Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
-
Objects (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LSS -Communication Protocol1 +LSS Communication Protocol - Parent
-
... ... @@ -1,1 +1,1 @@ 1 -lynxmotion-smart-servo.WebHome 1 +ses-v2.lynxmotion-smart-servo.WebHome - Content
-
... ... @@ -1,116 +4,129 @@ 1 -(% class="wikigeneratedid" id="HTableofContents" %) 2 -**Page Contents** 3 - 4 4 {{toc depth="3"/}} 5 5 6 6 = Serial Protocol = 7 7 8 -The customLynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servo5 +The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available. 9 9 10 -In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (e xplainedbelow).Oncethishasbeendone,only the servo(s) which have beenassigned tothe IDsentas part ofthecommandwillfollowthatcommand. There is currently no CRC/checksum implemented as part of7 +In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>path:#HIdentificationNumber28ID29]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol. 11 11 9 +|(% colspan="2" %)((( 12 12 == Session == 13 - 11 +))) 12 +|(% style="width:25px" %) |((( 14 14 A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 15 15 16 -Note #1: For a given session, the action related to a specific commands overrides the stored value in EEPROM. 17 -Note #2: During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s). 18 -You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended. 15 +**Note 1:** For a given session, the action related to a specific command overrides the stored value in EEPROM. 19 19 20 - == ActionCommands==17 +**Note 2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s). 21 21 22 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format: 19 +**Note 3:** You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r described below). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays. 20 +))) 23 23 24 -1. Start with a number sign # (U+0023) 25 -1. Servo ID number as an integer 26 -1. Action command (one to three letters, no spaces, capital or lower case) 22 +|(% colspan="2" %)((( 23 +== Action Commands == 24 +))) 25 +|(% style="width:25px" %) |((( 26 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HVirtualAngularPosition]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format: 27 + 28 +1. Start with a number sign **#** (Unicode Character: U+0023) 29 +1. Servo ID number as an integer (assigning an ID described below) 30 +1. Action command (one or more letters, no whitespace, capital or lowercase from the list below) 27 27 1. Action value in the correct units with no decimal 28 -1. End with a c ontrol / carriage return'<cr>'32 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 29 29 30 -((( 31 -Ex: #5PD1443<cr> 34 +Ex: #5D1800<cr> 32 32 33 -This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 36 +This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 37 +))) 34 34 35 -== Action Modifiers == 39 +|(% colspan="2" %)((( 40 +== Modifiers == 41 +))) 42 +|(% style="width:25px" %) |((( 43 +Modifiers can only be used with certain **action commands**. The format to include a modifier is: 36 36 37 -Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is: 38 - 39 -1. Start with a number sign # (U+0023) 45 +1. Start with a number sign **#** (Unicode Character: U+0023) 40 40 1. Servo ID number as an integer 41 -1. Action command (one to three letters, no spaces, capital or lower case) 47 +1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below) 42 42 1. Action value in the correct units with no decimal 43 -1. Modifier command (one letter) 49 +1. Modifier command (one or two letters from the list of modifiers below) 44 44 1. Modifier value in the correct units with no decimal 45 -1. End with a c ontrol / carriage return'<cr>'51 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 46 46 47 -Ex: #5 P1456T1263<cr>53 +Ex: #5D1800T1500<cr> 48 48 49 -This results in the servo with ID #5 rotating fromthe currentangularpositiontoapulseposition("P")456in a time ("T") of 1263milliseconds.55 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds). 50 50 ))) 51 51 58 +|(% colspan="2" %)((( 52 52 == Query Commands == 53 - 60 +))) 61 +|(% style="width:25px" %) |((( 54 54 Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format: 55 55 56 -1. Start with a number sign 64 +1. Start with a number sign **#** (Unicode Character: U+0023) 57 57 1. Servo ID number as an integer 58 -1. Query command (one to threeletters, no spaces, capital or lower case)59 -1. End with a c ontrol / carriage return'<cr>'66 +1. Query command (one to four letters, no spaces, capital or lower case) 67 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 60 60 61 -((( 62 -Ex: #5QD<cr>Query position in degrees for servo #5 63 -))) 69 +Ex: #5QD<cr> Query the position in (tenth of) degrees for servo with ID #5 64 64 65 -((( 66 66 The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format: 67 67 68 -1. Start with an asterisk * (U+002 A)73 +1. Start with an asterisk * (Unicode Character: U+0023) 69 69 1. Servo ID number as an integer 70 -1. Query command (one to threeletters, no spaces, capital letters)75 +1. Query command (one to four letters, no spaces, capital letters) 71 71 1. The reported value in the units described, no decimals. 72 -1. End with a c ontrol / carriage return'<cr>'77 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 73 73 74 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be: 79 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be: 75 75 76 -((( 77 -Ex: *5QD1443<cr> 81 +Ex: *5QD1800<cr> 82 + 83 +This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees). 78 78 ))) 79 79 80 -This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees). 81 - 86 +|(% colspan="2" %)((( 82 82 == Configuration Commands == 88 +))) 89 +|(% style="width:25px" %) |((( 90 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. 83 83 84 - Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session..Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on thedoc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative,inthat ifsare sent, one after the next, only the last configuration is used and stored.The format to send a configuration command is identical to that of an action command:92 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-radio-control-pwm/]]. Configuration commands are not cumulative. This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored. 85 85 86 -1. Start with a number sign # (U+0023) 94 +The format to send a configuration command is identical to that of an action command: 95 + 96 +1. Start with a number sign **#** (Unicode Character: U+0023) 87 87 1. Servo ID number as an integer 88 -1. Configuration command (two to threeletters, no spaces, capital or lower case)98 +1. Configuration command (two to four letters, no spaces, capital or lower case) 89 89 1. Configuration value in the correct units with no decimal 90 -1. End with a c ontrol / carriage return'<cr>'100 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 91 91 92 92 Ex: #5CO-50<cr> 93 93 94 -This configures an absolute origin offset ("CO") with respect to factory origin toservo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off andthen powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset(clears all configurations)described below.104 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below). 95 95 96 96 **Session vs Configuration Query** 97 97 98 -By default, the query command returns the session s'108 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: 99 99 100 -Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory. 110 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory. 101 101 102 102 After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore: 103 103 104 -#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas 114 +#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas 105 105 106 106 #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 117 +))) 107 107 119 +|(% colspan="2" %)((( 108 108 == Virtual Angular Position == 121 +))) 122 +|(% style="width:25px" %) |((( 123 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset). 109 109 110 - The abilitytostore a "virtualangular position"is afeaturewhich allows for rotationbeyond360 degrees, permittingmultiple rotationsof the output horn,movingthecenterposition andmore. Invirtual positionmode, the "absoluteposition" would be the angle of the output shaft with respect toa 360.0 degree circle, and canbeobtained by taking themodulus (with respect to 360 degrees) of thevalue. For example if the virtual positionisreported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935=15335) astheabsoluteposition(assuming no origin offset).125 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]] 111 111 112 -[[image:LSS-servo-positions.jpg]] 113 - 114 114 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 115 115 116 116 #1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow) ... ... @@ -117,214 +117,257 @@ 117 117 118 118 #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow) 119 119 120 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees. 133 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees. 121 121 122 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 135 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 123 123 124 -#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 137 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 125 125 126 126 #1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow). 127 127 128 -If / oncethe servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified).141 +If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°]. 129 129 ))) 130 130 131 131 = Command List = 132 132 133 - ==Regular==146 +**Latest firmware version currently : 370** 134 134 135 -|= #|=Description|=Mod|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 136 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| | L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 137 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| | H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 138 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]|T| | | | | | ✓|milliseconds|(% style="width:510px" %)Modifier only for {P, D, MD}. Time is estimated and can change based on load|(% style="text-align:center; width:113px" %) 139 -| 4|[[**S**peed>>||anchor="H4.Speed28S2CSD29modifier"]]|S/SD| |QS| | | | ✓|microseconds per second / degrees per second|(% style="width:510px" %)S modifier only for {P}. SD modifier only for {D, MD}.|(% style="text-align:center; width:113px" %) 140 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| | MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 141 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| | O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 142 -0 143 -))) 144 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| | AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 145 -1800 146 -))) 147 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| | P| QP| | | | ✓|microseconds|(% style="width:510px" %)((( 148 -Inherited from SSC-32 serial protocol 149 -)))|(% style="text-align:center; width:113px" %) 150 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| | D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 151 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| | WD| QWD| | | | ✓|degrees per second|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 152 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| | WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 153 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| | SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)((( 154 -QSD: Add modifier "2" for instantaneous speed. 148 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Communication Setup**>>path:#HCommunicationSetup]] 149 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 150 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Reset**>>path:#HReset]]|RESET| | | |✓| | |Soft reset. See command for details. 151 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Default** Configuration>>path:#HDefault26confirm]]|DEFAULT| | | |✓| | |Revert to firmware default values. See command for details 152 +| |[[Firmware (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Update** Mode>>path:#HUpdate26confirm]]|UPDATE| | | |✓| | |Update firmware. See command for details. 153 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Confirm** Changes>>path:#HConfirm]]|CONFIRM| | | |✓| | | 154 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**hange to **RC**>>path:#HConfigureRCMode28CRC29]]| | |CRC| |✓| | |Change to RC mode 1 (position) or 2 (wheel). 155 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**ID** #>>path:#HIdentificationNumber28ID29]]| |QID|CID| |✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 156 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**B**audrate>>path:#HBaudRate]]| |QB|CB| |✓|115200| |Reset required after change. 155 155 156 -SD overwrites SR / CSD overwrites CSR and vice-versa. 157 -)))|(% style="text-align:center; width:113px" %)Max per servo 158 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| | SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 159 -QSR: Add modifier "2" for instantaneous speed 158 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion**>>path:#HMotion]] 159 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 160 +| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**D**egrees>>path:#HPositioninDegrees28D29]]|D|QD/QDT| | |✓| |1/10°| 161 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in **D**egrees (relative)>>path:#H28Relative29MoveinDegrees28MD29]]|MD| | | |✓| |1/10°| 162 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **D**egrees>>path:#HWheelModeinDegrees28WD29]]|WD|QWD/QVT| | |✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation" 163 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **R**PM>>path:#HWheelModeinRPM28WR29]]|WR|QWR| | |✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation" 164 +| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**P**WM>>path:#HPositioninPWM28P29]]|P|QP| | |✓| |us|Inherited from SSC-32 serial protocol 165 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in PWM (relative)>>path:#H28Relative29MoveinPWM28M29]]|M| | | |✓| |us| 166 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**R**aw **D**uty-cycle **M**ove>>path:#HRawDuty-cycleMove28RDM29]]|RDM|QMD| | |✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW 167 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery Status>>path:#HQueryStatus28Q29]]| |Q| | |✓| |1 to 8 integer|See command description for details 168 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**L**imp>>path:#HLimp28L29]]|L| | | |✓| | | 169 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**H**alt & Hold>>path:#HHalt26Hold28H29]]|H| | | |✓| | | 160 160 161 -SR overwrites SD / CSR overwrites CSD and vice-versa. 162 -)))|(% style="text-align:center; width:113px" %)Max per servo 163 -| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| | LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 7)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)0 (OFF) 164 -| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| | G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 165 -| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0 166 -| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)115200 167 -| 18|//{coming soon}//| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 168 - 169 -))) 170 -| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstA0Position28Degrees29"]]| | | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)No Value 171 -| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)|(% style="text-align:center; width:113px" %) 172 -| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 173 -| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 174 -| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 175 -| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 176 -| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 177 -| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 178 -| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | | |CRC|✓| | ✓|none|(% style="width:510px" %)((( 179 -Change to RC mode 1 (position) or 2 (wheel). 180 -)))|(% style="text-align:center; width:113px" %)Serial 181 -| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 182 -| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 183 -| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 171 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion Setup**>>path:#HMotionSetup]] 172 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 173 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**E**nable **M**otion Profile>>path:#HEnableMotionProfile28EM29]]|EM|QEM|CEM| |✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile 174 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**ilter **P**osition **C**ount>>path:#HFilterPositionCount28FPC29]]|FPC|QFPC|CFPC|✓|✓|5| |Affects motion only when motion profile is disabled (EM0) 175 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**O**rigin Offset>>path:#HOriginOffset28O29]]|O|QO|CO|✓|✓|0|1/10°| 176 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **R**ange>>path:#HAngularRange28AR29]]|AR|QAR|CAR|✓|✓|1800|1/10°| 177 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **S**tiffness>>path:#HAngularStiffness28AS29]]|AS|QAS|CAS|✓|✓|0|-4 to +4 integer|Suggested values are between 0 to +4 178 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **H**olding Stiffness>>path:#HAngularHoldingStiffness28AH29]]|AH|QAH|CAH|✓|✓|4|-10 to +10 integer| 179 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **A**cceleration>>path:#HAngularAcceleration28AA29]]|AA|QAA|CAA| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 180 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **D**eceleration>>path:#HAngularDeceleration28AD29]]|AD|QAD|CAD| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 181 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**G**yre Direction>>path:#HGyreDirection28G29]]|G|QG|CG|✓|✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 182 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**irst Position (**D**eg)>>path:#HFirstPosition]]| |QFD|CFD|✓|✓|No value|1/10°|Reset required after change. 183 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**aximum **M**otor **D**uty>>path:#HMaximumMotorDuty28MMD29]]|MMD|QMMD| | |✓|1023|255 to 1023 integer| 184 +| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HMaximumSpeedinDegrees28SD29]]|SD|QSD|CSD|✓|✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 185 +| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **R**PM>>path:#HMaximumSpeedinRPM28SR29]]|SR|QSR|CSR|✓|✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 184 184 185 -== Advanced == 187 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Modifiers**>>path:#HModifiers]] 188 +| |**Description**|**Modifier**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 189 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed>>path:#HSpeed28S2CSD29modifier]]|S|QS| | |✓| |uS/s |For P action command 190 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HSpeed28S2CSD29modifier]]|SD| | | |✓| |0.1°/s|For D and MD action commands 191 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**T**imed move>>path:#HTimedmove28T29modifier]]|T| | | |✓| |ms|Modifier only for P, D and MD. Time can change based on load 192 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **H**old>>path:#HCurrentHalt26Hold28CH29modifier]]|CH| | | |✓| |mA|Modifier for D, MD, WD and WR 193 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **L**imp>>path:#HCurrentLimp28CL29modifier]]|CL| | | |✓| |mA|Modifier for D, MD, WD and WR 186 186 187 -|= #|=(% style="width: 182px;" %)Description|=(% style="width: 56px;" %)Mod|=(% style="width: 70px;" %) Action|=(% style="width: 71px;" %) Query|=(% style="width: 77px;" %) Config|=(% style="width: 77px;" %)Session|=(% style="width: 56px;" %) RC|=(% style="width: 151px;" %) Serial|= Units|=(% style="width: 510px;" %) Notes 188 -| A1|(% style="width:182px" %)[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|(% style="width:56px" %) |(% style="width:70px" %)AS|(% style="width:71px" %)QAS|(% style="width:77px" %)CAS|(% style="width:77px" %)✓|(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4 189 -| A2|(% style="width:182px" %)[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|(% style="width:56px" %) |(% style="width:70px" %)AH|(% style="width:71px" %)QAH|(% style="width:77px" %)CAH|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|none (integer -10 to +10)|(% style="width:510px" %)Effect is different between serial and RC 190 -| A3|(% style="width:182px" %)[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|(% style="width:56px" %) |(% style="width:70px" %)AA|(% style="width:71px" %)QAA|(% style="width:77px" %)CAA|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared 191 -| A4|(% style="width:182px" %)[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|(% style="width:56px" %) |(% style="width:70px" %)AD|(% style="width:71px" %)QAD|(% style="width:77px" %)CAD|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared 192 -| A5|(% style="width:182px" %)[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|(% style="width:56px" %) |(% style="width:70px" %)EM|(% style="width:71px" %)QEM|(% style="width:77px" %) |(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %) ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable 193 -| A6|(% style="width:182px" %)[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]|(% style="width:56px" %) |(% style="width:70px" %) |(% style="width:71px" %)QLB|(% style="width:77px" %) CLB|(% style="width:77px" %) |(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer from 0 to 63)|(% style="width:510px" %)((( 194 -0=No blinking, 63=Always blink; 195 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Telemetry**>>path:#HTelemetry]] 196 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 197 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **V**oltage>>path:#HQueryVoltage28QV29]]| |QV| | |✓| |mV| 198 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **T**emperature>>path:#HQueryTemperature28QT29]]| |QT| | |✓| |1/10°C| 199 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **C**urrent>>path:#HQueryCurrent28QC29]]| |QC| | |✓| |mA| 200 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **M**odel **S**tring>>path:#HQueryModelString28QMS29]]| |QMS| | |✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1) 201 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **F**irmware Version>>path:#HQueryFirmware28QF29]]| |QF| | |✓| | | 195 195 196 - Blink while: 1=Limp;2=Holding;4=Accel;8=Decel;16=Free32=Travel;197 - )))198 -| A7|(%style="width:182px"%)[[**C**urrent**H**alt&**H**old>>||anchor="HA7.CurrentHalt26Hold28CH29"]]|(% style="width:56px" %)CH|(%style="width:70px"%) |(% style="width:71px"%) |(% style="width:77px" %) |(% style="width:77px"%)✓|(% style="width:56px"%) |(% style="width:151px"%)✓|milliamps (ex400=0.4A)|(% style="width:510px"%)Modifierfor D, MD,WD, WR199 -| A8|(% style="width:182px" %)[[**C**urrent**L**imp>>||anchor="HA8.CurrentLimp28CL29"]]|(%style="width:56px"%)CL|(%style="width:70px"%) |(% style="width:71px"%)|(% style="width:77px" %)|(%style="width:77px"%)✓|(% style="width:56px"%) |(% style="width:151px"%)✓|milliamps (ex 400 = 0.4A)|(%style="width:510px"%)ModifierforD, MD, WD, WR203 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**RGB LED**>>path:#HRGBLED]] 204 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 205 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**LED** Color>>path:#HLEDColor28LED29]]|LED|QLED|CLED|✓|✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White 206 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**onfigure **L**ED **B**linking>>path:#HConfigureLEDBlinking28CLB29]]| | |CLB|✓|✓| |0 to 63 integer|Reset required after change. See command for details. 200 200 201 -= =Details- Basic==208 += Details = 202 202 203 -== ====__1. Limp(**L**)__======210 +== Communication Setup == 204 204 205 -Example: #5L<cr> 212 +|(% colspan="2" %)((( 213 +====== Reset ====== 214 +))) 215 +|(% style="width:30px" %) |((( 216 +Ex: #5RESET<cr> 206 206 207 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 218 +This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HSession]], note #2 for more details. 219 +))) 208 208 209 -====== __2. Halt & Hold (**H**)__ ====== 221 +|(% colspan="2" %)((( 222 +====== Default & confirm ====== 223 +))) 224 +|(% style="width:30px" %) |((( 225 +Ex: #5DEFAULT<cr> 210 210 211 - Example:#5H<cr>227 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 212 212 213 - Thisaction overrideswhatever the servomight be doing at the time the command is received (accelerating, moving continuously etc.) and causes it tostop immediatelyand hold that angularposition.229 +Ex: #5DEFAULT<cr> followed by #5CONFIRM<cr> 214 214 215 - ======__3.Timedmove(**T**)modifier__======231 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command. 216 216 217 -Example: #5P1500T2500<cr> 233 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET. 234 +))) 218 218 219 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 236 +|(% colspan="2" %)((( 237 +====== Update & confirm ====== 238 +))) 239 +|(% style="width:30px" %) |((( 240 +Ex: #5UPDATE<cr> 220 220 221 - Note:Ifthecalculatedspeedatwhichaservomustrotateforatimed move isgreaterthanitsmaximumspeed(whichdepends onvoltageandload),then itwillmoveat its maximumspeed,andthetimefthe movemay belongerthan requested.242 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. 222 222 223 - ======__4.Speed(**S**,**SD**) modifier__ ======244 +Ex: #5UPDATE<cr> followed by #5CONFIRM<cr> 224 224 225 -Example: #5P1500S750<cr> 226 -Example: #5D0SD180<cr> 246 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 227 227 228 -Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 248 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET. 249 +))) 229 229 230 -Modifer (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second. 251 +|(% colspan="2" %)((( 252 +====== Confirm ====== 253 +))) 254 +|(% style="width:30px" %) |((( 255 +Ex: #5CONFIRM<cr> 231 231 232 - QuerySpeed(**QS**)257 +This command is used to confirm changes after a Default or Update command. 233 233 234 -Example: #5QS<cr> might return *5QS300<cr> 259 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET. 260 +))) 235 235 236 -This command queries the current speed in microseconds per second. 262 +|(% colspan="2" %)((( 263 +====== Configure RC Mode (**CRC**) ====== 264 +))) 265 +|(% style="width:30px" %) |((( 266 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 237 237 238 - ======__5. (Relative) Move in Degrees (**MD**)__ ======268 +Ex: #5CRC1<cr> 239 239 240 - Example:#5MD123<cr>270 +Change to RC position mode. 241 241 242 - The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For exampleif the servo is set to rotateCW (default) and an MD command of 123 is sent to the servo, it willcause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.272 +Ex: #5CRC2<cr> 243 243 244 - ======__6.OriginOffsetAction (**O**)__======274 +Change to RC continuous rotation (wheel) mode. 245 245 246 -Ex ample: #5O2400<cr>276 +Ex: #5CRC*<cr> 247 247 248 - This command allows you to temporarily changetheorigin of theservoin relationto the factoryzeroposition for that session.As withll actioncommands,the setting will be lost upon servoreset/ powercycle. Originffsetcommands are not cumulativeand alwaysrelate to factoryzero. Inthe first image, the origin atfactory offset '0' (centered).278 +Where * is any value other than 1 or 2 (or no value): stay in smart mode 249 249 250 - [[image:LSS-servo-default.jpg]]280 +Ex: #5CRC2<cr> 251 251 252 - In the secondimage,the origin,andthecorrespondingangularrange(explainedbelow)havebeenshiftedby+240.0 degrees:282 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command. 253 253 254 -[[image:LSS-servo-origin.jpg]] 284 +**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-button-menu/]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe. 285 +))) 255 255 256 -Origin Offset Query (**QO**) 287 +|(% colspan="2" %)((( 288 +====== Identification Number (**ID**) ====== 289 +))) 290 +|(% style="width:30px" %) |((( 291 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 257 257 258 - Example: #5QO<cr>Returns:*5QO-13293 +Query Identification (**QID**) 259 259 260 - Thisallows you to querythe angle (in tenths of degrees) of the origin in relationto the factory zero position. In this example, the new originis at -1.3 degrees from the factory zero.295 +EX: #254QID<cr> might return *QID5<cr> 261 261 262 - ConfigureOriginOffset (**CO**)297 +When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 263 263 264 - Example:#5CO-24<cr>299 +Configure ID (**CID**) 265 265 266 - This command allows you to change the origin of the servo in relation to the factory zero position inEEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example,the new origin will be at -2.4degrees from the factory zero.301 +Ex: #4CID5<cr> 267 267 268 -====== __7. Angular Range (**AR**)__ ====== 303 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect. 304 +))) 269 269 270 -Example: #5AR1800<cr> 306 +|(% colspan="2" %)((( 307 +====== Baud Rate ====== 308 +))) 309 +|(% style="width:30px" %) |((( 310 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200. 271 271 272 - This command allows youto temporarilychange the total angular range of the servo in tenths ofdegrees.This applies to the Position in Pulse (P) command andRC mode. The defaultfor (P) and RC modeis 1800(180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:312 +Query Baud Rate (**QB**) 273 273 274 - [[image:LSS-servo-default.jpg]]314 +Ex: #5QB<cr> might return *5QB115200<cr>Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect. 275 275 276 - Below, the angularrangeis restricted to 180.0 degrees, or -90.0 to +90.0. The center has remainedunchanged.316 +Configure Baud Rate (**CB**) 277 277 278 - [[image:LSS-servo-ar.jpg]]318 +**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET. 279 279 280 - Finally, the angular range action command (ex.#5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:320 +Ex: #5CB9600<cr> 281 281 282 -[[image:LSS-servo-ar-o-1.jpg]] 322 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 323 +))) 283 283 284 -Query Angular Range (**QAR**) 325 +|(% colspan="2" %)((( 326 +====== __Automatic Baud Rate__ ====== 327 +))) 328 +|(% style="width:30px" %) |((( 329 +This option allows the LSS to listen to it's serial input and select the right baudrate automatically. 285 285 286 - Example: #5QAR<cr> might return*5AR1800, indicatingthe total angularrangeis 180.0 degrees.331 +Query Automatic Baud Rate (**QABR**) 287 287 288 - ConfigureAngularRange(**CAR**)333 +Ex: #5QABR<cr> might return *5ABR0<cr> 289 289 290 - This commandallows you to changethe total angular range of the servo in tenths ofdegreesin EEPROM. The setting will be saved upon servo reset/ powercycle.335 +Enable Baud Rate (**ABR**) 291 291 292 - ======__8. Position in Pulse (**P**)__ ======337 +Ex: #5QABR1<cr> 293 293 294 -E xample:#5P2334<cr>339 +Enable baudrate detection on first byte received after power-up. 295 295 296 - Thepositionin PWM pulseswasretainedin orderto bebackward compatiblewith the SSC-32 / 32U protocol.Thisrelates thedesired anglewith an RC standard PWM pulseandisfurtherexplained in the SSC-32 and SSC-32U manualsfoundonLynxmotion.com.Without any modificationsto configuration considered,and a ±90.0degreesstandard rangewhere 1500 microsecondsis centered,apulseof 2334 wouldsettheservoto 165.1 degrees. Valid values forPare [500, 2500]. Values outside this rangeare corrected/ restrictedtoend points.341 +Ex: #5QABR2,30<cr>Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte. 297 297 298 -Query Position in Pulse (**QP**) 343 +Warning: ABR doesnt work well with LSS Config at the moment. 344 +))) 299 299 300 - Example:#5QP<cr> mightreturn*5QP2334346 +== Motion == 301 301 302 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 303 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 348 +|(% colspan="2" %)((( 349 +====== __Position in Degrees (**D**)__ ====== 350 +))) 351 +|(% style="width:30px" %) |((( 352 +Ex: #5D1456<cr> 304 304 305 - ======__9.Position inDegrees (**D**)__======354 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. 306 306 307 - Example:#5D1456<cr>356 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). 308 308 309 -This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction. 310 - 311 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position. 312 - 313 313 Query Position in Degrees (**QD**) 314 314 315 -Ex ample: #5QD<cr> might return *5QD132<cr>360 +Ex: #5QD<cr> might return *5QD132<cr> 316 316 317 -This means the servo is located at 13.2 362 +This means the servo is located at 13.2 degrees. 318 318 319 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 320 -Query Target Position in Degrees (**QDT**) 364 +Query Target Position in Degrees (**QDT**) 321 321 322 322 Ex: #5QDT<cr> might return *5QDT6783<cr> 323 323 324 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 368 +The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 369 +))) 325 325 326 -====== __10. Wheel Mode in Degrees (**WD**)__ ====== 371 +|(% colspan="2" %)((( 372 +====== (Relative) Move in Degrees (**MD**) ====== 373 +))) 374 +|(% style="width:30px" %) |((( 375 +Ex: #5MD123<cr> 327 327 377 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 378 +))) 379 + 380 +|(% colspan="2" %)((( 381 +====== Wheel Mode in Degrees (**WD**) ====== 382 +))) 383 +|(% style="width:30px" %) |((( 328 328 Ex: #5WD90<cr> 329 329 330 330 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). ... ... @@ -334,12 +334,15 @@ 334 334 Ex: #5QWD<cr> might return *5QWD90<cr> 335 335 336 336 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 393 +))) 337 337 338 -====== __11. Wheel Mode in RPM (**WR**)__ ====== 339 - 395 +|(% colspan="2" %)((( 396 +====== Wheel Mode in RPM (**WR**) ====== 397 +))) 398 +|(% style="width:30px" %) |((( 340 340 Ex: #5WR40<cr> 341 341 342 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. 401 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). 343 343 344 344 Query Wheel Mode in RPM (**QWR**) 345 345 ... ... @@ -346,393 +346,598 @@ 346 346 Ex: #5QWR<cr> might return *5QWR40<cr> 347 347 348 348 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 408 +))) 349 349 350 -====== __12. Max Speed in Degrees (**SD**)__ ====== 410 +|(% colspan="2" %)((( 411 +====== Position in PWM (**P**) ====== 412 +))) 413 +|(% style="width:30px" %) |((( 414 +Ex: #5P2334<cr> 351 351 352 - Ex:#5SD1800<cr>416 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>url:https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points. 353 353 354 - This command sets the servo's maximum speed formotion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physicallimit at a given voltage. The SD action command overridesCSD (described below) forthat session.Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD andSR (described below) are effectively the same, but allow the userto specify the speed in either unit. The last command(either SR or SD)received is what the servo uses for that session.418 +Query Position in Pulse (**QP**) 355 355 356 -Q uerySpeedin Degrees(**QSD**)420 +Ex: #5QP<cr> might return *5QP2334 357 357 358 -Ex: #5QSD<cr> might return *5QSD1800<cr> 422 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 423 +))) 359 359 360 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. 361 -If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 425 +|(% colspan="2" %)((( 426 +====== __(Relative) Move in PWM (**M**)__ ====== 427 +))) 428 +|(% style="width:30px" %) |((( 429 +Ex: #5M1500<cr> 362 362 363 -|**Command sent**|**Returned value (1/10 °)** 364 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 365 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 366 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 367 -|ex: #5QSD3<cr>|Target travel speed 431 +The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 432 +))) 368 368 369 -Configure Speed in Degrees (**CSD**) 434 +|(% colspan="2" %)((( 435 +====== Raw Duty-cycle Move (**RDM**) ====== 436 +))) 437 +|(% style="width:30px" %) |((( 438 +Ex: #5RDM512<cr> 370 370 371 - Ex:#5CSD1800<cr>440 +The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor. 372 372 373 - Using theCSD commandsetsthe servo's maximum speed which issavedinEEPROM.Intheexample above,the servo's maximum speedwillbe seto 180.0 degreespersecond.When theservoispoweredon (oraftera reset), the CSD value is used. NotethatCSD and CSR (described below)are effectivelythe same, but allow theusertospecify the speedineitherunit. The lastcommand (eitherCSRor CSD)iswhat theservo uses for that session.442 +The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise). 374 374 375 - ======__13.Max SpeedinRPM(**SR**)__ ======444 +Query Move in Duty-cycle (**QMD**) 376 376 377 -Ex: #5 SD45<cr>446 +Ex: #5QMD<cr> might return *5QMD512 378 378 379 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 448 +This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 449 +))) 380 380 381 -Query Speed in Degrees (**QSR**) 451 +|(% colspan="2" %)((( 452 +====== Query Status (**Q**) ====== 453 +))) 454 +|(% style="width:30px" %) |((( 455 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below. 382 382 383 -Ex: #5Q SR<cr> might return *5QSR45<cr>457 +Ex: #5Q<cr> might return *5Q6<cr> 384 384 385 - By default QSRwill return thecurrent sessionvalue, which issetto thevalueof CSR as reset/powercycleand changedwheneveranSD/SR command isprocessed.386 - If #5QSR1<cr> is sent, the configured maximum speed (CSR value)will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:459 +which indicates the motor is holding a position. 460 +))) 387 387 388 -|**Command sent**|**Returned value (1/10 °)** 389 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 390 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 391 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 392 -|ex: #5QSR3<cr>|Target travel speed 462 +|(% style="width:30px" %) |***Value returned (Q)**|**Status**|**Detailed description** 463 +| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 464 +| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 465 +| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command 466 +| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 467 +| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 468 +| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 469 +| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding) 470 +| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 471 +| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 472 +| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 473 +| |ex: *5Q10<cr>|10: Safe Mode|((( 474 +A safety limit has been exceeded (temperature, peak current or extended high current draw). 393 393 394 -Configure Speed in RPM (**CSR**) 476 +Send a Q1 command to know which limit has been reached (described below). 477 +))) 395 395 396 -Ex: #5CSR45<cr> 479 +|(% style="width:30px" %) |(% colspan="3" rowspan="1" %)If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 480 +| |***Value returned (Q1)**|**Status**|**Detailed description** 481 +| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 482 +| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 483 +| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 484 +| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 397 397 398 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 486 +|(% colspan="2" %)((( 487 +====== Limp (**L**) ====== 488 +))) 489 +|(% style="width:30px" %) |((( 490 +Ex: #5L<cr> 399 399 400 -====== __14. LED Color (**LED**)__ ====== 492 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 493 +))) 401 401 402 -Ex: #5LED3<cr> 495 +|(% colspan="2" %)((( 496 +====== Halt & Hold (**H**) ====== 497 +))) 498 +|(% style="width:30px" %) |((( 499 +Example: #5H<cr> 403 403 404 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. 501 +This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 502 +))) 405 405 406 - 0=Off (black); 1=Red2=Green; 3=Blue; 4=Yellow; 5=Cyan;6=Magenta;7=White;504 +== Motion Setup == 407 407 408 -Query LED Color (**QLED**) 506 +|(% colspan="2" %)((( 507 +====== Enable Motion Profile (**EM**) ====== 508 +))) 509 +|(% style="width:30px" %) |((( 510 +EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1. 409 409 410 -Ex: #5 QLED<cr>might return *5QLED5<cr>512 +Ex: #5EM1<cr> 411 411 412 -This simplequery returns thendicatedservo'sLED color.514 +This command enables a trapezoidal motion profile for servo #5 413 413 414 - Configure LEDColor (**CLED**)516 +Ex: #5EM0<cr> 415 415 416 - ConfiguringtheLEDcolorviatheCLED command sets thestartupcolor ofthe servo after a resetor power cycle.Notethat it alsochanges the session'sLEDcolor immediately aswell.518 +This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command). 417 417 418 - ====== __15. GyreRotationDirection(**G**)__ ======520 +Query Motion Profile (**QEM**) 419 419 420 - "Gyre"is defined as acircularcourse ormotion. The effect of changing the gyre directionis as if you wereouse a mirrorimage of a circle. CW =1; CCW = -1. The factory default is clockwise (CW).522 +Ex: #5QEM<cr> might return *5QEM1<cr> 421 421 422 - Ex:#5G-1<cr>524 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled. 423 423 424 - This command will cause servo #5's positions to be inverted, effectively causingthe servo to rotatein theopposite directiongiven the same command. Forexample in a 2WD robot, servos are often physically installed backto back, therefore setting one of the servos to a negative gyration, the same wheel command(ex WR30)to both servos will cause the robot to move forward or backward rather than rotate.526 +Configure Motion Profile (**CEM**) 425 425 426 - QueryGyre Direction (**QG**)528 +Ex: #5CEM0<cr> 427 427 428 -Ex: #5QG<cr> might return *5QG-1<cr> 530 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 531 +))) 429 429 430 -The value returned above means the servo is in a counter-clockwise gyration. 533 +|(% colspan="2" %)((( 534 +====== Filter Position Count (**FPC**) ====== 535 +))) 536 +|(% style="width:30px" %) |((( 537 +The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default. 431 431 432 - ConfigureGyre (**CG**)539 +Ex: #5FPC10<cr> 433 433 434 - Ex:#5CG-1<cr>541 +This command allows the user to change the Filter Position Count value for that session. 435 435 436 - This changesthegyredirectionas described above and also writesto EEPROM.543 +Query Filter Position Count (**QFPC**) 437 437 438 - ======__16.IdentificationNumber(**ID**)__ ======545 +Ex: #5QFPC<cr> might return *5QFPC10<cr> 439 439 440 - A servo'sidentification number cannot beset"on the fly" and must beconfigured via the CID commanddescribed below. The factory defaultID numberfor all servos is 0. Since smart servos are intended to be daisychained,in order to respond differently from one another,the user must set differentdentificationnumbers. Servos with the same ID and baud ratewill all receiveand react to the same commands (assuming samebaud rate).547 +This command will query the Filter Position Count value. 441 441 442 - Query Identification (**QID**)549 +Configure Filter Position Count (**CFPC**) 443 443 444 -E X: #254QID<cr>might return *QID5<cr>551 +Ex: #5CFPC10<cr> 445 445 446 -When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 553 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 554 +))) 447 447 448 -Configure ID (**CID**) 556 +|(% colspan="2" %)((( 557 +====== Origin Offset (**O**) ====== 558 +))) 559 +|(% style="width:30px" %) |((( 560 +Ex: #5O2400<cr> 449 449 450 - Ex:#4CID5<cr>562 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 451 451 452 - Setting a servo's ID in EEPROM is done via the CID command. All servos connectedto thesame serial buswill be assigned that ID.Instsituations each servoust be set a unique ID,which means each servomust be connectedindividually tothe serial bus andreceive a unique CID number. It is best todothis beforetheservosare added to an assembly. Numbered stickersare providedto distinguish each servoafter their ID is set, though you arefree tousewhateveralternative methodyouike.Theservomust be RESET or power cycledin orderfor the new ID to take effect.564 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 453 453 454 - ======__17.BaudRate__======566 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: 455 455 456 - A servo's baud ratecannotbe set"on the fly" andmustbe configured via the CBcommand described below. The factorydefault baud rate forallservosis 115200. Sincesmartare intended to be daisychained, inorder to respond to the same serial bus, all servosinaprojectshould ideallybe set tothe samebaud rate.Setting different baud rateswill havethe servos respond differently and may createissues.Available baud ratesare: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200. The baud rates are currently restricted to those above.568 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]] 457 457 458 -Query Baud Rate(**QB**)570 +Origin Offset Query (**QO**) 459 459 460 -Ex: #5Q B<cr> might return *5QB115200<cr>572 +Ex: #5QO<cr> might return *5QO-13 461 461 462 - Sincethecommandto querybaud ratemustbedone attheservo'sexistingbaudrate, it can simply beusedtoconfirmtheCB configurationcommandwascorrectlyreceived beforetheservo ispower cycledandthe newbaudratetakeseffect.574 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero. 463 463 464 -Configure BaudRate (**CB**)576 +Configure Origin Offset (**CO**) 465 465 466 - Important Note:the servo'scurrent session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.578 +Ex: #5CO-24<cr> 467 467 468 -Ex: #5CB9600<cr> 580 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 581 +))) 469 469 470 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 583 +|(% colspan="2" %)((( 584 +====== Angular Range (**AR**) ====== 585 +))) 586 +|(% style="width:30px" %) |((( 587 +Ex: #5AR1800<cr> 471 471 472 - ======__18.{//Coming soon//}__======589 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: 473 473 474 - Commandcomingsoon....591 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 475 475 476 - ======__19.FirstPosition(Degrees)__======593 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 477 477 478 - In certain cases, a usermight want to havethe servo moveto a specific angle uponpower up; we referto this as "first position" (a.k.a. "initialposition"). The factorydefault hasfirstpositionvaluestored in EEPROMand therefore upon power up,theservoremainslimpuntilaposition(orholdcommand) is assigned. Note that the numbershould beestricted to1790 (-179.0 degrees) to +1790 (179.0 degrees)and values beyondthiswill bechanged to1800.595 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]] 479 479 480 - QueryFirstPositioninDegrees(**QFD**)597 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range: 481 481 482 - Ex:#5QFD<cr>mightreturn*5QFD64<cr>599 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]] 483 483 484 - Theeplyabove indicates that servowith ID 5 has a first positionpulseof 1550 microseconds. If there is no first position value stored, the reply will be DIS601 +Query Angular Range (**QAR**) 485 485 486 - ConfigureFirstPositioninDegrees(**CFD**)603 +Ex: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees. 487 487 488 - Ex: #5CD64<cr>605 +Configure Angular Range (**CAR**) 489 489 490 -This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 607 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 608 +))) 491 491 492 -====== __20. Query Model String (**QMS**)__ ====== 610 +|(% colspan="2" %)((( 611 +====== Angular Stiffness (**AS**) ====== 612 +))) 613 +|(% style="width:30px" %) |((( 614 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units. 493 493 494 - Ex:#5QMS<cr> mightreturn*5QMSLSS-HS1<cr>616 +A higher value of "angular stiffness": 495 495 496 -This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 618 +* The more torque will be applied to try to keep the desired position against external input / changes 619 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 497 497 498 - ======__21. QuerySerialNumber(**QN**)__======621 +A lower value on the other hand: 499 499 500 -Ex: #5QN<cr> might return *5QN12345678<cr> 623 +* Causes a slower acceleration to the travel speed, and a slower deceleration 624 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back 501 501 502 -The number in the response(12345678)wouldbeheservo'sserialnumberwhichissetandshouldnotchanged by the user.626 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 503 503 504 - ======__22. Query Firmware (**QF**)__ ======628 +Ex: #5AS-2<cr> 505 505 506 - Ex:#5QF<cr>might return*5QF411<cr>630 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 507 507 508 - The number in the reply represents the firmware version, in this examplebeing 411.632 +Ex: #5QAS<cr> 509 509 510 - ====== __23.QueryStatus(**Q**)__======634 +Queries the value being used. 511 511 512 -The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses. 636 +Ex: #5CAS-2<cr>Writes the desired angular stiffness value to EEPROM. 637 +))) 513 513 514 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 639 +|(% colspan="2" %)((( 640 +====== Angular Holding Stiffness (**AH**) ====== 641 +))) 642 +|(% style="width:30px" %) |((( 643 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 515 515 516 -|***Value returned (Q)**|**Status**|**Detailed description** 517 -|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 518 -|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 519 -|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely 520 -|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 521 -|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 522 -|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 523 -|ex: *5Q6<cr>|6: Holding|Keeping current position 524 -|ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 525 -|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 526 -|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 527 -|ex: *5Q10<cr>|10: Safe Mode|((( 528 -A safety limit has been exceeded (temperature, peak current or extended high current draw). 645 +Ex: #5AH3<cr> 529 529 530 -Send a Q1 command to know which limit has been reached (described below). 647 +This sets the holding stiffness for servo #5 to 3 for that session. 648 + 649 +Query Angular Holding Stiffness (**QAH**) 650 + 651 +Ex: #5QAH<cr> might return *5QAH3<cr> 652 + 653 +This returns the servo's angular holding stiffness value. 654 + 655 +Configure Angular Holding Stiffness (**CAH**) 656 + 657 +Ex: #5CAH2<cr> 658 + 659 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 531 531 ))) 532 532 533 -(% class="wikigeneratedid" %) 534 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 662 +|(% colspan="2" %)((( 663 +====== Angular Acceleration (**AA**) ====== 664 +))) 665 +|(% style="width:30px" %) |((( 666 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 535 535 536 -|***Value returned (Q1)**|**Status**|**Detailed description** 537 -|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 538 -|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 539 -|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 540 -|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 668 +Ex: #5AA30<cr> 541 541 542 - ======__24.QueryVoltage (**QV**)__ ======670 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 543 543 544 - Ex: #5QV<cr>mightreturn *5QV11200<cr>672 +Query Angular Acceleration (**QAA**) 545 545 546 - Thenumberreturned has one decimal, soin thecase above, servo with ID 5 has an input voltage of 11.2V (perhapsa threecell LiPo battery).674 +Ex: #5QAA<cr> might return *5QAA30<cr> 547 547 548 - ======__25. QueryTemperature (**QT**)__ ======676 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^). 549 549 550 - Ex: #5QT<cr> mightreturn*5QT564<cr>678 +Configure Angular Acceleration (**CAA**) 551 551 552 - The units are in tenths of degrees Celcius, so in the exampleabove, the servo's internal temperature is56.4 degreesC. Toconvert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.680 +Ex: #5CAA30<cr> 553 553 554 -====== __26. Query Current (**QC**)__ ====== 682 +This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 683 +))) 555 555 556 -Ex: #5QC<cr> might return *5QC140<cr> 685 +|(% colspan="2" %)((( 686 +====== Angular Deceleration (**AD**) ====== 687 +))) 688 +|(% style="width:30px" %) |((( 689 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 557 557 558 - The units are in milliamps, so in the exampleabove, the servo is consuming 140mA, or0.14A.691 +Ex: #5AD30<cr> 559 559 560 - ======__27.ConfigureRCMode (**CRC**)__ ======693 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 561 561 562 - This command puts theservo into RC mode (position or continuous), where it will onlyrespond to RC pulses. Note that because this is the case, the servowill no longer accept serialcommands. Theservo can be placed back into smart mode by using the buttonmenu.695 +Query Angular Deceleration (**QAD**) 563 563 564 -|**Command sent**|**Note** 565 -|ex: #5CRC1<cr>|Change to RC position mode. 566 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 567 -|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode. 697 +Ex: #5QAD<cr> might return *5QAD30<cr> 568 568 569 - EX:#5CRC2<cr>699 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^). 570 570 571 - This command would placethe servo inRC wheelmodeaftera RESET or powercycle. Note that after a RESET or power cycle, the servo will be in RC modeand will notreply to serial commands.Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.701 +Configure Angular Deceleration (**CAD**) 572 572 573 - Important note:****To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a5V constant HIGH needs to be sent to the servo's Rx pin (RCPWM pin), ensuring a common GNDand wait for30seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.703 +Ex: #5CAD30<cr> 574 574 575 -====== __28. **RESET**__ ====== 705 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 706 +))) 576 576 577 -Ex: #5RESET<cr> or #5RS<cr> 708 +|(% colspan="2" %)((( 709 +====== Gyre Direction (**G**) ====== 710 +))) 711 +|(% style="width:30px" %) |((( 712 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1. 578 578 579 -This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 580 -Note: after a RESET command is received the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details. 714 +Ex: #5G-1<cr> 581 581 582 - ======__29.**DEFAULT** &CONFIRM__======716 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 583 583 584 - Ex:#5DEFAULT<cr>718 +Query Gyre Direction (**QG**) 585 585 586 - Thiscommand sets in motion theresetof all values to the default values included with the version of the firmwareinstalled on thatservo. Theservothen waits forthe CONFIRM command.Any othercommandreceived will cause the servo to exit the DEFAULT function.720 +Ex: #5QG<cr> might return *5QG-1<cr> 587 587 588 - EX: #5DEFAULT<cr>followedby #5CONFIRM<cr>722 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM. 589 589 590 - Since it it not commonto have to restore all configurations, a confirmation command is neededafter a firmware command is sent. Should anycommand otherthan CONFIRM bereceived by the servo after the firmware command has been received, it will exit the command.724 +Configure Gyre (**CG**) 591 591 592 - Notethat after theCONFIRMcommand is sent, the servo will automatically perform a RESET.726 +Ex: #5CG-1<cr> 593 593 594 -====== __30. **UPDATE** & CONFIRM__ ====== 728 +This changes the gyre direction as described above and also writes to EEPROM. 729 +))) 595 595 596 -Ex: #5UPDATE<cr> 731 +|(% colspan="2" %)((( 732 +====== First Position ====== 733 +))) 734 +|(% style="width:30px" %) |((( 735 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. 597 597 598 - This command sets in motion the equivalent of a long button presswhen the servoisnotpowered in order to enter firmware update mode. Thiss useful shouldthe button be broken orinaccessible. The servothenwaits for the CONFIRM command.Any othercommand received will causethe servo to exit the UPDATE function.737 +Query First Position in Degrees (**QFD**) 599 599 600 -E X: #5UPDATE<cr>followedby #5CONFIRM<cr>739 +Ex: #5QFD<cr> might return *5QFD900<cr> 601 601 602 - Sinceititnotcommontohaveto updatefirmware,a confirmationcommandisneededafteran UPDATE commandissent. Shouldany command otherhanCONFIRM be received bythe servo afterthe firmwarecommand has beenreceived,itwillleavethe firmware action.741 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS. 603 603 604 - Note that aftertheCONFIRM commandissent,the servowill automaticallyperforma RESET.743 +Configure First Position in Degrees (**CFD**) 605 605 606 - ==Details - Advanced ==745 +Ex: #5CFD900<cr> 607 607 608 -The motion controller used in serial mode is not the same as the motion controller use in RC mode. RC mode is intended to add functionality to what would be considered "normal" RC behavior based on PWM input. 747 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 748 +))) 609 609 610 -====== __A1. Angular Stiffness (**AS**)__ ====== 750 +|(% colspan="2" %)((( 751 +====== Maximum Motor Duty (**MMD**) ====== 752 +))) 753 +|(% style="width:30px" %) |((( 754 +This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance. 611 611 612 - Theservo's rigidity / angular stiffnesscan be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.756 +Ex: #5MMD512<cr> 613 613 614 - A positivevalue of"angular stiffness":758 +This will set the duty-cycle to 512 for servo with ID 5 for that session. 615 615 616 -* The more torque will be applied to try to keep the desired position against external input / changes 617 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 760 +Query Maximum Motor Duty (**QMMD**) 618 618 619 - Anegative valueon theotherhand:762 +Ex: #5QMMDD<cr> might return *5QMMD512<cr> 620 620 621 - *Causesasloweraccelerationto the travelspeed, and a slower deceleration622 - * Allows the target position to deviate more from its position before additional torque is applied to bring it back764 +This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023. 765 +))) 623 623 624 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 767 +|(% colspan="2" %)((( 768 +====== Maximum Speed in Degrees (**SD**) ====== 769 +))) 770 +|(% style="width:30px" %) |((( 771 +Ex: #5SD1800<cr> 625 625 626 - Ex:#5AS-2<cr>773 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 627 627 628 - This reduces the angularstiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in manysituations such as impacts (leggedrobots) where more of a "spring"effect is desired. Upon reset,the servo will use the value stored in memory, based on the last configuration command.775 +Query Speed in Degrees (**QSD**) 629 629 630 -Ex: #5Q AS<cr>777 +Ex: #5QSD<cr> might return *5QSD1800<cr> 631 631 632 -Queries the value being used. 779 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 780 +))) 633 633 634 -Ex: #5CAS<cr> 782 +|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)** 783 +| |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 784 +| |ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 785 +| |ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 786 +| |ex: #5QSD3<cr>|Target travel speed 635 635 636 -Writes the desired angular stiffness value to memory. 788 +|(% style="width:30px" %) |((( 789 +Configure Speed in Degrees (**CSD**) 637 637 638 - ======__A2. Angular HoldingStiffness (**AH**)__ ======791 +Ex: #5CSD1800<cr> 639 639 640 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when considering altering a stiffness value, the end effect depends on the mode being tested. 793 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 794 +))) 641 641 642 -Ex: #5AH3<cr> 796 +|(% colspan="2" %)((( 797 +====== Maximum Speed in RPM (**SR**) ====== 798 +))) 799 +|(% style="width:30px" %) |((( 800 +Ex: #5SR45<cr> 643 643 644 -This sets the holding sti ffness for servo#5to3for that session.802 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 645 645 646 -Query Angular HoldStiffness(**QAH**)804 +Query Speed in RPM (**QSR**) 647 647 648 -Ex: #5Q AH<cr> might return *5QAH3<cr>806 +Ex: #5QSR<cr> might return *5QSR45<cr> 649 649 650 -This returns the servo's angular holding stiffness value. 808 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 809 +))) 651 651 652 -Configure Angular Hold Stiffness (**CAH**) 811 +|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)** 812 +| |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 813 +| |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 814 +| |ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 815 +| |ex: #5QSR3<cr>|Target travel speed 653 653 654 -Ex: #5CAH2<cr> 817 +|((( 818 +Configure Speed in RPM (**CSR**) 655 655 656 - Thiswrites the angular holding stiffness of servo#5to 2 to EEPROM. Note that whenconsidering altering a stiffness value, the end effect depends on the mode being tested.820 +Ex: #5CSR45<cr> 657 657 658 -====== __A3: Angular Acceleration (**AA**)__ ====== 822 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 823 +)))| 659 659 660 - Thedefault value for angular acceleration is 100, which is the same as the maximumdeceleration. Accepts values ofbetween 1 and 100. Incrementsof 10 degrees per second squared.825 +== Modifiers == 661 661 662 -Ex: #5AA30<cr> 827 +|(% colspan="2" %)((( 828 +====== Speed (**S**, **SD**) modifier ====== 829 +))) 830 +|(% style="width:30px" %) |((( 831 +Ex: #5P1500S750<cr> 663 663 664 - Query AngularAcceleration(**QAD**)833 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 665 665 666 -Ex: #5 QA<cr> might return *5QA30<cr>835 +Ex: #5D0SD180<cr> 667 667 668 - ConfigureAngularAcceleration(**CAD**)837 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second. 669 669 670 - Ex: #5CA30<cr>839 +Query Speed (**QS**) 671 671 672 - ====== __A4:AngularDeceleration(**AD**)__ ======841 +Ex: #5QS<cr> might return *5QS300<cr> 673 673 674 -The default value for angular deceleration is 100, which is the same as the maximum acceleration. Values between 1 and 15 have the greatest impact. 843 +This command queries the current speed in microseconds per second. 844 +))) 675 675 676 -Ex: #5AD8<cr> 846 +|(% colspan="2" %)((( 847 +====== Timed move (**T**) modifier ====== 848 +))) 849 +|(% style="width:30px" %) |((( 850 + 677 677 678 - Query Angular Deceleration(**QAD**)852 +Example: #5P1500T2500<cr> 679 679 680 - Ex:#5QD<cr>might return*5QD8<cr>854 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 681 681 682 -Configure Angular Deceleration (**CAD**) 856 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 857 +))) 683 683 684 -Ex: #5CD8<cr> 859 +|(% colspan="2" %)((( 860 +====== Current Halt & Hold (**CH**) modifier ====== 861 +))) 862 +|(% style="width:30px" %) |((( 863 +Example: #5D1423CH400<cr> 685 685 686 - ======__A5:MotionControl(**EM**)__======865 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position. 687 687 688 -The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller. 867 +This modifier can be added to the following actions: D; MD; WD; WR. 868 +))) 689 689 690 -Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used. 870 +|(% colspan="2" %)((( 871 +====== Current Limp (**CL**) modifier ====== 872 +))) 873 +|(% style="width:30px" %) |((( 874 +Example: #5D1423CL400<cr> 691 691 692 - ======__A6.ConfigureLEDBlinking(**CLB**)__======876 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp. 693 693 694 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value: 878 +This modifier can be added to the following actions: D; MD; WD; WR. 879 +))) 695 695 696 -(% style="width:195px" %) 697 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 698 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 699 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1 700 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2 701 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 702 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 703 -|(% style="width:134px" %)Free|(% style="width:58px" %)16 704 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 705 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63 881 +== Telemetry == 706 706 707 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 883 +|(% colspan="2" %)((( 884 +====== Query Voltage (**QV**) ====== 885 +))) 886 +|(% style="width:30px" %) |((( 887 +Ex: #5QV<cr> might return *5QV11200<cr> 708 708 709 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 710 -Ex: #5CLB1<cr> only blink when limp (1) 711 -Ex: #5CLB2<cr> only blink when holding (2) 712 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12) 713 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48) 714 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32) 889 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V. 890 +))) 715 715 716 -RESETTING the servo is needed. 892 +|(% colspan="2" %)((( 893 +====== Query Temperature (**QT**) ====== 894 +))) 895 +|(% style="width:30px" %) |((( 896 +Ex: #5QT<cr> might return *5QT564<cr> 717 717 718 -====== __A7. Current Halt & Hold (**CH**)__ ====== 898 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 899 +))) 719 719 720 -This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR. 901 +|(% colspan="2" %)((( 902 +====== Query Current (**QC**) ====== 903 +))) 904 +|(% style="width:30px" %) |((( 905 +Ex: #5QC<cr> might return *5QC140<cr> 721 721 722 -Ex: #5D1423CH400<cr> 907 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 908 +))) 723 723 724 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position. 910 +|(% colspan="2" %)((( 911 +====== Query Model String (**QMS**) ====== 912 +))) 913 +|(% style="width:30px" %) |((( 914 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr> 725 725 726 -====== __A8. Current Limp (**CL**)__ ====== 916 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision. 917 +))) 727 727 728 -This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR. 919 +|(% colspan="2" %)((( 920 +====== Query Firmware (**QF**) ====== 921 +))) 922 +|(% style="width:30px" %) |((( 923 +Ex: #5QF<cr> might return *5QF368<cr> 729 729 730 - Ex:#5D1423CH400<cr>925 +The number in the reply represents the firmware version, in this example being 368. 731 731 732 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp. 927 +The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14 928 +))) 733 733 734 -= RGB LED Patterns=930 +== RGB LED == 735 735 736 -The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] 932 +|(% colspan="2" %)((( 933 +====== LED Color (**LED**) ====== 934 +))) 935 +|(% style="width:30px" %) |((( 936 + 737 737 738 -[[image:LSS - LED Patterns.png]] 938 +Ex: #5LED3<cr> 939 + 940 +This action sets the servo's RGB LED color for that session. 941 + 942 +The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. 943 + 944 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White; 945 + 946 +Query LED Color (**QLED**) 947 + 948 +Ex: #5QLED<cr> might return *5QLED5<cr> 949 + 950 +This simple query returns the indicated servo's LED color. 951 + 952 +Configure LED Color (**CLED**) 953 + 954 +Ex: #5CLED3<cr> 955 + 956 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color. 957 +))) 958 + 959 +|(% colspan="2" %)((( 960 +====== Configure LED Blinking (**CLB**) ====== 961 +))) 962 +|(% style="width:30px" %) |((( 963 + 964 + 965 +This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value: 966 +))) 967 + 968 +|(% style="width:30px" %) |(% style="width:200px" %)**Blink While:**|(% style="width:50px" %)**#**| 969 +| |No blinking|0| 970 +| |Limp|1| 971 +| |Holding|2| 972 +| |Accelerating|4| 973 +| |Decelerating|8| 974 +| |Free|16| 975 +| |Travelling|32| 976 +| |Always blink|63| 977 + 978 +|(% style="width:30px" %) |((( 979 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 980 + 981 +Ex: #5CLB0 to turn off all blinking (LED always solid) 982 + 983 +Ex: #5CLB1 only blink when limp (1) 984 + 985 +Ex: #5CLB2 only blink when holding (2) 986 + 987 +Ex: #5CLB12 only blink when accel or decel (accel 4 + decel 8 = 12) 988 + 989 +Ex: #5CLB48 only blink when free or travel (free 16 + travel 32 = 48) 990 + 991 +Ex: #5CLB63 blink in all status (1 + 2 + 4 + 8 + 16 + 32) 992 + 993 +RESETTING the servo is needed. 994 +))) 995 + 996 +|(% colspan="2" style="width:30px" %)((( 997 +====== RGB LED Patterns ====== 998 +))) 999 +|(% style="width:30px" %) |((( 1000 +The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-button-menu/]] 1001 +))) 1002 +|(% style="width:30px" %) |[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS%20-%20LED%20Patterns.png||alt="LSS - LED Patterns.png"]]
- LSS-Protocol-Backup-2020-05-01.zip
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.ENantel - Size
-
... ... @@ -1,0 +1,1 @@ 1 +47.4 KB - Content
- XWiki.StyleSheetExtension[0]
-
- Caching policy
-
... ... @@ -1,0 +1,1 @@ 1 +long - Code
-
... ... @@ -1,0 +1,13 @@ 1 +div.cmdcnt 2 +{ 3 + display:table-row; 4 +} 5 +div.cmdpad 6 +{ 7 + display:table-cell; 8 + padding:16px; 9 +} 10 +div.cmdtxt 11 +{ 12 + display:table-cell; 13 +} - Content Type
-
... ... @@ -1,0 +1,1 @@ 1 +CSS - Name
-
... ... @@ -1,0 +1,1 @@ 1 +DivTextIndentation - Parse content
-
... ... @@ -1,0 +1,1 @@ 1 +No - Use this extension
-
... ... @@ -1,0 +1,1 @@ 1 +currentPage