Last modified by Eric Nantel on 2024/11/21 09:43

From version < 171.1 >
edited by Eric Nantel
on 2020/05/01 09:24
To version < 172.1 >
edited by Eric Nantel
on 2020/05/01 09:24
< >
Change comment: Rollback to version 170.1

Summary

Details

Page properties
Content
... ... @@ -5,732 +5,952 @@
5 5  
6 6  = Serial Protocol =
7 7  
8 -The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servo motor is available.
8 +The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available.
9 9  
10 -In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol.
10 +In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on CID [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC or checksum implemented as part of the protocol.
11 11  
12 12  == Session ==
13 13  
14 -A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
14 +{{html wiki="true" clean="false"}}
15 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
16 +A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.<div class="wikimodel-emptyline"></div>
15 15  
16 -Note #1: For a given session, the action related to a specific commands overrides the stored value in EEPROM.
17 -Note #2: During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).
18 -You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended.
18 +**Note #1:** For a given session, the action related to a specific commands overrides the stored value in EEPROM.<div class="wikimodel-emptyline"></div>
19 +**Note #2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).<div class="wikimodel-emptyline"></div>
20 +You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays.
21 +<div class="wikimodel-emptyline"></div></div></div>
22 +{{/html}}
19 19  
20 20  == Action Commands ==
21 21  
22 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
26 +{{html wiki="true" clean="false"}}
27 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
28 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]]. Action commands are sent serially to the servo's Rx pin and must be sent in the following format:<div class="wikimodel-emptyline"></div>
23 23  
24 -1. Start with a number sign # (U+0023)
30 +1. Start with a number sign **#** (Unicode Character: U+0023)
25 25  1. Servo ID number as an integer
26 -1. Action command (one to three letters, no spaces, capital or lower case)
32 +1. Action command (one or more letters, no whitespace, capital or lower case)
27 27  1. Action value in the correct units with no decimal
28 -1. End with a control / carriage return '<cr>'
34 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
29 29  
30 30  (((
31 -Ex: #5PD1443<cr>
37 +Ex: #5D1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
32 32  
33 -This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
39 +This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
40 +<div class="wikimodel-emptyline"></div></div></div>
41 +{{/html}}
34 34  
35 -== Action Modifiers ==
43 +== Modifiers ==
36 36  
37 -Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is:
45 +{{html wiki="true" clean="false"}}
46 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
47 +Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div>
38 38  
39 -1. Start with a number sign # (U+0023)
49 +1. Start with a number sign **#** (Unicode Character: U+0023)
40 40  1. Servo ID number as an integer
41 41  1. Action command (one to three letters, no spaces, capital or lower case)
42 42  1. Action value in the correct units with no decimal
43 -1. Modifier command (one letter)
53 +1. Modifier command (one letter to too letters)
44 44  1. Modifier value in the correct units with no decimal
45 -1. End with a control / carriage return '<cr>'
55 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
46 46  
47 -Ex: #5P1456T1263<cr>
57 +Ex: #5D1800T1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
48 48  
49 -This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds.
50 -)))
59 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>
60 +<div class="wikimodel-emptyline"></div></div></div>
61 +{{/html}}
51 51  
52 52  == Query Commands ==
53 53  
54 -Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
65 +{{html wiki="true" clean="false"}}
66 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
67 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
55 55  
56 -1. Start with a number sign # (U+0023)
69 +1. Start with a number sign **#** (Unicode Character: U+0023)
57 57  1. Servo ID number as an integer
58 -1. Query command (one to three letters, no spaces, capital or lower case)
59 -1. End with a control / carriage return '<cr>'
71 +1. Query command (one to four letters, no spaces, capital or lower case)
72 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
60 60  
61 -(((
62 -Ex: #5QD<cr>Query position in degrees for servo #5
63 -)))
74 +Ex: #5QD&lt;cr&gt; Query position in (tenth of) degrees for servo #5<div class="wikimodel-emptyline"></div>
64 64  
65 -(((
66 66  The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
67 67  
68 -1. Start with an asterisk * (U+002A)
78 +1. Start with an asterisk * (Unicode Character: U+0023)
69 69  1. Servo ID number as an integer
70 -1. Query command (one to three letters, no spaces, capital letters)
80 +1. Query command (one to four letters, no spaces, capital letters)
71 71  1. The reported value in the units described, no decimals.
72 -1. End with a control / carriage return '<cr>'
82 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
73 73  
74 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be:
84 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>
75 75  
76 -(((
77 -Ex: *5QD1443<cr>
78 -)))
86 +Ex: *5QD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
79 79  
80 -This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees).
88 +This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees).
89 +<div class="wikimodel-emptyline"></div></div></div>
90 +{{/html}}
81 81  
82 82  == Configuration Commands ==
83 83  
84 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
94 +{{html wiki="true" clean="false"}}
95 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
96 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div>
85 85  
86 -1. Start with a number sign # (U+0023)
98 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
99 +
100 +The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div>
101 +
102 +1. Start with a number sign **#** (Unicode Character: U+0023)
87 87  1. Servo ID number as an integer
88 -1. Configuration command (two to three letters, no spaces, capital or lower case)
104 +1. Configuration command (two to four letters, no spaces, capital or lower case)
89 89  1. Configuration value in the correct units with no decimal
90 -1. End with a control / carriage return '<cr>'
106 +1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
91 91  
92 -Ex: #5CO-50<cr>
108 +Ex: #5CO-50&lt;cr&gt;<div class="wikimodel-emptyline"></div>
93 93  
94 -This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.
110 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
95 95  
96 -**Session vs Configuration Query**
112 +**Session vs Configuration Query**<div class="wikimodel-emptyline"></div>
97 97  
98 -By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
114 +By default, the query command returns the session'value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div>
99 99  
100 -Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
116 +Ex: #5CSR20&lt;cr&gt; immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
101 101  
102 -After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
118 +After RESET, a command of #5SR4&lt;cr&gt; sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>
103 103  
104 -#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas
120 +#5QSR&lt;cr&gt; or #5QSR0&lt;cr&gt; would return *5QSR4&lt;cr&gt; which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>
105 105  
106 -#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
122 +#5QSR1&lt;cr&gt; would return *5QSR20&lt;cr&gt; which represents the value in EEPROM
123 +<div class="wikimodel-emptyline"></div></div></div>
124 +{{/html}}
107 107  
108 108  == Virtual Angular Position ==
109 109  
110 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
128 +{{html wiki="true" clean="false"}}
129 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
130 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
111 111  
112 -[[image:LSS-servo-positions.jpg]]
132 +[[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div>
113 113  
114 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
134 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div>
115 115  
116 -#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
136 +#1D-300&lt;cr&gt; This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div>
117 117  
118 -#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
138 +#1D2100&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
119 119  
120 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
140 +#1D-4200&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
121 121  
122 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
142 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.<div class="wikimodel-emptyline"></div>
123 123  
124 -#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
144 +#1D4800&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
125 125  
126 -#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).
146 +#1D3300&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
127 127  
128 -If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified).
129 -)))
148 +If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°].
149 +<div class="wikimodel-emptyline"></div></div></div>
150 +{{/html}}
130 130  
131 131  = Command List =
132 132  
133 -== Regular ==
154 +**Latest firmware version currently : 368.29.14**
134 134  
135 -|= #|=Description|=Mod|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
136 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| | L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
137 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| | H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
138 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]|T| | | | | | ✓|milliseconds|(% style="width:510px" %)Modifier only for {P, D, MD}. Time is estimated and can change based on load|(% style="text-align:center; width:113px" %)
139 -| 4|[[**S**peed>>||anchor="H4.Speed28S2CSD29modifier"]]|S/SD| |QS| | | | ✓|microseconds per second / degrees per second|(% style="width:510px" %)S modifier only for {P}. SD modifier only for {D, MD}.|(% style="text-align:center; width:113px" %)
140 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| | MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
141 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| | O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
142 -0
143 -)))
144 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| | AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
145 -1800
146 -)))
147 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| | P| QP| | | | ✓|microseconds|(% style="width:510px" %)(((
148 -Inherited from SSC-32 serial protocol
149 -)))|(% style="text-align:center; width:113px" %)
150 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| | D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
151 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| | WD| QWD| | | | ✓|degrees per second|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
152 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| | WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
153 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| | SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)(((
154 -QSD: Add modifier "2" for instantaneous speed.
156 +|(% colspan="10" style="color:orange; font-size:18px" %)**Communication Setup**
157 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
158 +| |Soft **Reset**|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Soft reset. See command for details.
159 +| |**Default** Configuration|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Revert to firmware default values. See command for details
160 +| |Firmware **Update** Mode|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Update firmware. See command for details.
161 +| |**Confirm** Changes|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
162 +| |**C**hange to **RC**|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CRC|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Change to RC mode 1 (position) or 2 (wheel).
163 +| |**ID** #|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %) |(% style="text-align:center" %)✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
164 +| |**B**audrate|(% style="text-align:center" %) |(% style="text-align:center" %)QB|(% style="text-align:center" %)CB|(% style="text-align:center" %) |(% style="text-align:center" %)✓|115200| |Reset required after change.
155 155  
156 -SD overwrites SR / CSD overwrites CSR and vice-versa.
157 -)))|(% style="text-align:center; width:113px" %)Max per servo
158 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| | SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
159 -QSR: Add modifier "2" for instantaneous speed
166 +|(% colspan="10" style="color:orange; font-size:18px" %)**Motion**
167 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
168 +| |Position in **D**egrees|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°|
169 +| |**M**ove in **D**egrees (relative)|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°|
170 +| |**W**heel mode in **D**egrees|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation"
171 +| |**W**heel mode in **R**PM|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation"
172 +| |Position in **P**WM|(% style="text-align:center" %)P|(% style="text-align:center" %)QP|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|Inherited from SSC-32 serial protocol
173 +| |**M**ove in PWM (relative)|(% style="text-align:center" %)M|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|
174 +| |**R**aw **D**uty-cycle **M**ove|(% style="text-align:center" %)RDM|(% style="text-align:center" %)QMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW
175 +| |**Q**uery Status|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1 to 8 integer|See command description for details
176 +| |**L**imp|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
177 +| |**H**alt & Hold|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
160 160  
161 -SR overwrites SD / CSR overwrites CSD and vice-versa.
162 -)))|(% style="text-align:center; width:113px" %)Max per servo
163 -| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| | LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 7)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)0 (OFF)
164 -| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| | G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
165 -| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0
166 -| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)115200
167 -| 18|//{coming soon}//| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
168 -
169 -)))
170 -| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstA0Position28Degrees29"]]| | | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)No Value
171 -| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)|(% style="text-align:center; width:113px" %)
172 -| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
173 -| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
174 -| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
175 -| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
176 -| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
177 -| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
178 -| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | | |CRC|✓| | ✓|none|(% style="width:510px" %)(((
179 -Change to RC mode 1 (position) or 2 (wheel).
180 -)))|(% style="text-align:center; width:113px" %)Serial
181 -| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
182 -| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
183 -| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
179 +|(% colspan="10" style="color:orange; font-size:18px" %)**Motion Setup**
180 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
181 +| |**E**nable **M**otion Profile|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|(% style="text-align:center" %) |(% style="text-align:center" %)✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile
182 +| |**F**ilter **P**osition **C**ount|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|5| |Affects motion only when motion profile is disabled (EM0)
183 +| |**O**rigin Offset|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|1/10°|
184 +| |**A**ngular **R**ange|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1800|1/10°|
185 +| |**A**ngular **S**tiffness|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|-4 to +4 integer|Suggested values are between 0 to +4
186 +| |**A**ngular **H**olding Stiffness |(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|4|-10 to +10 integer|
187 +| |**A**ngular **A**cceleration|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
188 +| |**A**ngular **D**eceleration|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
189 +| |**G**yre Direction|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
190 +| |**F**irst Position (**D**eg)|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|No value|1/10°|Reset required after change.
191 +| |**M**aximum **M**otor **D**uty|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓|1023|255 to 1023 integer|
192 +| |Maximum **S**peed in **D**egrees|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
193 +| |Maximum **S**peed in **R**PM|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
184 184  
185 -== Advanced ==
195 +|(% colspan="10" style="color:orange; font-size:18px" %)**Modifiers**
196 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
197 +| |**S**peed|(% style="text-align:center" %)S|(% style="text-align:center" %)QS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |uS/s |For P action command
198 +| |**S**peed in **D**egrees|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|For D and MD action commands
199 +| |**T**imed move|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |ms|Modifier only for P, D and MD. Time can change based on load
200 +| |**C**urrent **H**old|(% style="text-align:center" %)CH|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR
201 +| |**C**urrent **L**imp|(% style="text-align:center" %)CL|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR
186 186  
187 -|= #|=(% style="width: 182px;" %)Description|=(% style="width: 56px;" %)Mod|=(% style="width: 70px;" %) Action|=(% style="width: 71px;" %) Query|=(% style="width: 77px;" %) Config|=(% style="width: 77px;" %)Session|=(% style="width: 56px;" %) RC|=(% style="width: 151px;" %) Serial|= Units|=(% style="width: 510px;" %) Notes
188 -| A1|(% style="width:182px" %)[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|(% style="width:56px" %) |(% style="width:70px" %)AS|(% style="width:71px" %)QAS|(% style="width:77px" %)CAS|(% style="width:77px" %)|(% style="width:56px" %)|(% style="width:151px" %) ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4
189 -| A2|(% style="width:182px" %)[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|(% style="width:56px" %) |(% style="width:70px" %)AH|(% style="width:71px" %)QAH|(% style="width:77px" %)CAH|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|none (integer -10 to +10)|(% style="width:510px" %)Effect is different between serial and RC
190 -| A3|(% style="width:182px" %)[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|(% style="width:56px" %) |(% style="width:70px" %)AA|(% style="width:71px" %)QAA|(% style="width:77px" %)CAA|(% style="width:77px" %)|(% style="width:56px" %) |(% style="width:151px" %) |degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
191 -| A4|(% style="width:182px" %)[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|(% style="width:56px" %) |(% style="width:70px" %)AD|(% style="width:71px" %)QAD|(% style="width:77px" %)CAD|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
192 -| A5|(% style="width:182px" %)[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|(% style="width:56px" %) |(% style="width:70px" %)EM|(% style="width:71px" %)QEM|(% style="width:77px" %) |(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %) ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable
193 -| A6|(% style="width:182px" %)[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]|(% style="width:56px" %) |(% style="width:70px" %) |(% style="width:71px" %)QLB|(% style="width:77px" %) CLB|(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %) ✓|none (integer from 0 to 63)|(% style="width:510px" %)(((
194 -0=No blinking, 63=Always blink;
203 +|(% colspan="10" style="color:orange; font-size:18px" %)**Telemetry**
204 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
205 +| |**Q**uery **V**oltage|(% style="text-align:center" %) |(% style="text-align:center" %)QV|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mV|
206 +| |**Q**uery **T**emperature|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°C|
207 +| |**Q**uery **C**urrent|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|
208 +| |**Q**uery **M**odel **S**tring|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
209 +| |**Q**uery **F**irmware Version|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)| | |
210 +| |**Q**uery Serial **N**umber|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the unique serial number for the servo
195 195  
196 -Blink while: 1=Limp; 2=Holding; 4=Accel; 8=Decel; 16=Free 32=Travel;
197 -)))
198 -| A7|(% style="width:182px" %)[[**C**urrent **H**alt & **H**old>>||anchor="HA7.CurrentHalt26Hold28CH29"]]|(% style="width:56px" %)CH|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR
199 -| A8|(% style="width:182px" %)[[**C**urrent **L**imp>>||anchor="HA8.CurrentLimp28CL29"]]|(% style="width:56px" %)CL|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR
212 +|(% colspan="10" style="color:orange; font-size:18px" %)**RGB LED**
213 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
214 +| |**LED** Color|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
215 +| |**C**onfigure **L**ED **B**linking|(% style="text-align:center" %) |(% style="text-align:center" %)QLB|(% style="text-align:center" %)CLB|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 63 integer|Reset required after change. See command for details.
200 200  
201 -== Details - Basic ==
217 += (% style="color:inherit; font-family:inherit" %)Details(%%) =
202 202  
203 -====== __1. Limp (**L**)__ ======
219 +== (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
204 204  
205 -Example: #5L<cr>
221 +====== __Reset__ ======
206 206  
207 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
223 +{{html wiki="true" clean="false"}}
224 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
225 +Ex: #5RESET<cr><div class="wikimodel-emptyline"></div>
226 +This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands).
227 +Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div>
228 +</div></div>
229 +{{/html}}
208 208  
209 -====== __2. Halt & Hold (**H**)__ ======
231 +====== __Default & confirm__ ======
210 210  
211 -Example: #5H<cr>
233 +{{html wiki="true" clean="false"}}
234 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
235 +Ex: #5DEFAULT<cr><div class="wikimodel-emptyline"></div>
212 212  
213 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position.
237 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div>
214 214  
215 -====== __3. Timed move (**T**) modifier__ ======
239 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div>
216 216  
217 -Example: #5P1500T2500<cr>
241 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div>
218 218  
219 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
243 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
244 +</div></div>
245 +{{/html}}
220 220  
221 -Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
247 +====== __Update & confirm__ ======
222 222  
223 -====== __4. Speed (**S**, **SD**) modifier__ ======
249 +{{html wiki="true" clean="false"}}
250 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
251 +Ex: #5UPDATE<cr><div class="wikimodel-emptyline"></div>
224 224  
225 -Example: #5P1500S750<cr>
226 -Example: #5D0SD180<cr>
253 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div>
227 227  
228 -Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
255 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div>
229 229  
230 -Modifer (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second.
257 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div>
231 231  
232 -Query Speed (**QS**)
259 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
260 +</div></div>
261 +{{/html}}
233 233  
234 -Example: #5QS<cr> might return *5QS300<cr>
263 +====== __Configure RC Mode (**CRC**)__ ======
235 235  
236 -This command queries the current speed in microseconds per second.
265 +{{html wiki="true" clean="false"}}
266 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
267 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.<div class="wikimodel-emptyline"></div>
237 237  
238 -====== __5. (Relative) Move in Degrees (**MD**)__ ======
269 +|**Command sent**|**Note**
270 +|ex: #5CRC1<cr>|Change to RC position mode.
271 +|ex: #5CRC2<cr>|Change to RC continuous rotation (wheel) mode.
272 +|ex: #5CRC*<cr>|Where * is any value other than 1 or 2 (or no value): stay in smart mode.<div class="wikimodel-emptyline"></div>
239 239  
240 -Example: #5MD123<cr>
274 +EX: #5CRC2<cr><div class="wikimodel-emptyline"></div>
241 241  
242 -The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
276 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.<div class="wikimodel-emptyline"></div>
243 243  
244 -====== __6. Origin Offset Action (**O**)__ ======
278 +**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.<div class="wikimodel-emptyline"></div>
279 +</div></div>
280 +{{/html}}
245 245  
246 -Example: #5O2400<cr>
282 +====== __Identification Number (**ID**)__ ======
247 247  
248 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
284 +{{html wiki="true" clean="false"}}
285 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
286 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div>
249 249  
250 -[[image:LSS-servo-default.jpg]]
288 +Query Identification (**QID**)<div class="wikimodel-emptyline"></div>
251 251  
252 -In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
290 +EX: #254QID<cr> might return *QID5<cr><div class="wikimodel-emptyline"></div>
253 253  
254 -[[image:LSS-servo-origin.jpg]]
292 +When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div>
255 255  
256 -Origin Offset Query (**QO**)
294 +Configure ID (**CID**)<div class="wikimodel-emptyline"></div>
257 257  
258 -Example: #5QO<cr> Returns: *5QO-13
296 +Ex: #4CID5<cr><div class="wikimodel-emptyline"></div>
259 259  
260 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
298 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div>
299 +</div></div>
300 +{{/html}}
261 261  
262 -Configure Origin Offset (**CO**)
302 +====== __Baud Rate__ ======
263 263  
264 -Example: #5CO-24<cr>
304 +{{html wiki="true" clean="false"}}
305 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
306 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div>
265 265  
266 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
308 +Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div>
267 267  
268 -====== __7. Angular Range (**AR**)__ ======
310 +Ex: #5QB<cr> might return *5QB115200<cr><div class="wikimodel-emptyline"></div>
269 269  
270 -Example: #5AR1800<cr>
312 +Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div>
271 271  
272 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
314 +Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div>
273 273  
274 -[[image:LSS-servo-default.jpg]]
316 +**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div>
275 275  
276 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
318 +Ex: #5CB9600<cr><div class="wikimodel-emptyline"></div>
277 277  
278 -[[image:LSS-servo-ar.jpg]]
320 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div>
321 +</div></div>
322 +{{/html}}
279 279  
280 -Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
324 +== Motion ==
281 281  
282 -[[image:LSS-servo-ar-o-1.jpg]]
326 +====== __Position in Degrees (**D**)__ ======
283 283  
284 -Query Angular Range (**QAR**)
328 +{{html wiki="true" clean="false"}}
329 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
330 +Example: #5D1456&lt;cr&gt;<div class="wikimodel-emptyline"></div>
285 285  
286 -Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
332 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div>
287 287  
288 -Configure Angular Range (**CAR**)
334 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div>
289 289  
290 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
336 +Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div>
291 291  
292 -====== __8. Position in Pulse (**P**)__ ======
338 +Example: #5QD&lt;cr&gt; might return *5QD132&lt;cr&gt;<div class="wikimodel-emptyline"></div>
293 293  
294 -Example: #5P2334<cr>
340 +This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div>
295 295  
296 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.
342 +(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
343 +Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div>
297 297  
298 -Query Position in Pulse (**QP**)
345 +Ex: #5QDT&lt;cr&gt; might return *5QDT6783&lt;cr&gt;<div class="wikimodel-emptyline"></div>
299 299  
300 -Example: #5QP<cr> might return *5QP2334
347 +The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
348 +<div class="wikimodel-emptyline"></div></div></div>
349 +{{/html}}
301 301  
302 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 
303 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
351 +====== __(Relative) Move in Degrees (**MD**)__ ======
304 304  
305 -====== __9. Position in Degrees (**D**)__ ======
353 +{{html wiki="true" clean="false"}}
354 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
355 +Example: #5MD123&lt;cr&gt;<div class="wikimodel-emptyline"></div>
306 306  
307 -Example: #5D1456<cr>
357 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
358 +<div class="wikimodel-emptyline"></div></div></div>
359 +{{/html}}
308 308  
309 -This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction.
361 +====== __Wheel Mode in Degrees (**WD**)__ ======
310 310  
311 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position.
363 +{{html wiki="true" clean="false"}}
364 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
365 +Ex: #5WD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
312 312  
313 -Query Position in Degrees (**QD**)
367 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
314 314  
315 -Example: #5QD<cr> might return *5QD132<cr>
369 +Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div>
316 316  
317 -This means the servo is located at 13.2 degrees.
371 +Ex: #5QWD&lt;cr&gt; might return *5QWD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
318 318  
319 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
320 -Query Target Position in Degrees (**QDT**)
373 +The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
374 +<div class="wikimodel-emptyline"></div></div></div>
375 +{{/html}}
321 321  
322 -Ex: #5QDT<cr> might return *5QDT6783<cr>
377 +====== __Wheel Mode in RPM (**WR**)__ ======
323 323  
324 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
379 +{{html wiki="true" clean="false"}}
380 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
381 +Ex: #5WR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
325 325  
326 -====== __10. Wheel Mode in Degrees (**WD**)__ ======
383 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
327 327  
328 -Ex: #5WD90<cr>
385 +Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div>
329 329  
330 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
387 +Ex: #5QWR&lt;cr&gt; might return *5QWR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
331 331  
332 -Query Wheel Mode in Degrees (**QWD**)
389 +The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
390 +<div class="wikimodel-emptyline"></div></div></div>
391 +{{/html}}
333 333  
334 -Ex: #5QWD<cr> might return *5QWD90<cr>
393 +====== __Position in PWM (**P**)__ ======
335 335  
336 -The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
395 +{{html wiki="true" clean="false"}}
396 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
397 +Example: #5P2334&lt;cr&gt;<div class="wikimodel-emptyline"></div>
337 337  
338 -====== __11. Wheel Mode in RPM (**WR**)__ ======
399 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div>
339 339  
340 -Ex: #5WR40<cr>
401 +Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div>
341 341  
342 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
403 +Example: #5QP&lt;cr&gt; might return *5QP2334<div class="wikimodel-emptyline"></div>
343 343  
344 -Query Wheel Mode in RPM (**QWR**)
405 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle.
406 +Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
407 +<div class="wikimodel-emptyline"></div></div></div>
408 +{{/html}}
345 345  
346 -Ex: #5QWR<cr> might return *5QWR40<cr>
410 +====== __(Relative) Move in PWM (**M**)__ ======
347 347  
348 -The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
412 +{{html wiki="true" clean="false"}}
413 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
414 +Example: #5M1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
349 349  
350 -====== __12. Max Speed in Degrees (**SD**)__ ======
416 +The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
417 +<div class="wikimodel-emptyline"></div></div></div>
418 +{{/html}}
351 351  
352 -Ex: #5SD1800<cr>
420 +====== __Raw Duty-cycle Move (**RDM**)__ ======
353 353  
354 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
422 +{{html wiki="true" clean="false"}}
423 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
424 +Example: #5RDM512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
355 355  
356 -Query Speed in Degrees (**QSD**)
426 +The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div>
357 357  
358 -Ex: #5QSD<cr> might return *5QSD1800<cr>
428 +The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div>
359 359  
360 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed.
361 -If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
430 +Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div>
362 362  
363 -|**Command sent**|**Returned value (1/10 °)**
364 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
365 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
366 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
367 -|ex: #5QSD3<cr>|Target travel speed
432 +Example: #5QMD&lt;cr&gt; might return *5QMD512<div class="wikimodel-emptyline"></div>
368 368  
369 -Configure Speed in Degrees (**CSD**)
434 +This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
435 +<div class="wikimodel-emptyline"></div></div></div>
436 +{{/html}}
370 370  
371 -Ex: #5CSD1800<cr>
438 +====== __Query Status (**Q**)__ ======
372 372  
373 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
440 +{{html wiki="true" clean="false"}}
441 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
442 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div>
374 374  
375 -====== __13. Max Speed in RPM (**SR**)__ ======
444 +Ex: #5Q&lt;cr&gt; might return *5Q6&lt;cr&gt;, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div>
445 +</div></div>
446 +{{/html}}
376 376  
377 -Ex: #5SD45<cr>
448 +|(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description**
449 +| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
450 +| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
451 +| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
452 +| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
453 +| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
454 +| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
455 +| |ex: *5Q6<cr>|6: Holding|Keeping current position
456 +| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
457 +| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
458 +| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
459 +| |ex: *5Q10<cr>|10: Safe Mode|(((
460 +A safety limit has been exceeded (temperature, peak current or extended high current draw).
378 378  
379 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
462 +Send a Q1 command to know which limit has been reached (described below).
463 +)))
380 380  
381 -Query Speed in Degrees (**QSR**)
465 +{{html wiki="true" clean="false"}}
466 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
467 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div>
468 +</div></div>
469 +{{/html}}
382 382  
383 -Ex: #5QSR<cr> might return *5QSR45<cr>
471 +|(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
472 +| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
473 +| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
474 +| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
475 +| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
384 384  
385 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed.
386 -If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
477 +====== __Limp (**L**)__ ======
387 387  
388 -|**Command sent**|**Returned value (1/10 °)**
389 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
390 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
391 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWR)
392 -|ex: #5QSR3<cr>|Target travel speed
479 +{{html wiki="true" clean="false"}}
480 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
481 +Example: #5L&lt;cr&gt;<div class="wikimodel-emptyline"></div>
393 393  
394 -Configure Speed in RPM (**CSR**)
483 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L&lt;cr&gt;.
484 +<div class="wikimodel-emptyline"></div></div></div>
485 +{{/html}}
395 395  
396 -Ex: #5CSR45<cr>
487 +====== __Halt & Hold (**H**)__ ======
397 397  
398 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
489 +{{html wiki="true" clean="false"}}
490 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
491 +Example: #5H&lt;cr&gt;<div class="wikimodel-emptyline"></div>
399 399  
400 -====== __14. LED Color (**LED**)__ ======
493 +This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
494 +<div class="wikimodel-emptyline"></div></div></div>
495 +{{/html}}
401 401  
402 -Ex: #5LED3<cr>
497 +== Motion Setup ==
403 403  
404 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
499 +====== __Enable Motion Profile (**EM**)__ ======
405 405  
406 -0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;
501 +{{html wiki="true" clean="false"}}
502 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
503 +Ex: #5EM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
407 407  
408 -Query LED Color (**QLED**)
505 +This command enables a trapezoidal motion profile. By default, the trapezoidal motion profile is enabled. If the motion profile is enabled, angular acceleration (AA) and angular deceleration(AD) will have an effect on the motion. Also, SD/S and T modifiers can be used.<div class="wikimodel-emptyline"></div>
409 409  
410 -Ex: #5QLED<cr> might return *5QLED5<cr>
507 +Ex: #5EM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
411 411  
412 -This simple query returns the indicated servo's LED color.
509 +This command will disable the trapezoidal motion profile. As such, the servo will move at full speed for D/MD action commands. Angular acceleration (AA) and angular deceleration(AD) won't have an effect on motion in this mode and modifiers SD/S or T cannot be used.<div class="wikimodel-emptyline"></div>
413 413  
414 -Configure LED Color (**CLED**)
511 +Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div>
415 415  
416 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
513 +Ex: #5QEM&lt;cr&gt; might return *5QEM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
417 417  
418 -====== __15. Gyre Rotation Direction (**G**)__ ======
515 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div>
419 419  
420 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
517 +Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div>
421 421  
422 -Ex: #5G-1<cr>
519 +Ex: #5CEM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
423 423  
424 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
521 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
522 +<div class="wikimodel-emptyline"></div></div></div>
523 +{{/html}}
425 425  
426 -Query Gyre Direction (**QG**)
525 +====== __Filter Position Count (**FPC**)__ ======
427 427  
428 -Ex: #5QG<cr> might return *5QG-1<cr>
527 +{{html wiki="true" clean="false"}}
528 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
529 +Ex: #5FPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
530 +This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div>
429 429  
430 -The value returned above means the servo is in a counter-clockwise gyration.
532 +Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div>
431 431  
432 -Configure Gyre (**CG**)
534 +Ex: #5QFPC&lt;cr&gt; might return *5QFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
433 433  
434 -Ex: #5CG-1<cr>
536 +This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div>
435 435  
436 -This changes the gyre direction as described above and also writes to EEPROM.
538 +Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div>
437 437  
438 -====== __16. Identification Number (**ID**)__ ======
540 +Ex: #5CFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
439 439  
440 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate).
542 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
543 +<div class="wikimodel-emptyline"></div></div></div>
544 +{{/html}}
441 441  
442 -Query Identification (**QID**)
546 +====== __Origin Offset (**O**)__ ======
443 443  
444 -EX: #254QID<cr> might return *QID5<cr>
548 +{{html wiki="true" clean="false"}}
549 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
550 +Example: #5O2400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
445 445  
446 -When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
552 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div>
447 447  
448 -Configure ID (**CID**)
554 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
449 449  
450 -Ex: #4CID5<cr>
556 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div>
451 451  
452 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.
558 +[[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div>
453 453  
454 -====== __17. Baud Rate__ ======
560 +Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div>
455 455  
456 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200. The baud rates are currently restricted to those above.
562 +Example: #5QO&lt;cr&gt; might return *5QO-13<div class="wikimodel-emptyline"></div>
457 457  
458 -Query Baud Rate (**QB**)
564 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div>
459 459  
460 -Ex: #5QB<cr> might return *5QB115200<cr>
566 +Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div>
461 461  
462 -Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.
568 +Example: #5CO-24&lt;cr&gt;<div class="wikimodel-emptyline"></div>
463 463  
464 -Configure Baud Rate (**CB**)
570 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
571 +<div class="wikimodel-emptyline"></div></div></div>
572 +{{/html}}
465 465  
466 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.
574 +====== __Angular Range (**AR**)__ ======
467 467  
468 -Ex: #5CB9600<cr>
576 +{{html wiki="true" clean="false"}}
577 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
578 +Example: #5AR1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
469 469  
470 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
580 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div>
471 471  
472 -====== __18. {//Coming soon//}__ ======
582 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
473 473  
474 -Command coming soon....
584 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div>
475 475  
476 -====== __19. First Position (Degrees)__ ======
586 +[[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div>
477 477  
478 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.
588 +Finally, the angular range action command (ex. #5AR1800&lt;cr&gt;) and origin offset action command (ex. #5O-1200&lt;cr&gt;) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div>
479 479  
480 -Query First Position in Degrees (**QFD**)
590 +[[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div>
481 481  
482 -Ex: #5QFD<cr> might return *5QFD64<cr>
592 +Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div>
483 483  
484 -The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If there is no first position value stored, the reply will be DIS
594 +Example: #5QAR&lt;cr&gt; might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div>
485 485  
486 -Configure First Position in Degrees (**CFD**)
596 +Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>
487 487  
488 -Ex: #5CD64<cr>
598 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
599 +<div class="wikimodel-emptyline"></div></div></div>
600 +{{/html}}
489 489  
490 -This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
602 +====== __Angular Stiffness (**AS**)__ ======
491 491  
492 -====== __20. Query Model String (**QMS**)__ ======
604 +{{html wiki="true" clean="false"}}
605 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
606 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div>
493 493  
494 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
608 +A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div>
495 495  
496 -This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
610 +* The more torque will be applied to try to keep the desired position against external input / changes
611 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div>
497 497  
498 -====== __21. Query Serial Number (**QN**)__ ======
613 +A lower value on the other hand:<div class="wikimodel-emptyline"></div>
499 499  
500 -Ex: #5QN<cr> might return *5QN12345678<cr>
615 +* Causes a slower acceleration to the travel speed, and a slower deceleration
616 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div>
501 501  
502 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
618 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
503 503  
504 -====== __22. Query Firmware (**QF**)__ ======
620 +Ex: #5AS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
505 505  
506 -Ex: #5QF<cr> might return *5QF411<cr>
622 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div>
507 507  
508 -The number in the reply represents the firmware version, in this example being 411.
624 +Ex: #5QAS&lt;cr&gt;<div class="wikimodel-emptyline"></div>
509 509  
510 -====== __23. Query Status (**Q**)__ ======
626 +Queries the value being used.<div class="wikimodel-emptyline"></div>
511 511  
512 -The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses.
628 +Ex: #5CAS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
513 513  
514 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
630 +Writes the desired angular stiffness value to EEPROM.
631 +<div class="wikimodel-emptyline"></div></div></div>
632 +{{/html}}
515 515  
516 -|***Value returned (Q)**|**Status**|**Detailed description**
517 -|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
518 -|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
519 -|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely
520 -|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
521 -|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
522 -|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
523 -|ex: *5Q6<cr>|6: Holding|Keeping current position
524 -|ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
525 -|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
526 -|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
527 -|ex: *5Q10<cr>|10: Safe Mode|(((
528 -A safety limit has been exceeded (temperature, peak current or extended high current draw).
634 +====== __Angular Holding Stiffness (**AH**)__ ======
529 529  
530 -Send a Q1 command to know which limit has been reached (described below).
531 -)))
636 +{{html wiki="true" clean="false"}}
637 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
638 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
532 532  
533 -(% class="wikigeneratedid" %)
534 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
640 +Ex: #5AH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
535 535  
536 -|***Value returned (Q1)**|**Status**|**Detailed description**
537 -|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
538 -|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
539 -|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
540 -|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
642 +This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div>
541 541  
542 -====== __24. Query Voltage (**QV**)__ ======
644 +Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div>
543 543  
544 -Ex: #5QV<cr> might return *5QV11200<cr>
646 +Ex: #5QAH&lt;cr&gt; might return *5QAH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
545 545  
546 -The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
648 +This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div>
547 547  
548 -====== __25. Query Temperature (**QT**)__ ======
650 +Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div>
549 549  
550 -Ex: #5QT<cr> might return *5QT564<cr>
652 +Ex: #5CAH2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
551 551  
552 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
654 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
655 +<div class="wikimodel-emptyline"></div></div></div>
656 +{{/html}}
553 553  
554 -====== __26. Query Current (**QC**)__ ======
658 +====== __Angular Acceleration (**AA**)__ ======
555 555  
556 -Ex: #5QC<cr> might return *5QC140<cr>
660 +{{html wiki="true" clean="false"}}
661 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
662 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
557 557  
558 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
664 +Ex: #5AA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
559 559  
560 -====== __27. Configure RC Mode (**CRC**)__ ======
666 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
561 561  
562 -This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
668 +Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div>
563 563  
564 -|**Command sent**|**Note**
565 -|ex: #5CRC1<cr>|Change to RC position mode.
566 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode.
567 -|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode.
670 +Ex: #5QAA&lt;cr&gt; might return *5QAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
568 568  
569 -EX: #5CRC2<cr>
672 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
570 570  
571 -This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.
674 +Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div>
572 572  
573 -Important note:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.
676 +Ex: #5CAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
574 574  
575 -====== __28. **RESET**__ ======
678 +This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
679 +<div class="wikimodel-emptyline"></div></div></div>
680 +{{/html}}
576 576  
577 -Ex: #5RESET<cr> or #5RS<cr>
682 +====== __Angular Deceleration (**AD**)__ ======
578 578  
579 -This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
580 -Note: after a RESET command is received the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.
684 +{{html wiki="true" clean="false"}}
685 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
686 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
581 581  
582 -====== __29. **DEFAULT** & CONFIRM__ ======
688 +Ex: #5AD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
583 583  
584 -Ex: #5DEFAULT<cr>
690 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
585 585  
586 -This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
692 +Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div>
587 587  
588 -EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
694 +Ex: #5QAD&lt;cr&gt; might return *5QAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
589 589  
590 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
696 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
591 591  
592 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
698 +Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div>
593 593  
594 -====== __30. **UPDATE** & CONFIRM__ ======
700 +Ex: #5CAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
595 595  
596 -Ex: #5UPDATE<cr>
702 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
703 +<div class="wikimodel-emptyline"></div></div></div>
704 +{{/html}}
597 597  
598 -This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
706 +====== __Gyre Direction (**G**)__ ======
599 599  
600 -EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
708 +{{html wiki="true" clean="false"}}
709 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
710 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div>
601 601  
602 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
712 +Ex: #5G-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
603 603  
604 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
714 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div>
605 605  
606 -== Details - Advanced ==
716 +Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div>
607 607  
608 -The motion controller used in serial mode is not the same as the motion controller use in RC mode. RC mode is intended to add functionality to what would be considered "normal" RC behavior based on PWM input.
718 +Ex: #5QG&lt;cr&gt; might return *5QG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
609 609  
610 -====== __A1. Angular Stiffness (**AS**)__ ======
720 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div>
611 611  
612 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.
722 +Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div>
613 613  
614 -A positive value of "angular stiffness":
724 +Ex: #5CG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
615 615  
616 -* The more torque will be applied to try to keep the desired position against external input / changes
617 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
726 +This changes the gyre direction as described above and also writes to EEPROM.
727 +<div class="wikimodel-emptyline"></div></div></div>
728 +{{/html}}
618 618  
619 -A negative value on the other hand:
730 +====== __First Position__ ======
620 620  
621 -* Causes a slower acceleration to the travel speed, and a slower deceleration
622 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back
732 +{{html wiki="true" clean="false"}}
733 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
734 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div>
623 623  
624 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
736 +Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div>
625 625  
626 -Ex: #5AS-2<cr>
738 +Ex: #5QFD&lt;cr&gt; might return *5QFD900&lt;cr&gt; <div class="wikimodel-emptyline"></div>
627 627  
628 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
740 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div>
629 629  
630 -Ex: #5QAS<cr>
742 +Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div>
631 631  
632 -Queries the value being used.
744 +Ex: #5CD900&lt;cr&gt;<div class="wikimodel-emptyline"></div>
633 633  
634 -Ex: #5CAS<cr>
746 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD&lt;cr&gt;) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD&lt;cr&gt;
747 +<div class="wikimodel-emptyline"></div></div></div>
748 +{{/html}}
635 635  
636 -Writes the desired angular stiffness value to memory.
750 +====== __Maximum Speed in Degrees (**SD**)__ ======
637 637  
638 -====== __A2. Angular Holding Stiffness (**AH**)__ ======
752 +{{html wiki="true" clean="false"}}
753 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
754 +Ex: #5SD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
755 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
639 639  
640 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
757 +Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div>
641 641  
642 -Ex: #5AH3<cr>
759 +Ex: #5QSD&lt;cr&gt; might return *5QSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
643 643  
644 -This sets the holding stiffness for servo #5 to 3 for that session.
761 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1&lt;cr&gt; is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
645 645  
646 -Query Angular Hold Stiffness (**QAH**)
763 +|**Command sent**|**Returned value (1/10 °)**
764 +|ex: #5QSD&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
765 +|ex: #5QSD1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
766 +|ex: #5QSD2&lt;cr&gt;|Instantaneous speed (same as QWD)
767 +|ex: #5QSD3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
647 647  
648 -Ex: #5QAH<cr> might return *5QAH3<cr>
769 +Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div>
649 649  
650 -This returns the servo's angular holding stiffness value.
771 +Ex: #5CSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
772 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
773 +</div></div>
774 +{{/html}}
651 651  
652 -Configure Angular Hold Stiffness (**CAH**)
776 +====== __Maximum Speed in RPM (**SR**)__ ======
653 653  
654 -Ex: #5CAH2<cr>
778 +{{html wiki="true" clean="false"}}
779 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
780 +Ex: #5SR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
781 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
655 655  
656 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
783 +Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div>
657 657  
658 -====== __A3: Angular Acceleration (**AA**)__ ======
785 +Ex: #5QSR&lt;cr&gt; might return *5QSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
659 659  
660 -The default value for angular acceleration is 100, which is the same as the maximum deceleration. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
787 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1&lt;cr&gt; is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
661 661  
662 -Ex: #5AA30<cr>
789 +|**Command sent**|**Returned value (1/10 °)**
790 +|ex: #5QSR&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
791 +|ex: #5QSR1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
792 +|ex: #5QSR2&lt;cr&gt;|Instantaneous speed (same as QWD)
793 +|ex: #5QSR3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
663 663  
664 -Query Angular Acceleration (**QAD**)
795 +Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div>
665 665  
666 -Ex: #5QA<cr> might return *5QA30<cr>
797 +Ex: #5CSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
798 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
799 +</div></div>
800 +{{/html}}
667 667  
668 -Configure Angular Acceleration (**CAD**)
802 +== Modifiers ==
669 669  
670 -Ex: #5CA30<cr>
804 +====== __Speed (**S**, **SD**) modifier__ ======
671 671  
672 -====== __A4: Angular Deceleration (**AD**)__ ======
806 +{{html wiki="true" clean="false"}}
807 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
808 +Example: #5P1500S750&lt;cr&gt;<div class="wikimodel-emptyline"></div>
809 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
810 +Example: #5D0SD180&lt;cr&gt;<div class="wikimodel-emptyline"></div>
811 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second.<div class="wikimodel-emptyline"></div>
812 +Query Speed (**QS**)<div class="wikimodel-emptyline"></div>
813 +Example: #5QS&lt;cr&gt; might return *5QS300&lt;cr&gt;<div class="wikimodel-emptyline"></div>
814 +This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div>
815 +</div></div>
816 +{{/html}}
673 673  
674 -The default value for angular deceleration is 100, which is the same as the maximum acceleration. Values between 1 and 15 have the greatest impact.
818 +====== __Timed move (**T**) modifier__ ======
675 675  
676 -Ex: #5AD8<cr>
820 +{{html wiki="true" clean="false"}}
821 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
822 +Example: #5P1500T2500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
677 677  
678 -Query Angular Deceleration (**QAD**)
824 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
825 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div>
826 +</div></div>
827 +{{/html}}
679 679  
680 -Ex: #5QD<cr> might return *5QD8<cr>
829 +====== __Current Halt & Hold (**CH**) modifier__ ======
681 681  
682 -Configure Angular Deceleration (**CAD**)
831 +{{html wiki="true" clean="false"}}
832 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
833 +Example: #5D1423CH400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
683 683  
684 -Ex: #5CD8<cr>
835 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div>
836 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
837 +</div></div>
838 +{{/html}}
685 685  
686 -====== __A5: Motion Control (**EM**)__ ======
840 +====== __Current Limp (**CL**) modifier__ ======
687 687  
688 -The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller.
842 +{{html wiki="true" clean="false"}}
843 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
844 +Example: #5D1423CL400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
689 689  
690 -Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used.
846 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div>
847 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
848 +</div></div>
849 +{{/html}}
691 691  
692 -====== __A6. Configure LED Blinking (**CLB**)__ ======
851 +== Telemetry ==
693 693  
694 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:
853 +====== __Query Voltage (**QV**)__ ======
695 695  
696 -(% style="width:195px" %)
697 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
698 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0
699 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1
700 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2
701 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
702 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
703 -|(% style="width:134px" %)Free|(% style="width:58px" %)16
704 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32
705 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63
855 +{{html wiki="true" clean="false"}}
856 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
857 +Ex: #5QV&lt;cr&gt; might return *5QV11200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
858 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div>
859 +</div></div>
860 +{{/html}}
706 706  
707 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
862 +====== __Query Temperature (**QT**)__ ======
708 708  
709 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
710 -Ex: #5CLB1<cr> only blink when limp (1)
711 -Ex: #5CLB2<cr> only blink when holding (2)
712 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)
713 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)
714 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)
864 +{{html wiki="true" clean="false"}}
865 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
866 +Ex: #5QT&lt;cr&gt; might return *5QT564&lt;cr&gt;<div class="wikimodel-emptyline"></div>
867 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div>
868 +</div></div>
869 +{{/html}}
715 715  
716 -RESETTING the servo is needed.
871 +====== __Query Current (**QC**)__ ======
717 717  
718 -====== __A7. Current Halt & Hold (**CH**)__ ======
873 +{{html wiki="true" clean="false"}}
874 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
875 +Ex: #5QC&lt;cr&gt; might return *5QC140&lt;cr&gt;<div class="wikimodel-emptyline"></div>
876 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div>
877 +</div></div>
878 +{{/html}}
719 719  
720 -This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR.
880 +====== __Query Model String (**QMS**)__ ======
721 721  
722 -Ex: #5D1423CH400<cr>
882 +{{html wiki="true" clean="false"}}
883 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
884 +Ex: #5QMS&lt;cr&gt; might return *5QMSLSS-HS1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
885 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div>
886 +</div></div>
887 +{{/html}}
723 723  
724 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.
889 +====== __Query Firmware (**QF**)__ ======
725 725  
726 -====== __A8. Current Limp (**CL**)__ ======
891 +{{html wiki="true" clean="false"}}
892 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
893 +Ex: #5QF&lt;cr&gt; might return *5QF368&lt;cr&gt;<div class="wikimodel-emptyline"></div>
894 +The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div>
895 +The command #5QF3&lt;cr&gt; can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div>
896 +</div></div>
897 +{{/html}}
727 727  
728 -This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR.
899 +====== __Query Serial Number (**QN**)__ ======
729 729  
730 -Ex: #5D1423CH400<cr>
901 +{{html wiki="true" clean="false"}}
902 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
903 +Ex: #5QN&lt;cr&gt; might return *5QN12345678&lt;cr&gt;<div class="wikimodel-emptyline"></div>
904 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div>
905 +</div></div>
906 +{{/html}}
731 731  
732 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.
908 +== RGB LED ==
733 733  
910 +====== __LED Color (**LED**)__ ======
911 +
912 +{{html wiki="true" clean="false"}}
913 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
914 +Ex: #5LED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
915 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div>
916 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div>
917 +Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div>
918 +Ex: #5QLED&lt;cr&gt; might return *5QLED5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
919 +This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div>
920 +Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div>
921 +Ex: #5CLED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
922 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div>
923 +</div></div>
924 +{{/html}}
925 +
926 +====== __Configure LED Blinking (**CLB**)__ ======
927 +
928 +{{html wiki="true" clean="false"}}
929 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
930 +This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div>
931 +
932 +(% style="width:195px" %)
933 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
934 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0
935 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1
936 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2
937 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
938 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
939 +|(% style="width:134px" %)Free|(% style="width:58px" %)16
940 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32
941 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div>
942 +
943 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div>
944 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div>
945 +Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div>
946 +Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div>
947 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div>
948 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div>
949 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div>
950 +RESETTING the servo is needed.<div class="wikimodel-emptyline"></div>
951 +</div></div>
952 +{{/html}}
953 +
734 734  = RGB LED Patterns =
735 735  
736 736  The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]]
Copyright RobotShop 2018