigin Offset|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|1/10°| 184 +| |**A**ngular **R**ange|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1800|1/10°| 185 +| |**A**ngular **S**tiffness|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|-4 to +4 integer|Suggested values are between 0 to +4 186 +| |**A**ngular **H**olding Stiffness |(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|4|-10 to +10 integer| 187 +| |**A**ngular **A**cceleration|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 188 +| |**A**ngular **D**eceleration|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 189 +| |**G**yre Direction|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 190 +| |**F**irst Position (**D**eg)|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|No value|1/10°|Reset required after change. 191 +| |**M**aximum **M**otor **D**uty|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓|1023|255 to 1023 integer| 192 +| |Maximum **S**peed in **D**egrees|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 193 +| |Maximum **S**peed in **R**PM|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 184 184 185 -== Advanced == 195 +|(% colspan="10" style="color:orange; font-size:18px" %)**Modifiers** 196 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 197 +| |**S**peed|(% style="text-align:center" %)S|(% style="text-align:center" %)QS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |uS/s |For P action command 198 +| |**S**peed in **D**egrees|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|For D and MD action commands 199 +| |**T**imed move|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |ms|Modifier only for P, D and MD. Time can change based on load 200 +| |**C**urrent **H**old|(% style="text-align:center" %)CH|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 201 +| |**C**urrent **L**imp|(% style="text-align:center" %)CL|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 186 186 187 -| = #|=(%style="width: 182px;" %)Description|=(% style="width: 56px;"%)Mod|=(%style="width: 70px;" %) Action|=(% style="width: 71px;" %) Query|=(% style="width:77px;" %) Config|=(% style="width: 77px;"%)Session|=(% style="width: 56px;" %) RC|=(%style="width:51px;" %)Serial|= Units|=(% style="width: 510px;" %) Notes188 -| A1|(% style="width:182px" %)[[**A**ngular**S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|(% style="width:56px" %)70px" %)AS|(% style="width:71px" %)QAS|(% style="width:77px" %)CAS|(% style="width:77px" %)✓|(% style="width:56px" %)✓|(% style="width:151px" %)✓|none(integer -4 to +4)|(% style="width:510px" %)Suggested values are between0to+4189 -| A2|(% style="width:182px" %)[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|(% style="width:56px" %) |(% style="width:70px" %)AH|(% style="width:71px" %)QAH|(% style="width:77px" %)CAH|(% style="width:77px" %)✓|(% style="width:56px"%) |(% style="width:151px" %) ✓|none(integer-10to +10)|(% style="width:510px" %)Effects differentbetween serialandRC190 -| A3|(% style="width:182px" %)[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|(% style="width:56px" %) |(% style="width:70px" %)AA|(% style="width:71px" %)QAA|(% style="width:77px" %)CAA|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|degrees per second squared|(% style="width:510px" %)Incrementsof10degrees per second squared191 -| A4|(% style="width:182px" %)[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|(% style="width:56px" %) |(% style="width:70px" %)AD|(% style="width:71px" %)QAD|(% style="width:77px" %)CAD|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees persecondsquared|(% style="width:510px" %)Increments of 10 degreespersecondsquared192 -| A5|(% style="width:182px" %)[[**E**nable **M**otionControl>>||anchor="HA5:MotionControl28EM29"]]|(% style="width:56px" %) |(% style="width:70px" %)EM|(% style="width:71px" %)QEM|(% style="width:77px" %) |(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %)none|(%style="width:510px"%)EM0to disable motioncontrol,EM1to enable193 -| A6|(% style="width:182px" %)[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]|(% style="width:56px" %) |(% style="width:70px" %) |(% style="width:71px" %)QLB|(% style="width:77px" %) CLB|(% style="width:77px" %) |(% style="width:56px" %)✓|(% style="width:151px" %) ✓|none(integerfrom 0 to 63)|(%style="width:510px"%)(((194 - 0=Noblinking,63=Alwaysblink;203 +|(% colspan="10" style="color:orange; font-size:18px" %)**Telemetry** 204 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 205 +| |**Q**uery **V**oltage|(% style="text-align:center" %) |(% style="text-align:center" %)QV|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mV| 206 +| |**Q**uery **T**emperature|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°C| 207 +| |**Q**uery **C**urrent|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA| 208 +| |**Q**uery **M**odel **S**tring|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1) 209 +| |**Q**uery **F**irmware Version|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 210 +| |**Q**uery Serial **N**umber|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the unique serial number for the servo 195 195 196 - Blinkwhile: 1=Limp; 2=Holding; 4=Accel;8=Decel;16=Free32=Travel;197 -))) 198 -| A7|(% style="width:182px" %)[[**C**urrent**H**alt & **H**old>>||anchor="HA7.CurrentHalt26Hold28CH29"]]|(% style="width:56px" %)CH|(% style="width:70px" %)width:71px" %)width:77px" %)width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps(ex 400=0.4A)|(%style="width:510px" %)ModifierforD,MD,WD, WR199 -| A8|(% style="width:182px" %)[[**C**urrent**L**imp>>||anchor="HA8.CurrentLimp28CL29"]]|(% style="width:56px" %)CL|(% style="width:70px" %) |(% style="width:71px" %)width:77px" %)width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps(ex 400=0.4A)|(%style="width:510px"%)ModifierforD, MD, WD, WR212 +|(% colspan="10" style="color:orange; font-size:18px" %)**RGB LED** 213 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 214 +| |**LED** Color|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White 215 +| |**C**onfigure **L**ED **B**linking|(% style="text-align:center" %) |(% style="text-align:center" %)QLB|(% style="text-align:center" %)CLB|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 63 integer|Reset required after change. See command for details. 200 200 201 -== Details - Basic==217 += (% style="color:inherit; font-family:inherit" %)Details(%%) = 202 202 203 -== ====__1.Limp(**L**)__======219 +== (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) == 204 204 205 - Example:#5L<cr>221 +====== __Reset__ ====== 206 206 207 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 223 +{{html wiki="true" clean="false"}} 224 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 225 +Ex: #5RESET<cr><div class="wikimodel-emptyline"></div> 226 +This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). 227 +Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div> 228 +</div></div> 229 +{{/html}} 208 208 209 -====== __ 2. Halt &Hold (**H**)__ ======231 +====== __Default & confirm__ ====== 210 210 211 -Example: #5H<cr> 233 +{{html wiki="true" clean="false"}} 234 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 235 +Ex: #5DEFAULT<cr><div class="wikimodel-emptyline"></div> 212 212 213 -This action overrides whatever the servomightbedoingat thetimethe commandisreceived(accelerating, moving continuouslyetc.)and causesittostopimmediatelyandholdthat angular position.237 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div> 214 214 215 - ======__3.Timedmove(**T**)modifier__ ======239 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 216 216 217 - Example:#5P1500T2500<cr>241 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div> 218 218 219 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 243 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 244 +</div></div> 245 +{{/html}} 220 220 221 - Note:If the calculated speedwhich a servomustrotatefor a timed move is greater than itsmaximumspeed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.247 +====== __Update & confirm__ ====== 222 222 223 -====== __4. Speed (**S**, **SD**) modifier__ ====== 249 +{{html wiki="true" clean="false"}} 250 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 251 +Ex: #5UPDATE<cr><div class="wikimodel-emptyline"></div> 224 224 225 -Example: #5P1500S750<cr> 226 -Example: #5D0SD180<cr> 253 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div> 227 227 228 - Modifier(S) is only for a position (P) action and determinesthe speed ofthe move in microsecondspersecond. A speed of 750 microsecondswouldcause theservo to rotate fromits current position to the desired position at a speed of 750microseconds per second. This command is in placeto ensure backwards compatibility with theSSC-32/32U protocol.255 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 229 229 230 - Modifer(SD)isonlyforaposition(D)orlativeposition(MD) actionanddeterminesthespeedofhemove indegreesper second.Aspeedmodifier(SD)of180wouldcause the servo torotate fromits currentpositionto thedesiredabsoluteorrelativeposition at aspeedof 180degreesper second.257 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div> 231 231 232 -Query Speed (**QS**) 259 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 260 +</div></div> 261 +{{/html}} 233 233 234 - Example:#5QS<cr> might return*5QS300<cr>263 +====== __Configure RC Mode (**CRC**)__ ====== 235 235 236 -This command queries the current speed in microseconds per second. 265 +{{html wiki="true" clean="false"}} 266 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 267 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.<div class="wikimodel-emptyline"></div> 237 237 238 -====== __5. (Relative) Move in Degrees (**MD**)__ ====== 269 +|**Command sent**|**Note** 270 +|ex: #5CRC1<cr>|Change to RC position mode. 271 +|ex: #5CRC2<cr>|Change to RC continuous rotation (wheel) mode. 272 +|ex: #5CRC*<cr>|Where * is any value other than 1 or 2 (or no value): stay in smart mode.<div class="wikimodel-emptyline"></div> 239 239 240 -E xample: #5MD123<cr>274 +EX: #5CRC2<cr><div class="wikimodel-emptyline"></div> 241 241 242 -Th e relativemovecommandcausesthe servoto readits currentpositionandmove thespecifiednumberoftenthsofdegreesinthecorrespondingposition. Forexampleifthe servo issettorotateCW(default)andanMDcommand of123 issent tothe servo,itwillcausethe servotorotateclockwise by 12.3 degrees.Negativecommands would cause theservoto rotatein theopposite configureddirection.276 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.<div class="wikimodel-emptyline"></div> 243 243 244 -====== __6. Origin Offset Action (**O**)__ ====== 278 +**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.<div class="wikimodel-emptyline"></div> 279 +</div></div> 280 +{{/html}} 245 245 246 - Example: #5O2400<cr>282 +====== __Identification Number (**ID**)__ ====== 247 247 248 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 284 +{{html wiki="true" clean="false"}} 285 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 286 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div> 249 249 250 - [[image:LSS-servo-default.jpg]]288 +Query Identification (**QID**)<div class="wikimodel-emptyline"></div> 251 251 252 - Inthe secondimage, theorigin,and thecorresponding angularrange (explainedbelow) havebeen shifted by+240.0 degrees:290 +EX: #254QID<cr> might return *QID5<cr><div class="wikimodel-emptyline"></div> 253 253 254 - [[image:LSS-servo-origin.jpg]]292 +When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div> 255 255 256 - OriginOffset Query(**QO**)294 +Configure ID (**CID**)<div class="wikimodel-emptyline"></div> 257 257 258 -Ex ample: #5QO<cr>Returns: *5QO-13296 +Ex: #4CID5<cr><div class="wikimodel-emptyline"></div> 259 259 260 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero. 298 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div> 299 +</div></div> 300 +{{/html}} 261 261 262 - ConfigureOrigin Offset(**CO**)302 +====== __Baud Rate__ ====== 263 263 264 -Example: #5CO-24<cr> 304 +{{html wiki="true" clean="false"}} 305 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 306 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div> 265 265 266 - This command allows youto changethe origin of the servo in relation to the factoryzero position in EEPROM. The setting will be savedupon servo reset / power cycle. Origin offset configuration commandsarenot cumulativeand alwaysrelate to factory zero. The neworigin is also used in RCmode. In theexample,the new originwill beat -2.4degrees from the factory zero.308 +Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div> 267 267 268 - ======__7.AngularRange(**AR**)__======310 +Ex: #5QB<cr> might return *5QB115200<cr><div class="wikimodel-emptyline"></div> 269 269 270 - Example:#5AR1800<cr>312 +Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div> 271 271 272 - This command allows you to temporarily changethe total angularrange oftheservo in tenths ofdegrees. Thisappliesto the Position in Pulse (P) command and RC mode. The default for (P) and RC modeis 1800 (180.0 degreestotal, or ±90.0 degrees). Theimage below shows a standard -180.0 to +180.0 range, with no offset:314 +Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div> 273 273 274 - [[image:LSS-servo-default.jpg]]316 +**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div> 275 275 276 -B elow,the angular range isrestricted to180.0degrees, or-90.0 to +90.0. Thecenter has remainedunchanged.318 +Ex: #5CB9600<cr><div class="wikimodel-emptyline"></div> 277 277 278 -[[image:LSS-servo-ar.jpg]] 320 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div> 321 +</div></div> 322 +{{/html}} 279 279 280 - Finally,the angular range action command (ex. #5AR1800<cr>) and origin offsetactioncommand (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:324 +== Motion == 281 281 282 - [[image:LSS-servo-ar-o-1.jpg]]326 +====== __Position in Degrees (**D**)__ ====== 283 283 284 -Query Angular Range (**QAR**) 328 +{{html wiki="true" clean="false"}} 329 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 330 +Example: #5D1456<cr><div class="wikimodel-emptyline"></div> 285 285 286 - Example:#5QAR<cr>mightreturn*5AR1800,indicatingthetotal angular range is180.0 degrees.332 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div> 287 287 288 - ConfigureAngularRange (**CAR**)334 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div> 289 289 290 - This command allows youto changethe total angularrangeof theservo intenths of degrees inEEPROM. Thesettingwill be saved upon servo reset /power cycle.336 +Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div> 291 291 292 - ======__8.Position inPulse (**P**)__======338 +Example: #5QD<cr> might return *5QD132<cr><div class="wikimodel-emptyline"></div> 293 293 294 - Example:#5P2334<cr>340 +This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div> 295 295 296 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points. 342 +(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 343 +Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div> 297 297 298 -Q ueryPosition inPulse(**QP**)345 +Ex: #5QDT<cr> might return *5QDT6783<cr><div class="wikimodel-emptyline"></div> 299 299 300 -Example: #5QP<cr> might return *5QP2334 347 +The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 348 +<div class="wikimodel-emptyline"></div></div></div> 349 +{{/html}} 301 301 302 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 303 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 351 +====== __(Relative) Move in Degrees (**MD**)__ ====== 304 304 305 -====== __9. Position in Degrees (**D**)__ ====== 353 +{{html wiki="true" clean="false"}} 354 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 355 +Example: #5MD123<cr><div class="wikimodel-emptyline"></div> 306 306 307 -Example: #5D1456<cr> 357 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 358 +<div class="wikimodel-emptyline"></div></div></div> 359 +{{/html}} 308 308 309 - Thismoves theservo to an angleof 145.6degrees,where the center (0) positionis centered. Negative values (ex. -176representing-17.6 degrees)are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction.361 +====== __Wheel Mode in Degrees (**WD**)__ ====== 310 310 311 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position. 363 +{{html wiki="true" clean="false"}} 364 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 365 +Ex: #5WD90<cr><div class="wikimodel-emptyline"></div> 312 312 313 - QueryPosition inDegrees (**QD**)367 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div> 314 314 315 - Example: #5QD<cr>mightreturn *5QD132<cr>369 +Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div> 316 316 317 - Thismeanstheservoislocated at 13.2degrees.371 +Ex: #5QWD<cr> might return *5QWD90<cr><div class="wikimodel-emptyline"></div> 318 318 319 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 320 -Query Target Position in Degrees (**QDT**) 373 +The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 374 +<div class="wikimodel-emptyline"></div></div></div> 375 +{{/html}} 321 321 322 - Ex:#5QDT<cr> mightreturn *5QDT6783<cr>377 +====== __Wheel Mode in RPM (**WR**)__ ====== 323 323 324 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 379 +{{html wiki="true" clean="false"}} 380 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 381 +Ex: #5WR40<cr><div class="wikimodel-emptyline"></div> 325 325 326 - ======__10. WheelMode in Degrees (**WD**)__======383 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div> 327 327 328 - Ex:#5WD90<cr>385 +Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div> 329 329 330 - Thiscommand sets the servotowheelmode whereitwillrotateinthe desired directionat the selectedspeed. The example abovewould have theservo rotate at 90.0 degreesper second clockwise (assuming factorydefaultconfigurations).387 +Ex: #5QWR<cr> might return *5QWR40<cr><div class="wikimodel-emptyline"></div> 331 331 332 -Query Wheel Mode in Degrees (**QWD**) 389 +The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 390 +<div class="wikimodel-emptyline"></div></div></div> 391 +{{/html}} 333 333 334 - Ex:#5QWD<cr> mightreturn*5QWD90<cr>393 +====== __Position in PWM (**P**)__ ====== 335 335 336 -The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 395 +{{html wiki="true" clean="false"}} 396 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 397 +Example: #5P2334<cr><div class="wikimodel-emptyline"></div> 337 337 338 - ======__11.WheelMode in RPM(**WR**)__ ======399 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div> 339 339 340 - Ex:#5WR40<cr>401 +Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div> 341 341 342 - This command setsthe servotowheelmode whereit will rotate in the desired directionat the selectedrpm. Wheel mode (a.k.a. "continuousrotation")has the servo operate like a gearedDC motor. The servo'smaximum rpmcannot beset higher than itsphysical limit at a given voltage. The example above wouldhavethe servo rotate at 40 rpm clockwise(assuming factorydefault configurations).403 +Example: #5QP<cr> might return *5QP2334<div class="wikimodel-emptyline"></div> 343 343 344 -Query Wheel Mode in RPM (**QWR**) 405 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 406 +Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 407 +<div class="wikimodel-emptyline"></div></div></div> 408 +{{/html}} 345 345 346 - Ex:#5QWR<cr> mightreturn*5QWR40<cr>410 +====== __(Relative) Move in PWM (**M**)__ ====== 347 347 348 -The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 412 +{{html wiki="true" clean="false"}} 413 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 414 +Example: #5M1500<cr><div class="wikimodel-emptyline"></div> 349 349 350 -====== __12. Max Speed in Degrees (**SD**)__ ====== 416 +The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 417 +<div class="wikimodel-emptyline"></div></div></div> 418 +{{/html}} 351 351 352 - Ex:#5SD1800<cr>420 +====== __Raw Duty-cycle Move (**RDM**)__ ====== 353 353 354 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 422 +{{html wiki="true" clean="false"}} 423 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 424 +Example: #5RDM512<cr><div class="wikimodel-emptyline"></div> 355 355 356 - QuerySpeed inDegrees(**QSD**)426 +The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div> 357 357 358 - Ex:#5QSD<cr>might return*5QSD1800<cr>428 +The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div> 359 359 360 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. 361 -If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 430 +Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div> 362 362 363 -|**Command sent**|**Returned value (1/10 °)** 364 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 365 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 366 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 367 -|ex: #5QSD3<cr>|Target travel speed 432 +Example: #5QMD<cr> might return *5QMD512<div class="wikimodel-emptyline"></div> 368 368 369 -Configure Speed in Degrees (**CSD**) 434 +This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 435 +<div class="wikimodel-emptyline"></div></div></div> 436 +{{/html}} 370 370 371 - Ex:#5CSD1800<cr>438 +====== __Query Status (**Q**)__ ====== 372 372 373 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 440 +{{html wiki="true" clean="false"}} 441 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 442 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div> 374 374 375 -====== __13. Max Speed in RPM (**SR**)__ ====== 444 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div> 445 +</div></div> 446 +{{/html}} 376 376 377 -Ex: #5SD45<cr> 448 +|(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description** 449 +| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 450 +| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 451 +| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command 452 +| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 453 +| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 454 +| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 455 +| |ex: *5Q6<cr>|6: Holding|Keeping current position 456 +| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 457 +| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 458 +| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 459 +| |ex: *5Q10<cr>|10: Safe Mode|((( 460 +A safety limit has been exceeded (temperature, peak current or extended high current draw). 378 378 379 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 462 +Send a Q1 command to know which limit has been reached (described below). 463 +))) 380 380 381 -Query Speed in Degrees (**QSR**) 465 +{{html wiki="true" clean="false"}} 466 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 467 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div> 468 +</div></div> 469 +{{/html}} 382 382 383 -Ex: #5QSR<cr> might return *5QSR45<cr> 471 +|(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description** 472 +| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 473 +| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 474 +| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 475 +| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 384 384 385 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. 386 -If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 477 +====== __Limp (**L**)__ ====== 387 387 388 -|**Command sent**|**Returned value (1/10 °)** 389 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 390 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 391 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 392 -|ex: #5QSR3<cr>|Target travel speed 479 +{{html wiki="true" clean="false"}} 480 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 481 +Example: #5L<cr><div class="wikimodel-emptyline"></div> 393 393 394 -Configure Speed in RPM (**CSR**) 483 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 484 +<div class="wikimodel-emptyline"></div></div></div> 485 +{{/html}} 395 395 396 - Ex:#5CSR45<cr>487 +====== __Halt & Hold (**H**)__ ====== 397 397 398 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 489 +{{html wiki="true" clean="false"}} 490 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 491 +Example: #5H<cr><div class="wikimodel-emptyline"></div> 399 399 400 -====== __14. LED Color (**LED**)__ ====== 493 +This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 494 +<div class="wikimodel-emptyline"></div></div></div> 495 +{{/html}} 401 401 402 - Ex:#5LED3<cr>497 +== Motion Setup == 403 403 404 - Thisaction sets the servo's RGB LED color for that session.The LED canbeused for aesthetics,or (based onusercode) to provide visualstatus updates.Usingtiming can create patterns.499 +====== __Enable Motion Profile (**EM**)__ ====== 405 405 406 -0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White; 501 +{{html wiki="true" clean="false"}} 502 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 503 +Ex: #5EM1<cr><div class="wikimodel-emptyline"></div> 407 407 408 - QueryLEDColor (**QLED**)505 +This command enables a trapezoidal motion profile. By default, the trapezoidal motion profile is enabled. If the motion profile is enabled, angular acceleration (AA) and angular deceleration(AD) will have an effect on the motion. Also, SD/S and T modifiers can be used.<div class="wikimodel-emptyline"></div> 409 409 410 -Ex: #5 QLED<cr> mightreturn*5QLED5<cr>507 +Ex: #5EM0<cr><div class="wikimodel-emptyline"></div> 411 411 412 -This simple queryreturns the indicatedservo'sLED color.509 +This command will disable the trapezoidal motion profile. As such, the servo will move at full speed for D/MD action commands. Angular acceleration (AA) and angular deceleration(AD) won't have an effect on motion in this mode and modifiers SD/S or T cannot be used.<div class="wikimodel-emptyline"></div> 413 413 414 - ConfigureLED Color (**CLED**)511 +Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div> 415 415 416 - Configuring the LEDcolor viathe CLEDcommand sets the startupcolor of the servo afteraresetorpower cycle. Notethatitalsochangesthesession's LED colorimmediately as well.513 +Ex: #5QEM<cr> might return *5QEM1<cr><div class="wikimodel-emptyline"></div> 417 417 418 - ======__15.GyreRotationDirection(**G**)__======515 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div> 419 419 420 - "Gyre" is defined as a circularcourse or motion.The effectofchanging thegyredirectionisasif you were to use a mirrorimageof a circle. CW = 1; CCW =-1. Thefactorydefaultis clockwise(CW).517 +Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div> 421 421 422 -Ex: #5 G-1<cr>519 +Ex: #5CEM0<cr><div class="wikimodel-emptyline"></div> 423 423 424 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 521 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 522 +<div class="wikimodel-emptyline"></div></div></div> 523 +{{/html}} 425 425 426 - QueryGyre Direction (**QG**)525 +====== __Filter Position Count (**FPC**)__ ====== 427 427 428 -Ex: #5QG<cr> might return *5QG-1<cr> 527 +{{html wiki="true" clean="false"}} 528 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 529 +Ex: #5FPC10<cr><div class="wikimodel-emptyline"></div> 530 +This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div> 429 429 430 - The valueeturnedabove meanstheservoisa counter-clockwisegyration.532 +Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div> 431 431 432 -C onfigureGyre(**CG**)534 +Ex: #5QFPC<cr> might return *5QFPC10<cr><div class="wikimodel-emptyline"></div> 433 433 434 - Ex:#5CG-1<cr>536 +This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div> 435 435 436 - This changesthegyredirectionasdescribed aboveand alsowritesto EEPROM.538 +Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div> 437 437 438 - ======__16. Identification Number (**ID**)__ ======540 +Ex: #5CFPC10<cr><div class="wikimodel-emptyline"></div> 439 439 440 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate). 542 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 543 +<div class="wikimodel-emptyline"></div></div></div> 544 +{{/html}} 441 441 442 - QueryIdentification (**QID**)546 +====== __Origin Offset (**O**)__ ====== 443 443 444 -EX: #254QID<cr> might return *QID5<cr> 548 +{{html wiki="true" clean="false"}} 549 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 550 +Example: #5O2400<cr><div class="wikimodel-emptyline"></div> 445 445 446 - When usingthe query IDcommand,it isbesttoonlyhave oneservoconnectedandthusreceiveonlyonereply. This is useful whenyouare notsureofheservo'sID, butdon'twant tochange it.Usingthebroadcast command(ID 254) withonly one servowillhave thatservo reply withitsID number(assuming thequeryissent. Alternatively,pushingthebuttonupon startupandtemporarilyingtheservo IDto 255will stillresult intheservoespondingwithits"real"ID.552 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div> 447 447 448 - ConfigureID (**CID**)554 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 449 449 450 - Ex:#4CID5<cr>556 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div> 451 451 452 - Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situationseach servomust be set a unique ID, which means each servomust be connected individually to the serial bus and receive a unique CID number.It is best todo this before the servosare added to an assembly. Numbered stickers are provided toistinguisheach servo after their ID is set, though you are free to use whatever alternativemethodyoulike. The servo must be RESET or power cycledn order for the new ID to take effect.558 +[[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div> 453 453 454 - ======__17.BaudRate__ ======560 +Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div> 455 455 456 - A servo's baud ratecannot be set "on the fly" and mustbeconfigured viatheCB command described below. The factorydefaultbaudratefor all servos is 115200. Since smart servosare intended to be daisychained, in order to respond to the same serialbus,allservosn a project shouldideally be set to the same baudrate. Setting different baud rates will havethe servos respond differentlyand may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200. The baud rates are currently restrictedto those above.562 +Example: #5QO<cr> might return *5QO-13<div class="wikimodel-emptyline"></div> 457 457 458 - QueryBaudRate(**QB**)564 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div> 459 459 460 - Ex: #5QB<cr>mightreturn*5QB115200<cr>566 +Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div> 461 461 462 - Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply beusedtoconfirm the CB configurationcommand wascorrectly received before the servo ispower cycled and thenew baudrate takes effect.568 +Example: #5CO-24<cr><div class="wikimodel-emptyline"></div> 463 463 464 -Configure Baud Rate (**CB**) 570 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 571 +<div class="wikimodel-emptyline"></div></div></div> 572 +{{/html}} 465 465 466 - ImportantNote: the servo's current session retains thegiven baud rate and the new baudratewill only take effect whentheservo is power cycled /RESET.574 +====== __Angular Range (**AR**)__ ====== 467 467 468 -Ex: #5CB9600<cr> 576 +{{html wiki="true" clean="false"}} 577 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 578 +Example: #5AR1800<cr><div class="wikimodel-emptyline"></div> 469 469 470 - Sending this command willchange thebaudrateassociatedwith servoID5to 9600bitsper second.580 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div> 471 471 472 - ====== __18.{//Coming soon//}__ ======582 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 473 473 474 - Commandcoming soon....584 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div> 475 475 476 - ====== __19. First Position (Degrees)__ ======586 +[[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div> 477 477 478 - In certaincases,a user mightwant tohavethe servo move toaspecific angleupon powerup; werefer to thisas "first position"(a.k.a. "initial position").The factory default hasnofirst position valuestoredin EEPROMandtherefore uponpower up, theservo remains limp untilaposition(or holdcommand)isassigned.Note thatthe numbershouldbe restricted to -1790 (-179.0 degrees)to +1790 (179.0 degrees)andaluesbeyond thisl bechangedto 1800.588 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div> 479 479 480 - Query First PositioninDegrees (**QFD**)590 +[[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div> 481 481 482 - Ex: #5QFD<cr>might return *5QFD64<cr>592 +Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div> 483 483 484 - Thereplyabove indicatesthat servowith ID 5 hasafirstpositionpulseof1550microseconds.If thereisno firstposition value stored, thereplywill beDIS594 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div> 485 485 486 -Configure FirstPositionin Degrees(**CFD**)596 +Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div> 487 487 488 -Ex: #5CD64<cr> 598 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 599 +<div class="wikimodel-emptyline"></div></div></div> 600 +{{/html}} 489 489 490 - Thisconfiguration command means the servo, when set to smart mode, will immediately move to 6.4 degreesupon power up.Sending a CFD command without a number (Ex. #5CFD<cr>) resultsintheervo remaining limp upon power up. In order to remove the firstposition,send no value, ex: #5CFD<cr>602 +====== __Angular Stiffness (**AS**)__ ====== 491 491 492 -====== __20. Query Model String (**QMS**)__ ====== 604 +{{html wiki="true" clean="false"}} 605 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 606 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div> 493 493 494 - Ex:#5QMS<cr> mightreturn*5QMSLSS-HS1<cr>608 +A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div> 495 495 496 -This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 610 +* The more torque will be applied to try to keep the desired position against external input / changes 611 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div> 497 497 498 - ======__21. QuerySerialNumber(**QN**)__======613 +A lower value on the other hand:<div class="wikimodel-emptyline"></div> 499 499 500 -Ex: #5QN<cr> might return *5QN12345678<cr> 615 +* Causes a slower acceleration to the travel speed, and a slower deceleration 616 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div> 501 501 502 -The number in the response(12345678)wouldbeheservo'sserialnumberwhichisset andshouldnot bechangedbytheuser.618 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 503 503 504 - ======__22. QueryFirmware(**QF**)__ ======620 +Ex: #5AS-2<cr><div class="wikimodel-emptyline"></div> 505 505 506 - Ex:#5QF<cr>might return*5QF411<cr>622 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div> 507 507 508 - Thenumbernthe reply representsthe firmware version,in thisexample being 411.624 +Ex: #5QAS<cr><div class="wikimodel-emptyline"></div> 509 509 510 - ====== __23.QueryStatus(**Q**)__======626 +Queries the value being used.<div class="wikimodel-emptyline"></div> 511 511 512 - Thestatus query described whatthe servoiscurrently doing. The query returnsan integerwhichmust be lookedup in thetablebelow. Use the CLB advanced commandto have the LED blink for certain statuses.628 +Ex: #5CAS-2<cr><div class="wikimodel-emptyline"></div> 513 513 514 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 630 +Writes the desired angular stiffness value to EEPROM. 631 +<div class="wikimodel-emptyline"></div></div></div> 632 +{{/html}} 515 515 516 -|***Value returned (Q)**|**Status**|**Detailed description** 517 -|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 518 -|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 519 -|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely 520 -|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 521 -|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 522 -|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 523 -|ex: *5Q6<cr>|6: Holding|Keeping current position 524 -|ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 525 -|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 526 -|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 527 -|ex: *5Q10<cr>|10: Safe Mode|((( 528 -A safety limit has been exceeded (temperature, peak current or extended high current draw). 634 +====== __Angular Holding Stiffness (**AH**)__ ====== 529 529 530 -Send a Q1 command to know which limit has been reached (described below). 531 -))) 636 +{{html wiki="true" clean="false"}} 637 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 638 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 532 532 533 -(% class="wikigeneratedid" %) 534 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 640 +Ex: #5AH3<cr><div class="wikimodel-emptyline"></div> 535 535 536 -|***Value returned (Q1)**|**Status**|**Detailed description** 537 -|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 538 -|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 539 -|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 540 -|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 642 +This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div> 541 541 542 - ====== __24.QueryVoltage (**QV**)__======644 +Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div> 543 543 544 -Ex: #5Q V<cr>might return *5QV11200<cr>646 +Ex: #5QAH<cr> might return *5QAH3<cr><div class="wikimodel-emptyline"></div> 545 545 546 -Th enumberreturned hasone decimal, so inthecaseabove, servowith ID 5 has aninputvoltageof11.2V (perhaps athreecell LiPobattery).648 +This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div> 547 547 548 - ====== __25. Query Temperature (**QT**)__======650 +Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div> 549 549 550 -Ex: #5 QT<cr> mightreturn*5QT564<cr>652 +Ex: #5CAH2<cr><div class="wikimodel-emptyline"></div> 551 551 552 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 654 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 655 +<div class="wikimodel-emptyline"></div></div></div> 656 +{{/html}} 553 553 554 -====== __ 26. QueryCurrent (**QC**)__ ======658 +====== __Angular Acceleration (**AA**)__ ====== 555 555 556 -Ex: #5QC<cr> might return *5QC140<cr> 660 +{{html wiki="true" clean="false"}} 661 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 662 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 557 557 558 - Theunits areinmilliamps,soin thexample above,the servois consuming 140mA, or 0.14A.664 +Ex: #5AA30<cr><div class="wikimodel-emptyline"></div> 559 559 560 - ======__27.ConfigureRCMode (**CRC**)__======666 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 561 561 562 - This command puts theservo into RC mode (position or continuous), where it will onlyrespond to RC pulses. Note thatbecause this is thecase, the servo will no longercceptserial commands.The servocan be placed backnto smart modebyusing thebutton menu.668 +Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div> 563 563 564 -|**Command sent**|**Note** 565 -|ex: #5CRC1<cr>|Change to RC position mode. 566 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 567 -|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode. 670 +Ex: #5QAA<cr> might return *5QAA30<cr><div class="wikimodel-emptyline"></div> 568 568 569 - EX:#5CRC2<cr>672 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 570 570 571 - This command would placethe servo inRC wheelmodeaftera RESET or powercycle. Note that afterRESETorpowercycle, theservowill bein RCmodeand will not replyto serialcommands. Using thecommand #5CRC<cr>or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.674 +Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div> 572 572 573 - Important note:****To revert from RCmode back to serialmode,the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button beinaccessible (or broken) when the servois in RC mode and the user needs tochange to serialmode,a5V constant HIGH needsto be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND andwait for 30 seconds. NormalRC PWM pulses should not exceed 2500milliseconds. After 30 seconds, the servo will interpretthis as a desired mode change and change to serialmode. This has beenimplementedas a fail safe.676 +Ex: #5CAA30<cr><div class="wikimodel-emptyline"></div> 574 574 575 -====== __28. **RESET**__ ====== 678 +This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 679 +<div class="wikimodel-emptyline"></div></div></div> 680 +{{/html}} 576 576 577 - Ex:#5RESET<cr>or #5RS<cr>682 +====== __Angular Deceleration (**AD**)__ ====== 578 578 579 -This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 580 -Note: after a RESET command is received the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details. 684 +{{html wiki="true" clean="false"}} 685 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 686 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 581 581 582 - ====== __29. **DEFAULT**&CONFIRM__======688 +Ex: #5AD30<cr><div class="wikimodel-emptyline"></div> 583 583 584 - Ex:#5DEFAULT<cr>690 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 585 585 586 - This command sets in motion theresetof all values to the default values included with the versionof thefirmwareinstalled on that servo. The servo then waits for the CONFIRM command.Any other commandreceivedwillcause theservotoexit theDEFAULT function.692 +Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div> 587 587 588 -E X: #5DEFAULT<cr>followedby#5CONFIRM<cr>694 +Ex: #5QAD<cr> might return *5QAD30<cr><div class="wikimodel-emptyline"></div> 589 589 590 - Sinceititnotcommontohaveto restore all configurations,aconfirmationcommandisneededaftera firmwaremmandissent. Shouldany command otherthan CONFIRM bereceivedby theservoafter the firmware commandhas been received, itwill exit the command.696 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 591 591 592 - NotethatafterheCONFIRMcommand isent, the servowill automaticallyperform a RESET.698 +Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div> 593 593 594 - ======__30. **UPDATE**&CONFIRM__======700 +Ex: #5CAD30<cr><div class="wikimodel-emptyline"></div> 595 595 596 -Ex: #5UPDATE<cr> 702 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 703 +<div class="wikimodel-emptyline"></div></div></div> 704 +{{/html}} 597 597 598 - Thiscommand sets in motion the equivalent of a long button presswhen the servois not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servothen waits for the CONFIRM command.Anyother command received will cause the servo to exit the UPDATE function.706 +====== __Gyre Direction (**G**)__ ====== 599 599 600 -EX: #5UPDATE<cr> followed by #5CONFIRM<cr> 708 +{{html wiki="true" clean="false"}} 709 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 710 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div> 601 601 602 - Sinceitit notcommon to have to update firmware, a confirmation commandsneeded after an UPDATEcommand isent. Should any command other than CONFIRM be received by the servo after the firmware commandhas been received, it will leave the firmware action.712 +Ex: #5G-1<cr><div class="wikimodel-emptyline"></div> 603 603 604 - Note that after theCONFIRMcommand issent, the servowillautomaticallyperformaRESET.714 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div> 605 605 606 - ==Details- Advanced==716 +Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div> 607 607 608 - Themotioncontrollerused in serialmodeis not the same asthemotion controlleruse inRC mode. RC mode is intendedto addfunctionality to whatwouldbeconsidered "normal" RC behavior basedon PWMinput.718 +Ex: #5QG<cr> might return *5QG-1<cr><div class="wikimodel-emptyline"></div> 609 609 610 - ======__A1.Angular Stiffness(**AS**)__======720 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div> 611 611 612 - The servo's rigidity / angularstiffnesscan bethought of as(though not identical to)adamped springin which the valueaffectsthestiffness and embodies how much, and how quickly theservo tried keephe requested positionagainst changes. There are no units.722 +Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div> 613 613 614 - Apositive valueof "angularstiffness":724 +Ex: #5CG-1<cr><div class="wikimodel-emptyline"></div> 615 615 616 -* The more torque will be applied to try to keep the desired position against external input / changes 617 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 726 +This changes the gyre direction as described above and also writes to EEPROM. 727 +<div class="wikimodel-emptyline"></div></div></div> 728 +{{/html}} 618 618 619 - Anegative value ontheother hand:730 +====== __First Position__ ====== 620 620 621 -* Causes a slower acceleration to the travel speed, and a slower deceleration 622 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back 732 +{{html wiki="true" clean="false"}} 733 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 734 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div> 623 623 624 - The default valuefor stiffnessdependingon thefirmwaremay be0 or 1. Greater valuesproduceincreasingly erratic behavior andtheffect becomes extreme below -4 and above+4. Maximumvalues are -10 to +10.736 +Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div> 625 625 626 -Ex: #5 AS-2<cr>738 +Ex: #5QFD<cr> might return *5QFD900<cr> <div class="wikimodel-emptyline"></div> 627 627 628 -Th isreducestheangular stiffnessto -2 for that session,allowingtheservotodeviatemorearoundthe desiredposition.Thiscanbebeneficial in manysituationssuchas impacts (legged robots) wheremoreofa "spring" effectisdesired. Uponreset, theservowillusethevaluestoredinmemory, basedon theastconfigurationcommand.740 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div> 629 629 630 - Ex:#5QAS<cr>742 +Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div> 631 631 632 - Queriesthevaluebeing used.744 +Ex: #5CD900<cr><div class="wikimodel-emptyline"></div> 633 633 634 -Ex: #5CAS<cr> 746 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 747 +<div class="wikimodel-emptyline"></div></div></div> 748 +{{/html}} 635 635 636 - Writesthedesiredangularstiffness valuetomemory.750 +====== __Maximum Speed in Degrees (**SD**)__ ====== 637 637 638 -====== __A2. Angular Holding Stiffness (**AH**)__ ====== 752 +{{html wiki="true" clean="false"}} 753 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 754 +Ex: #5SD1800<cr><div class="wikimodel-emptyline"></div> 755 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 639 639 640 - The angular holding stiffness determines the servo's abilityto hold a desiredpositionunderload. Thedefault value forstiffnessdepending on the firmware may be 0 or 1. Greatervaluesproduce increasingly erratic behavior andtheeffect becomes extreme below-4 and above+4. Maximum values are -10to +10. Note that when considering altering a stiffness value, the endeffect depends on the mode being tested.757 +Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div> 641 641 642 -Ex: #5 AH3<cr>759 +Ex: #5QSD<cr> might return *5QSD1800<cr><div class="wikimodel-emptyline"></div> 643 643 644 - This setstheholdingstiffness for servo#5to3for that session.761 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 645 645 646 -Query Angular Hold Stiffness (**QAH**) 763 +|**Command sent**|**Returned value (1/10 °)** 764 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 765 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 766 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 767 +|ex: #5QSD3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 647 647 648 - Ex: #5QAH<cr>mightreturn*5QAH3<cr>769 +Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div> 649 649 650 -This returns the servo's angular holding stiffness value. 771 +Ex: #5CSD1800<cr><div class="wikimodel-emptyline"></div> 772 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 773 +</div></div> 774 +{{/html}} 651 651 652 - ConfigureAngular HoldStiffness(**CAH**)776 +====== __Maximum Speed in RPM (**SR**)__ ====== 653 653 654 -Ex: #5CAH2<cr> 778 +{{html wiki="true" clean="false"}} 779 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 780 +Ex: #5SR45<cr><div class="wikimodel-emptyline"></div> 781 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 655 655 656 - This writes the angularholdingstiffnessof servo #5 to 2 to EEPROM. Notethat when consideringalteringatiffness value, the end effect depends on themodebeing tested.783 +Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div> 657 657 658 - ====== __A3:AngularAcceleration(**AA**)__ ======785 +Ex: #5QSR<cr> might return *5QSR45<cr><div class="wikimodel-emptyline"></div> 659 659 660 - Thedefaultvalueforangularaccelerationis 100, which is the same as the maximumdeceleration.Acceptsvaluesofbetween1and100.Incrementsof10degreespersecondsquared.787 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 661 661 662 -Ex: #5AA30<cr> 789 +|**Command sent**|**Returned value (1/10 °)** 790 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 791 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 792 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 793 +|ex: #5QSR3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 663 663 664 - Query AngularAcceleration (**QAD**)795 +Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div> 665 665 666 -Ex: #5QA<cr> might return *5QA30<cr> 797 +Ex: #5CSR45<cr><div class="wikimodel-emptyline"></div> 798 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 799 +</div></div> 800 +{{/html}} 667 667 668 - ConfigureAngularAcceleration (**CAD**)802 +== Modifiers == 669 669 670 - Ex:#5CA30<cr>804 +====== __Speed (**S**, **SD**) modifier__ ====== 671 671 672 -====== __A4: Angular Deceleration (**AD**)__ ====== 806 +{{html wiki="true" clean="false"}} 807 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 808 +Example: #5P1500S750<cr><div class="wikimodel-emptyline"></div> 809 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 810 +Example: #5D0SD180<cr><div class="wikimodel-emptyline"></div> 811 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second.<div class="wikimodel-emptyline"></div> 812 +Query Speed (**QS**)<div class="wikimodel-emptyline"></div> 813 +Example: #5QS<cr> might return *5QS300<cr><div class="wikimodel-emptyline"></div> 814 +This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div> 815 +</div></div> 816 +{{/html}} 673 673 674 -T heefaultvalueforangulardecelerationis 100, which is thesame as the maximum acceleration.Values between 1 and 15 have the greatest impact.818 +====== __Timed move (**T**) modifier__ ====== 675 675 676 -Ex: #5AD8<cr> 820 +{{html wiki="true" clean="false"}} 821 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 822 +Example: #5P1500T2500<cr><div class="wikimodel-emptyline"></div> 677 677 678 -Query Angular Deceleration (**QAD**) 824 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 825 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div> 826 +</div></div> 827 +{{/html}} 679 679 680 - Ex:#5QD<cr> mightreturn *5QD8<cr>829 +====== __Current Halt & Hold (**CH**) modifier__ ====== 681 681 682 -Configure Angular Deceleration (**CAD**) 831 +{{html wiki="true" clean="false"}} 832 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 833 +Example: #5D1423CH400<cr><div class="wikimodel-emptyline"></div> 683 683 684 -Ex: #5CD8<cr> 835 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div> 836 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 837 +</div></div> 838 +{{/html}} 685 685 686 -====== __ A5: MotionControl(**EM**)__ ======840 +====== __Current Limp (**CL**) modifier__ ====== 687 687 688 -The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller. 842 +{{html wiki="true" clean="false"}} 843 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 844 +Example: #5D1423CL400<cr><div class="wikimodel-emptyline"></div> 689 689 690 -Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used. 846 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div> 847 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 848 +</div></div> 849 +{{/html}} 691 691 692 -== ====__A6. ConfigureLED Blinking(**CLB**)__======851 +== Telemetry == 693 693 694 - Thiscommand allows youto control when the RGB LED will blink the userset color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeingwhat theservois doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:853 +====== __Query Voltage (**QV**)__ ====== 695 695 696 -(% style="width:195px" %) 697 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 698 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 699 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1 700 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2 701 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 702 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 703 -|(% style="width:134px" %)Free|(% style="width:58px" %)16 704 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 705 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63 855 +{{html wiki="true" clean="false"}} 856 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 857 +Ex: #5QV<cr> might return *5QV11200<cr><div class="wikimodel-emptyline"></div> 858 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div> 859 +</div></div> 860 +{{/html}} 706 706 707 - Toset blinking,useCLB with the value of yourchoosing.To activateblinking inmultiplestatus, simply add togetherthevaluesof the corresponding status. See examples below:862 +====== __Query Temperature (**QT**)__ ====== 708 708 709 - Ex: #5CLB0<cr>to turn off allblinking(LED always solid)710 - Ex: #5CLB1<cr>only blinkwhenlimp(1)711 -Ex: #5 CLB2<cr>onlyblinkwhen holding (2)712 - Ex:#5CLB12<cr>onlyblinkwhen accelor decel(accel4+decel8= 12)713 - Ex: #5CLB48<cr>only blink when free or travel (free 16 + travel 32 = 48)714 - Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)864 +{{html wiki="true" clean="false"}} 865 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 866 +Ex: #5QT<cr> might return *5QT564<cr><div class="wikimodel-emptyline"></div> 867 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div> 868 +</div></div> 869 +{{/html}} 715 715 716 - RESETTINGtheservoisneeded.871 +====== __Query Current (**QC**)__ ====== 717 717 718 -====== __A7. Current Halt & Hold (**CH**)__ ====== 873 +{{html wiki="true" clean="false"}} 874 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 875 +Ex: #5QC<cr> might return *5QC140<cr><div class="wikimodel-emptyline"></div> 876 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div> 877 +</div></div> 878 +{{/html}} 719 719 720 - Thismodifier,releasedin firmware v367, can be addedto the followingactions: D;MD;WD; WR.880 +====== __Query Model String (**QMS**)__ ====== 721 721 722 -Ex: #5D1423CH400<cr> 882 +{{html wiki="true" clean="false"}} 883 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 884 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr><div class="wikimodel-emptyline"></div> 885 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div> 886 +</div></div> 887 +{{/html}} 723 723 724 - Thishas servo with ID 5 move to 142.3 degrees but, should it detect a currentof 400mA or higherbefore it reaches the desiredposition,will immediately halt and hold position.889 +====== __Query Firmware (**QF**)__ ====== 725 725 726 -====== __A8. Current Limp (**CL**)__ ====== 891 +{{html wiki="true" clean="false"}} 892 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 893 +Ex: #5QF<cr> might return *5QF368<cr><div class="wikimodel-emptyline"></div> 894 +The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div> 895 +The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div> 896 +</div></div> 897 +{{/html}} 727 727 728 - Thismodifier,released in firmwarev367, canbeaddedto the following actions: D; MD; WD; WR.899 +====== __Query Serial Number (**QN**)__ ====== 729 729 730 -Ex: #5D1423CH400<cr> 901 +{{html wiki="true" clean="false"}} 902 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 903 +Ex: #5QN<cr> might return *5QN12345678<cr><div class="wikimodel-emptyline"></div> 904 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div> 905 +</div></div> 906 +{{/html}} 731 731 732 - Thishas servowith ID5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.908 +== RGB LED == 733 733 910 +====== __LED Color (**LED**)__ ====== 911 + 912 +{{html wiki="true" clean="false"}} 913 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 914 +Ex: #5LED3<cr><div class="wikimodel-emptyline"></div> 915 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div> 916 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div> 917 +Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div> 918 +Ex: #5QLED<cr> might return *5QLED5<cr><div class="wikimodel-emptyline"></div> 919 +This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div> 920 +Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div> 921 +Ex: #5CLED3<cr><div class="wikimodel-emptyline"></div> 922 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div> 923 +</div></div> 924 +{{/html}} 925 + 926 +====== __Configure LED Blinking (**CLB**)__ ====== 927 + 928 +{{html wiki="true" clean="false"}} 929 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 930 +This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div> 931 + 932 +(% style="width:195px" %) 933 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 934 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 935 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1 936 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2 937 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 938 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 939 +|(% style="width:134px" %)Free|(% style="width:58px" %)16 940 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 941 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div> 942 + 943 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div> 944 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div> 945 +Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div> 946 +Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div> 947 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div> 948 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div> 949 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div> 950 +RESETTING the servo is needed.<div class="wikimodel-emptyline"></div> 951 +</div></div> 952 +{{/html}} 953 + 734 734 = RGB LED Patterns = 735 735 736 736 The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]]