Last modified by Eric Nantel on 2025/06/06 07:47

From version < 187.1 >
edited by Eric Nantel
on 2020/05/01 12:04
To version < 169.1 >
edited by RB1
on 2020/04/27 14:06
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.ENantel
1 +xwiki:XWiki.RB1
Content
... ... @@ -5,1025 +5,732 @@
5 5  
6 6  = Serial Protocol =
7 7  
8 -The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available.
8 +The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servo motor is available.
9 9  
10 -In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on CID [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC or checksum implemented as part of the protocol.
10 +In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol.
11 11  
12 12  == Session ==
13 13  
14 -{{html wiki="true" clean="false"}}
15 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
16 -A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.<div class="wikimodel-emptyline"></div>
14 +A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
17 17  
18 -**Note #1:** For a given session, the action related to a specific commands overrides the stored value in EEPROM.<div class="wikimodel-emptyline"></div>
19 -**Note #2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).<div class="wikimodel-emptyline"></div>
20 -You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays.
21 -<div class="wikimodel-emptyline"></div></div></div>
22 -{{/html}}
16 +Note #1: For a given session, the action related to a specific commands overrides the stored value in EEPROM.
17 +Note #2: During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).
18 +You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended.
23 23  
24 24  == Action Commands ==
25 25  
26 -{{html wiki="true" clean="false"}}
27 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
28 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]]. Action commands are sent serially to the servo's Rx pin and must be sent in the following format:<div class="wikimodel-emptyline"></div>
22 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
29 29  
30 -1. Start with a number sign **#** (Unicode Character: U+0023)
24 +1. Start with a number sign # (U+0023)
31 31  1. Servo ID number as an integer
32 -1. Action command (one or more letters, no whitespace, capital or lower case)
26 +1. Action command (one to three letters, no spaces, capital or lower case)
33 33  1. Action value in the correct units with no decimal
34 -1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
28 +1. End with a control / carriage return '<cr>'
35 35  
36 36  (((
37 -Ex: #5D1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
31 +Ex: #5PD1443<cr>
38 38  
39 -This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
40 -<div class="wikimodel-emptyline"></div></div></div>
41 -{{/html}}
33 +This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
42 42  
43 -== Modifiers ==
35 +== Action Modifiers ==
44 44  
45 -{{html wiki="true" clean="false"}}
46 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
47 -Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div>
37 +Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is:
48 48  
49 -1. Start with a number sign **#** (Unicode Character: U+0023)
39 +1. Start with a number sign # (U+0023)
50 50  1. Servo ID number as an integer
51 51  1. Action command (one to three letters, no spaces, capital or lower case)
52 52  1. Action value in the correct units with no decimal
53 -1. Modifier command (one letter to too letters)
43 +1. Modifier command (one letter)
54 54  1. Modifier value in the correct units with no decimal
55 -1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
45 +1. End with a control / carriage return '<cr>'
56 56  
57 -Ex: #5D1800T1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
47 +Ex: #5P1456T1263<cr>
58 58  
59 -This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>
60 -<div class="wikimodel-emptyline"></div></div></div>
61 -{{/html}}
49 +This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds.
50 +)))
62 62  
63 63  == Query Commands ==
64 64  
65 -{{html wiki="true" clean="false"}}
66 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
67 -Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
54 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
68 68  
69 -1. Start with a number sign **#** (Unicode Character: U+0023)
56 +1. Start with a number sign # (U+0023)
70 70  1. Servo ID number as an integer
71 -1. Query command (one to four letters, no spaces, capital or lower case)
72 -1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
58 +1. Query command (one to three letters, no spaces, capital or lower case)
59 +1. End with a control / carriage return '<cr>'
73 73  
74 -Ex: #5QD&lt;cr&gt; Query position in (tenth of) degrees for servo #5<div class="wikimodel-emptyline"></div>
61 +(((
62 +Ex: #5QD<cr>Query position in degrees for servo #5
63 +)))
75 75  
65 +(((
76 76  The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
77 77  
78 -1. Start with an asterisk * (Unicode Character: U+0023)
68 +1. Start with an asterisk * (U+002A)
79 79  1. Servo ID number as an integer
80 -1. Query command (one to four letters, no spaces, capital letters)
70 +1. Query command (one to three letters, no spaces, capital letters)
81 81  1. The reported value in the units described, no decimals.
82 -1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
72 +1. End with a control / carriage return '<cr>'
83 83  
84 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>
74 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be:
85 85  
86 -Ex: *5QD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
76 +(((
77 +Ex: *5QD1443<cr>
78 +)))
87 87  
88 -This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees).
89 -<div class="wikimodel-emptyline"></div></div></div>
90 -{{/html}}
80 +This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees).
91 91  
92 92  == Configuration Commands ==
93 93  
94 -{{html wiki="true" clean="false"}}
95 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
96 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div>
84 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
97 97  
98 -These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
99 -
100 -The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div>
101 -
102 -1. Start with a number sign **#** (Unicode Character: U+0023)
86 +1. Start with a number sign # (U+0023)
103 103  1. Servo ID number as an integer
104 -1. Configuration command (two to four letters, no spaces, capital or lower case)
88 +1. Configuration command (two to three letters, no spaces, capital or lower case)
105 105  1. Configuration value in the correct units with no decimal
106 -1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
90 +1. End with a control / carriage return '<cr>'
107 107  
108 -Ex: #5CO-50&lt;cr&gt;<div class="wikimodel-emptyline"></div>
92 +Ex: #5CO-50<cr>
109 109  
110 -This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
94 +This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.
111 111  
112 -**Session vs Configuration Query**<div class="wikimodel-emptyline"></div>
96 +**Session vs Configuration Query**
113 113  
114 -By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div>
98 +By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
115 115  
116 -Ex: #5CSR20&lt;cr&gt; immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
100 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
117 117  
118 -After RESET, a command of #5SR4&lt;cr&gt; sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>
102 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
119 119  
120 -#5QSR&lt;cr&gt; or #5QSR0&lt;cr&gt; would return *5QSR4&lt;cr&gt; which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>
104 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas
121 121  
122 -#5QSR1&lt;cr&gt; would return *5QSR20&lt;cr&gt; which represents the value in EEPROM
123 -<div class="wikimodel-emptyline"></div></div></div>
124 -{{/html}}
106 +#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
125 125  
126 126  == Virtual Angular Position ==
127 127  
128 -{{html wiki="true" clean="false"}}
129 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
130 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
110 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
131 131  
132 -[[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div>
112 +[[image:LSS-servo-positions.jpg]]
133 133  
134 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div>
114 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
135 135  
136 -#1D-300&lt;cr&gt; This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div>
116 +#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
137 137  
138 -#1D2100&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
118 +#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
139 139  
140 -#1D-4200&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
120 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
141 141  
142 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.<div class="wikimodel-emptyline"></div>
122 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
143 143  
144 -#1D4800&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
124 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
145 145  
146 -#1D3300&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
126 +#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).
147 147  
148 -If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°].
149 -<div class="wikimodel-emptyline"></div></div></div>
150 -{{/html}}
128 +If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified).
129 +)))
151 151  
152 152  = Command List =
153 153  
154 -**Latest firmware version currently : 368.29.14**
133 +== Regular ==
155 155  
156 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="COMMUNICATION_SETUP"]]
157 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
158 -| |[[**Reset**>>||anchor="RESET"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Soft reset. See command for details.
159 -| |[[**Default** Configuration>>||anchor="DEFAULT"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Revert to firmware default values. See command for details
160 -| |[[Firmware **Update** Mode>>||anchor="UPDATE_CONFIRM"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Update firmware. See command for details.
161 -| |[[**Confirm** Changes>>||anchor="CONFIRM"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
162 -| |[[**C**hange to **RC**>>||anchor="CHANGE_RC"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CRC|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Change to RC mode 1 (position) or 2 (wheel).
163 -| |[[**ID** #>>||anchor="ID"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %) |(% style="text-align:center" %)✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
164 -| |[[**B**audrate>>||anchor="BAUDRATE"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QB|(% style="text-align:center" %)CB|(% style="text-align:center" %) |(% style="text-align:center" %)✓|115200| |Reset required after change.
135 +|= #|=Description|=Mod|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
136 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| | L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
137 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| | H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
138 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]|T| | | | | | ✓|milliseconds|(% style="width:510px" %)Modifier only for {P, D, MD}. Time is estimated and can change based on load|(% style="text-align:center; width:113px" %)
139 +| 4|[[**S**peed>>||anchor="H4.Speed28S2CSD29modifier"]]|S/SD| |QS| | | | ✓|microseconds per second / degrees per second|(% style="width:510px" %)S modifier only for {P}. SD modifier only for {D, MD}.|(% style="text-align:center; width:113px" %)
140 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| | MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
141 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| | O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
142 +0
143 +)))
144 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| | AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
145 +1800
146 +)))
147 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| | P| QP| | | | ✓|microseconds|(% style="width:510px" %)(((
148 +Inherited from SSC-32 serial protocol
149 +)))|(% style="text-align:center; width:113px" %)
150 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| | D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
151 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| | WD| QWD| | | | ✓|degrees per second|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
152 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| | WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
153 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| | SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)(((
154 +QSD: Add modifier "2" for instantaneous speed.
165 165  
166 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="MOTION"]]
167 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
168 -| |[[Position in **D**egrees>>||anchor="POSITION_D"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°|
169 -| |[[**M**ove in **D**egrees (relative)>>||anchor="MOVE_D"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°|
170 -| |[[**W**heel mode in **D**egrees>>||anchor="WHEEL_D"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation"
171 -| |[[**W**heel mode in **R**PM>>||anchor="WHEEL_RPM"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation"
172 -| |[[Position in **P**WM>>||anchor="POSITION_PWM"]]|(% style="text-align:center" %)P|(% style="text-align:center" %)QP|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|Inherited from SSC-32 serial protocol
173 -| |[[**M**ove in PWM (relative)>>||anchor="MOVE_PWM"]]|(% style="text-align:center" %)M|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|
174 -| |[[**R**aw **D**uty-cycle **M**ove>>||anchor="MOVE_RAW"]]|(% style="text-align:center" %)RDM|(% style="text-align:center" %)QMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW
175 -| |[[**Q**uery Status>>||anchor="QUERY_STATUS"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1 to 8 integer|See command description for details
176 -| |[[**L**imp>>||anchor="LIMP"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
177 -| |[[**H**alt & Hold>>||anchor="HALT_HOLD"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
156 +SD overwrites SR / CSD overwrites CSR and vice-versa.
157 +)))|(% style="text-align:center; width:113px" %)Max per servo
158 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| | SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
159 +QSR: Add modifier "2" for instantaneous speed
178 178  
179 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="MOTION_SETUP"]]
180 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
181 -| |[[**E**nable **M**otion Profile>>||anchor="MOTION_PROFILE"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|(% style="text-align:center" %) |(% style="text-align:center" %)✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile
182 -| |[[**F**ilter **P**osition **C**ount>>||anchor="FILTER_POSITION_COUNT"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|5| |Affects motion only when motion profile is disabled (EM0)
183 -| |[[**O**rigin Offset>>||anchor="ORIGIN_OFFSET"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|1/10°|
184 -| |[[**A**ngular **R**ange>>||anchor="ANGULAR_RANGE"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1800|1/10°|
185 -| |[[**A**ngular **S**tiffness>>||anchor="ANGULAR_STIFFNESS"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|-4 to +4 integer|Suggested values are between 0 to +4
186 -| |[[**A**ngular **H**olding Stiffness>>||anchor="ANGULAR_HOLDING_STIFFNESS"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|4|-10 to +10 integer|
187 -| |[[**A**ngular **A**cceleration>>||anchor="ANGULAR_ACCELERATION"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
188 -| |[[**A**ngular **D**eceleration>>||anchor="ANGULAR_DECELERATION"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
189 -| |[[**G**yre Direction>>||anchor="GYRE_DIRECTION"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
190 -| |[[**F**irst Position (**D**eg)>>||anchor="FIRST_POSITION"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|No value|1/10°|Reset required after change.
191 -| |[[**M**aximum **M**otor **D**uty>>||anchor="MAXIMUM_RAW"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓|1023|255 to 1023 integer|
192 -| |[[Maximum **S**peed in **D**egrees>>||anchor="MAXIMUM_SPEED_D"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
193 -| |[[Maximum **S**peed in **R**PM>>||anchor="MAXIMUM_SPEED_RPM"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
161 +SR overwrites SD / CSR overwrites CSD and vice-versa.
162 +)))|(% style="text-align:center; width:113px" %)Max per servo
163 +| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| | LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 7)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)0 (OFF)
164 +| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| | G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
165 +| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0
166 +| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)115200
167 +| 18|//{coming soon}//| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
168 +
169 +)))
170 +| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstA0Position28Degrees29"]]| | | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)No Value
171 +| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)|(% style="text-align:center; width:113px" %)
172 +| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
173 +| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
174 +| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
175 +| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
176 +| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
177 +| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
178 +| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | | |CRC|✓| | ✓|none|(% style="width:510px" %)(((
179 +Change to RC mode 1 (position) or 2 (wheel).
180 +)))|(% style="text-align:center; width:113px" %)Serial
181 +| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
182 +| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
183 +| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
194 194  
195 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="MODIFIERS"]]
196 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
197 -| |[[**S**peed>>||anchor="SPEEDS"]]|(% style="text-align:center" %)S|(% style="text-align:center" %)QS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |uS/s |For P action command
198 -| |[[**S**peed in **D**egrees>>||anchor="SPEEDS"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|For D and MD action commands
199 -| |[[**T**imed move>>||anchor="TIMED_MOVE"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |ms|Modifier only for P, D and MD. Time can change based on load
200 -| |[[**C**urrent **H**old>>||anchor="CURRENT_HOLD"]]|(% style="text-align:center" %)CH|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR
201 -| |[[**C**urrent **L**imp>>||anchor="CURRENT_LIMP"]]|(% style="text-align:center" %)CL|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR
185 +== Advanced ==
202 202  
203 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="TELEMETRY"]]
204 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
205 -| |[[**Q**uery **V**oltage>>||anchor="QUERY_VOLTAGE"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QV|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mV|
206 -| |[[**Q**uery **T**emperature>>||anchor="QUERY_TEMP"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°C|
207 -| |[[**Q**uery **C**urrent>>||anchor="QUERY_CURRENT"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|
208 -| |[[**Q**uery **M**odel **S**tring>>||anchor="QUERY_MODEL"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
209 -| |[[**Q**uery **F**irmware Version>>||anchor="QUERY_FIRMWARE"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
210 -| |[[**Q**uery Serial **N**umber>>||anchor="QUERY_SERIAL"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the unique serial number for the servo
187 +|= #|=(% style="width: 182px;" %)Description|=(% style="width: 56px;" %)Mod|=(% style="width: 70px;" %) Action|=(% style="width: 71px;" %) Query|=(% style="width: 77px;" %) Config|=(% style="width: 77px;" %)Session|=(% style="width: 56px;" %) RC|=(% style="width: 151px;" %) Serial|= Units|=(% style="width: 510px;" %) Notes
188 +| A1|(% style="width:182px" %)[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|(% style="width:56px" %) |(% style="width:70px" %)AS|(% style="width:71px" %)QAS|(% style="width:77px" %)CAS|(% style="width:77px" %)|(% style="width:56px" %)|(% style="width:151px" %) ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4
189 +| A2|(% style="width:182px" %)[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|(% style="width:56px" %) |(% style="width:70px" %)AH|(% style="width:71px" %)QAH|(% style="width:77px" %)CAH|(% style="width:77px" %)|(% style="width:56px" %) |(% style="width:151px" %) ✓|none (integer -10 to +10)|(% style="width:510px" %)Effect is different between serial and RC
190 +| A3|(% style="width:182px" %)[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|(% style="width:56px" %) |(% style="width:70px" %)AA|(% style="width:71px" %)QAA|(% style="width:77px" %)CAA|(% style="width:77px" %)|(% style="width:56px" %) |(% style="width:151px" %) |degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
191 +| A4|(% style="width:182px" %)[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|(% style="width:56px" %) |(% style="width:70px" %)AD|(% style="width:71px" %)QAD|(% style="width:77px" %)CAD|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
192 +| A5|(% style="width:182px" %)[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|(% style="width:56px" %) |(% style="width:70px" %)EM|(% style="width:71px" %)QEM|(% style="width:77px" %) |(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %) ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable
193 +| A6|(% style="width:182px" %)[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]|(% style="width:56px" %) |(% style="width:70px" %) |(% style="width:71px" %)QLB|(% style="width:77px" %) CLB|(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %) ✓|none (integer from 0 to 63)|(% style="width:510px" %)(((
194 +0=No blinking, 63=Always blink;
211 211  
212 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="RGB_LED"]]
213 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
214 -| |[[**LED** Color>>||anchor="LED_COLOR"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
215 -| |[[**C**onfigure **L**ED **B**linking>>||anchor="LED_BLINK]]|(% style="text-align:center" %) |(% style="text-align:center" %)QLB|(% style="text-align:center" %)CLB|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 63 integer|Reset required after change. See command for details.
196 +Blink while: 1=Limp; 2=Holding; 4=Accel; 8=Decel; 16=Free 32=Travel;
197 +)))
198 +| A7|(% style="width:182px" %)[[**C**urrent **H**alt & **H**old>>||anchor="HA7.CurrentHalt26Hold28CH29"]]|(% style="width:56px" %)CH|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR
199 +| A8|(% style="width:182px" %)[[**C**urrent **L**imp>>||anchor="HA8.CurrentLimp28CL29"]]|(% style="width:56px" %)CL|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR
216 216  
217 -= (% style="color:inherit; font-family:inherit" %)Details(%%) =
201 +== Details - Basic ==
218 218  
219 -{{id name="COMMUNICATION_SETUP" /}}
220 -== (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
203 +====== __1. Limp (**L**)__ ======
221 221  
222 -{{id name="RESET" /}}
223 -====== __Reset__ ======
205 +Example: #5L<cr>
224 224  
225 -{{html wiki="true" clean="false"}}
226 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
227 -Ex: #5RESET<cr><div class="wikimodel-emptyline"></div>
228 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands).
229 -Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div>
230 -</div></div>
231 -{{/html}}
207 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
232 232  
233 -{{id name="DEFAULT" /}}
234 -====== __Default & confirm__ ======
209 +====== __2. Halt & Hold (**H**)__ ======
235 235  
236 -{{html wiki="true" clean="false"}}
237 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
238 -Ex: #5DEFAULT<cr><div class="wikimodel-emptyline"></div>
211 +Example: #5H<cr>
239 239  
240 -This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div>
213 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position.
241 241  
242 -EX: #5DEFAULT<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div>
215 +====== __3. Timed move (**T**) modifier__ ======
243 243  
244 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div>
217 +Example: #5P1500T2500<cr>
245 245  
246 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
247 -</div></div>
248 -{{/html}}
219 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
249 249  
250 -{{id name="UPDATE_CONFIRM" /}}
251 -====== __Update & confirm__ ======
221 +Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
252 252  
253 -{{html wiki="true" clean="false"}}
254 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
255 -Ex: #5UPDATE<cr><div class="wikimodel-emptyline"></div>
223 +====== __4. Speed (**S**, **SD**) modifier__ ======
256 256  
257 -This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div>
225 +Example: #5P1500S750<cr>
226 +Example: #5D0SD180<cr>
258 258  
259 -EX: #5UPDATE<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div>
228 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
260 260  
261 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div>
230 +Modifer (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second.
262 262  
263 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
264 -</div></div>
265 -{{/html}}
232 +Query Speed (**QS**)
266 266  
267 -{{id name="CONFIRM" /}}
268 -====== __Confirm__ ======
234 +Example: #5QS<cr> might return *5QS300<cr>
269 269  
270 -{{html wiki="true" clean="false"}}
271 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
272 -Ex: #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
236 +This command queries the current speed in microseconds per second.
273 273  
274 -This command is used to confirm changes after a Default or Update command.<div class="wikimodel-emptyline"></div>
238 +====== __5. (Relative) Move in Degrees (**MD**)__ ======
275 275  
276 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
277 -</div></div>
278 -{{/html}}
240 +Example: #5MD123<cr>
279 279  
280 -{{id name="CHANGE_RC" /}}
281 -====== __Configure RC Mode (**CRC**)__ ======
242 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
282 282  
283 -{{html wiki="true" clean="false"}}
284 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
285 -This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.<div class="wikimodel-emptyline"></div>
244 +====== __6. Origin Offset Action (**O**)__ ======
286 286  
287 -|**Command sent**|**Note**
288 -|ex: #5CRC1<cr>|Change to RC position mode.
289 -|ex: #5CRC2<cr>|Change to RC continuous rotation (wheel) mode.
290 -|ex: #5CRC*<cr>|Where * is any value other than 1 or 2 (or no value): stay in smart mode.<div class="wikimodel-emptyline"></div>
246 +Example: #5O2400<cr>
291 291  
292 -EX: #5CRC2<cr><div class="wikimodel-emptyline"></div>
248 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
293 293  
294 -This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.<div class="wikimodel-emptyline"></div>
250 +[[image:LSS-servo-default.jpg]]
295 295  
296 -**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.<div class="wikimodel-emptyline"></div>
297 -</div></div>
298 -{{/html}}
252 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
299 299  
300 -{{id name="ID" /}}
301 -====== __Identification Number (**ID**)__ ======
254 +[[image:LSS-servo-origin.jpg]]
302 302  
303 -{{html wiki="true" clean="false"}}
304 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
305 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div>
256 +Origin Offset Query (**QO**)
306 306  
307 -Query Identification (**QID**)<div class="wikimodel-emptyline"></div>
258 +Example: #5QO<cr> Returns: *5QO-13
308 308  
309 -EX: #254QID<cr> might return *QID5<cr><div class="wikimodel-emptyline"></div>
260 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
310 310  
311 -When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div>
262 +Configure Origin Offset (**CO**)
312 312  
313 -Configure ID (**CID**)<div class="wikimodel-emptyline"></div>
264 +Example: #5CO-24<cr>
314 314  
315 -Ex: #4CID5<cr><div class="wikimodel-emptyline"></div>
266 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
316 316  
317 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div>
318 -</div></div>
319 -{{/html}}
268 +====== __7. Angular Range (**AR**)__ ======
320 320  
321 -{{id name="BAUDRATE" /}}
322 -====== __Baud Rate__ ======
270 +Example: #5AR1800<cr>
323 323  
324 -{{html wiki="true" clean="false"}}
325 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
326 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div>
272 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
327 327  
328 -Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div>
274 +[[image:LSS-servo-default.jpg]]
329 329  
330 -Ex: #5QB<cr> might return *5QB115200<cr><div class="wikimodel-emptyline"></div>
276 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
331 331  
332 -Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div>
278 +[[image:LSS-servo-ar.jpg]]
333 333  
334 -Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div>
280 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
335 335  
336 -**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div>
282 +[[image:LSS-servo-ar-o-1.jpg]]
337 337  
338 -Ex: #5CB9600<cr><div class="wikimodel-emptyline"></div>
284 +Query Angular Range (**QAR**)
339 339  
340 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div>
341 -</div></div>
342 -{{/html}}
286 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
343 343  
344 -{{id name="MOTION" /}}
345 -== Motion ==
288 +Configure Angular Range (**CAR**)
346 346  
347 -{{id name="POSITION_D" /}}
348 -====== __Position in Degrees (**D**)__ ======
290 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
349 349  
350 -{{html wiki="true" clean="false"}}
351 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
352 -Example: #5D1456&lt;cr&gt;<div class="wikimodel-emptyline"></div>
292 +====== __8. Position in Pulse (**P**)__ ======
353 353  
354 -This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div>
294 +Example: #5P2334<cr>
355 355  
356 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div>
296 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.
357 357  
358 -Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div>
298 +Query Position in Pulse (**QP**)
359 359  
360 -Example: #5QD&lt;cr&gt; might return *5QD132&lt;cr&gt;<div class="wikimodel-emptyline"></div>
300 +Example: #5QP<cr> might return *5QP2334
361 361  
362 -This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div>
302 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 
303 +Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
363 363  
364 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
365 -Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div>
305 +====== __9. Position in Degrees (**D**)__ ======
366 366  
367 -Ex: #5QDT&lt;cr&gt; might return *5QDT6783&lt;cr&gt;<div class="wikimodel-emptyline"></div>
307 +Example: #5D1456<cr>
368 368  
369 -The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
370 -<div class="wikimodel-emptyline"></div></div></div>
371 -{{/html}}
309 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction.
372 372  
373 -{{id name="MOVE_D" /}}
374 -====== __(Relative) Move in Degrees (**MD**)__ ======
311 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position.
375 375  
376 -{{html wiki="true" clean="false"}}
377 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
378 -Example: #5MD123&lt;cr&gt;<div class="wikimodel-emptyline"></div>
313 +Query Position in Degrees (**QD**)
379 379  
380 -The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
381 -<div class="wikimodel-emptyline"></div></div></div>
382 -{{/html}}
315 +Example: #5QD<cr> might return *5QD132<cr>
383 383  
384 -{{id name="WHEEL_D" /}}
385 -====== __Wheel Mode in Degrees (**WD**)__ ======
317 +This means the servo is located at 13.2 degrees.
386 386  
387 -{{html wiki="true" clean="false"}}
388 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
389 -Ex: #5WD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
319 +(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
320 +Query Target Position in Degrees (**QDT**)
390 390  
391 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
322 +Ex: #5QDT<cr> might return *5QDT6783<cr>
392 392  
393 -Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div>
324 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
394 394  
395 -Ex: #5QWD&lt;cr&gt; might return *5QWD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
326 +====== __10. Wheel Mode in Degrees (**WD**)__ ======
396 396  
397 -The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
398 -<div class="wikimodel-emptyline"></div></div></div>
399 -{{/html}}
328 +Ex: #5WD90<cr>
400 400  
401 -{{id name="WHEEL_RPM" /}}
402 -====== __Wheel Mode in RPM (**WR**)__ ======
330 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
403 403  
404 -{{html wiki="true" clean="false"}}
405 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
406 -Ex: #5WR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
332 +Query Wheel Mode in Degrees (**QWD**)
407 407  
408 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
334 +Ex: #5QWD<cr> might return *5QWD90<cr>
409 409  
410 -Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div>
336 +The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
411 411  
412 -Ex: #5QWR&lt;cr&gt; might return *5QWR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
338 +====== __11. Wheel Mode in RPM (**WR**)__ ======
413 413  
414 -The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
415 -<div class="wikimodel-emptyline"></div></div></div>
416 -{{/html}}
340 +Ex: #5WR40<cr>
417 417  
418 -{{id name="POSITION_PWM" /}}
419 -====== __Position in PWM (**P**)__ ======
342 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
420 420  
421 -{{html wiki="true" clean="false"}}
422 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
423 -Example: #5P2334&lt;cr&gt;<div class="wikimodel-emptyline"></div>
344 +Query Wheel Mode in RPM (**QWR**)
424 424  
425 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div>
346 +Ex: #5QWR<cr> might return *5QWR40<cr>
426 426  
427 -Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div>
348 +The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
428 428  
429 -Example: #5QP&lt;cr&gt; might return *5QP2334<div class="wikimodel-emptyline"></div>
350 +====== __12. Max Speed in Degrees (**SD**)__ ======
430 430  
431 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle.
432 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
433 -<div class="wikimodel-emptyline"></div></div></div>
434 -{{/html}}
352 +Ex: #5SD1800<cr>
435 435  
436 -{{id name="MOVE_PWM" /}}
437 -====== __(Relative) Move in PWM (**M**)__ ======
354 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
438 438  
439 -{{html wiki="true" clean="false"}}
440 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
441 -Example: #5M1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
356 +Query Speed in Degrees (**QSD**)
442 442  
443 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
444 -<div class="wikimodel-emptyline"></div></div></div>
445 -{{/html}}
358 +Ex: #5QSD<cr> might return *5QSD1800<cr>
446 446  
447 -{{id name="MOVE_RAW" /}}
448 -====== __Raw Duty-cycle Move (**RDM**)__ ======
360 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed.
361 +If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
449 449  
450 -{{html wiki="true" clean="false"}}
451 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
452 -Example: #5RDM512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
363 +|**Command sent**|**Returned value (1/10 °)**
364 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
365 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
366 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
367 +|ex: #5QSD3<cr>|Target travel speed
453 453  
454 -The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div>
369 +Configure Speed in Degrees (**CSD**)
455 455  
456 -The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div>
371 +Ex: #5CSD1800<cr>
457 457  
458 -Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div>
373 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
459 459  
460 -Example: #5QMD&lt;cr&gt; might return *5QMD512<div class="wikimodel-emptyline"></div>
375 +====== __13. Max Speed in RPM (**SR**)__ ======
461 461  
462 -This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
463 -<div class="wikimodel-emptyline"></div></div></div>
464 -{{/html}}
377 +Ex: #5SD45<cr>
465 465  
466 -{{id name="QUERY_STATUS" /}}
467 -====== __Query Status (**Q**)__ ======
379 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
468 468  
469 -{{html wiki="true" clean="false"}}
470 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
471 -The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div>
381 +Query Speed in Degrees (**QSR**)
472 472  
473 -Ex: #5Q&lt;cr&gt; might return *5Q6&lt;cr&gt;, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div>
474 -</div></div>
475 -{{/html}}
383 +Ex: #5QSR<cr> might return *5QSR45<cr>
476 476  
477 -|(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description**
478 -| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
479 -| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
480 -| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
481 -| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
482 -| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
483 -| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
484 -| |ex: *5Q6<cr>|6: Holding|Keeping current position
485 -| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
486 -| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
487 -| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
488 -| |ex: *5Q10<cr>|10: Safe Mode|(((
489 -A safety limit has been exceeded (temperature, peak current or extended high current draw).
385 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed.
386 +If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
490 490  
491 -Send a Q1 command to know which limit has been reached (described below).
492 -)))
388 +|**Command sent**|**Returned value (1/10 °)**
389 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
390 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
391 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWR)
392 +|ex: #5QSR3<cr>|Target travel speed
493 493  
494 -{{html wiki="true" clean="false"}}
495 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
496 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div>
497 -</div></div>
498 -{{/html}}
394 +Configure Speed in RPM (**CSR**)
499 499  
500 -|(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
501 -| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
502 -| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
503 -| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
504 -| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
396 +Ex: #5CSR45<cr>
505 505  
506 -{{id name="LIMP" /}}
507 -====== __Limp (**L**)__ ======
398 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
508 508  
509 -{{html wiki="true" clean="false"}}
510 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
511 -Example: #5L&lt;cr&gt;<div class="wikimodel-emptyline"></div>
400 +====== __14. LED Color (**LED**)__ ======
512 512  
513 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L&lt;cr&gt;.
514 -<div class="wikimodel-emptyline"></div></div></div>
515 -{{/html}}
402 +Ex: #5LED3<cr>
516 516  
517 -{{id name="HALT_HOLD" /}}
518 -====== __Halt & Hold (**H**)__ ======
404 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
519 519  
520 -{{html wiki="true" clean="false"}}
521 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
522 -Example: #5H&lt;cr&gt;<div class="wikimodel-emptyline"></div>
406 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;
523 523  
524 -This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
525 -<div class="wikimodel-emptyline"></div></div></div>
526 -{{/html}}
408 +Query LED Color (**QLED**)
527 527  
528 -{{id name="MOTION_SETUP" /}}
529 -== Motion Setup ==
410 +Ex: #5QLED<cr> might return *5QLED5<cr>
530 530  
531 -{{id name="MOTION_PROFILE" /}}
532 -====== __Enable Motion Profile (**EM**)__ ======
412 +This simple query returns the indicated servo's LED color.
533 533  
534 -{{html wiki="true" clean="false"}}
535 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
536 -Ex: #5EM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
414 +Configure LED Color (**CLED**)
537 537  
538 -This command enables a trapezoidal motion profile. By default, the trapezoidal motion profile is enabled. If the motion profile is enabled, angular acceleration (AA) and angular deceleration(AD) will have an effect on the motion. Also, SD/S and T modifiers can be used.<div class="wikimodel-emptyline"></div>
416 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
539 539  
540 -Ex: #5EM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
418 +====== __15. Gyre Rotation Direction (**G**)__ ======
541 541  
542 -This command will disable the trapezoidal motion profile. As such, the servo will move at full speed for D/MD action commands. Angular acceleration (AA) and angular deceleration(AD) won't have an effect on motion in this mode and modifiers SD/S or T cannot be used.<div class="wikimodel-emptyline"></div>
420 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
543 543  
544 -Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div>
422 +Ex: #5G-1<cr>
545 545  
546 -Ex: #5QEM&lt;cr&gt; might return *5QEM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
424 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
547 547  
548 -This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div>
426 +Query Gyre Direction (**QG**)
549 549  
550 -Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div>
428 +Ex: #5QG<cr> might return *5QG-1<cr>
551 551  
552 -Ex: #5CEM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
430 +The value returned above means the servo is in a counter-clockwise gyration.
553 553  
554 -This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
555 -<div class="wikimodel-emptyline"></div></div></div>
556 -{{/html}}
432 +Configure Gyre (**CG**)
557 557  
558 -{{id name="FILTER_POSITION_COUNT" /}}
559 -====== __Filter Position Count (**FPC**)__ ======
434 +Ex: #5CG-1<cr>
560 560  
561 -{{html wiki="true" clean="false"}}
562 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
563 -Ex: #5FPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
564 -This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div>
436 +This changes the gyre direction as described above and also writes to EEPROM.
565 565  
566 -Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div>
438 +====== __16. Identification Number (**ID**)__ ======
567 567  
568 -Ex: #5QFPC&lt;cr&gt; might return *5QFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
440 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate).
569 569  
570 -This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div>
442 +Query Identification (**QID**)
571 571  
572 -Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div>
444 +EX: #254QID<cr> might return *QID5<cr>
573 573  
574 -Ex: #5CFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
446 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
575 575  
576 -This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
577 -<div class="wikimodel-emptyline"></div></div></div>
578 -{{/html}}
448 +Configure ID (**CID**)
579 579  
580 -{{id name="ORIGIN_OFFSET" /}}
581 -====== __Origin Offset (**O**)__ ======
450 +Ex: #4CID5<cr>
582 582  
583 -{{html wiki="true" clean="false"}}
584 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
585 -Example: #5O2400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
452 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.
586 586  
587 -This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div>
454 +====== __17. Baud Rate__ ======
588 588  
589 -[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
456 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200. The baud rates are currently restricted to those above.
590 590  
591 -In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div>
458 +Query Baud Rate (**QB**)
592 592  
593 -[[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div>
460 +Ex: #5QB<cr> might return *5QB115200<cr>
594 594  
595 -Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div>
462 +Since the command to query the baud rate must be done at the servo's existing baud rate, it casimply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.
596 596  
597 -Example: #5QO&lt;cr&gt; might return *5QO-13<div class="wikimodel-emptyline"></div>
464 +Configure Baud Rate (**CB**)
598 598  
599 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div>
466 +Important Note: the servo's current session retains the given baud rate anthe new baud rate will only take effect when the servo is power cycled / RESET.
600 600  
601 -Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div>
468 +Ex: #5CB9600<cr>
602 602  
603 -Example: #5CO-24&lt;cr&gt;<div class="wikimodel-emptyline"></div>
470 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
604 604  
605 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
606 -<div class="wikimodel-emptyline"></div></div></div>
607 -{{/html}}
472 +====== __18. {//Coming soon//}__ ======
608 608  
609 -{{id name="ANGULAR_RANGE" /}}
610 -====== __Angular Range (**AR**)__ ======
474 +Command coming soon....
611 611  
612 -{{html wiki="true" clean="false"}}
613 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
614 -Example: #5AR1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
476 +====== __19. First Position (Degrees)__ ======
615 615  
616 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div>
478 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.
617 617  
618 -[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
480 +Query First Position in Degrees (**QFD**)
619 619  
620 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div>
482 +Ex: #5QFD<cr> might return *5QFD64<cr>
621 621  
622 -[[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div>
484 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If there is no first position value stored, the reply will be DIS
623 623  
624 -Finally, the angular range action command (ex. #5AR1800&lt;cr&gt;) and origin offset action command (ex. #5O-1200&lt;cr&gt;) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div>
486 +Configure First Position in Degrees (**CFD**)
625 625  
626 -[[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div>
488 +Ex: #5CD64<cr>
627 627  
628 -Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div>
490 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
629 629  
630 -Example: #5QAR&lt;cr&gt; might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div>
492 +====== __20. Query Model String (**QMS**)__ ======
631 631  
632 -Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>
494 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
633 633  
634 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
635 -<div class="wikimodel-emptyline"></div></div></div>
636 -{{/html}}
496 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
637 637  
638 -{{id name="ANGULAR_STIFFNESS" /}}
639 -====== __Angular Stiffness (**AS**)__ ======
498 +====== __21. Query Serial Number (**QN**)__ ======
640 640  
641 -{{html wiki="true" clean="false"}}
642 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
643 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div>
500 +Ex: #5QN<cr> might return *5QN12345678<cr>
644 644  
645 -A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div>
502 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
646 646  
647 -* The more torque will be applied to try to keep the desired position against external input / changes
648 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div>
504 +====== __22. Query Firmware (**QF**)__ ======
649 649  
650 -A lower value on the other hand:<div class="wikimodel-emptyline"></div>
506 +Ex: #5QF<cr> might return *5QF411<cr>
651 651  
652 -* Causes a slower acceleration to the travel speed, and a slower deceleration
653 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div>
508 +The number in the reply represents the firmware version, in this example being 411.
654 654  
655 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
510 +====== __23. Query Status (**Q**)__ ======
656 656  
657 -Ex: #5AS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
512 +The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses.
658 658  
659 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div>
514 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
660 660  
661 -Ex: #5QAS&lt;cr&gt;<div class="wikimodel-emptyline"></div>
516 +|***Value returned (Q)**|**Status**|**Detailed description**
517 +|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
518 +|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
519 +|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely
520 +|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
521 +|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
522 +|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
523 +|ex: *5Q6<cr>|6: Holding|Keeping current position
524 +|ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
525 +|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
526 +|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
527 +|ex: *5Q10<cr>|10: Safe Mode|(((
528 +A safety limit has been exceeded (temperature, peak current or extended high current draw).
662 662  
663 -Queries the value being used.<div class="wikimodel-emptyline"></div>
530 +Send a Q1 command to know which limit has been reached (described below).
531 +)))
664 664  
665 -Ex: #5CAS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
533 +(% class="wikigeneratedid" %)
534 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
666 666  
667 -Writes the desired angular stiffness value to EEPROM.
668 -<div class="wikimodel-emptyline"></div></div></div>
669 -{{/html}}
536 +|***Value returned (Q1)**|**Status**|**Detailed description**
537 +|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
538 +|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
539 +|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
540 +|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
670 670  
671 -{{id name="ANGULAR_HOLDING_STIFFNESS" /}}
672 -====== __Angular Holding Stiffness (**AH**)__ ======
542 +====== __24. Query Voltage (**QV**)__ ======
673 673  
674 -{{html wiki="true" clean="false"}}
675 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
676 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
544 +Ex: #5QV<cr> might return *5QV11200<cr>
677 677  
678 -Ex: #5AH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
546 +The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
679 679  
680 -This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div>
548 +====== __25. Query Temperature (**QT**)__ ======
681 681  
682 -Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div>
550 +Ex: #5QT<cr> might return *5QT564<cr>
683 683  
684 -Ex: #5QAH&lt;cr&gt; might return *5QAH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
552 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
685 685  
686 -This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div>
554 +====== __26. Query Current (**QC**)__ ======
687 687  
688 -Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div>
556 +Ex: #5QC<cr> might return *5QC140<cr>
689 689  
690 -Ex: #5CAH2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
558 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
691 691  
692 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
693 -<div class="wikimodel-emptyline"></div></div></div>
694 -{{/html}}
560 +====== __27. Configure RC Mode (**CRC**)__ ======
695 695  
696 -{{id name="ANGULAR_ACCELERATION" /}}
697 -====== __Angular Acceleration (**AA**)__ ======
562 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
698 698  
699 -{{html wiki="true" clean="false"}}
700 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
701 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
564 +|**Command sent**|**Note**
565 +|ex: #5CRC1<cr>|Change to RC position mode.
566 +|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode.
567 +|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode.
702 702  
703 -Ex: #5AA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
569 +EX: #5CRC2<cr>
704 704  
705 -This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
571 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.
706 706  
707 -Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div>
573 +Important note:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.
708 708  
709 -Ex: #5QAA&lt;cr&gt; might return *5QAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
575 +====== __28. **RESET**__ ======
710 710  
711 -This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
577 +Ex: #5RESET<cr> or #5RS<cr>
712 712  
713 -Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div>
579 +This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
580 +Note: after a RESET command is received the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.
714 714  
715 -Ex: #5CAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
582 +====== __29. **DEFAULT** & CONFIRM__ ======
716 716  
717 -This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
718 -<div class="wikimodel-emptyline"></div></div></div>
719 -{{/html}}
584 +Ex: #5DEFAULT<cr>
720 720  
721 -{{id name="ANGULAR_DECELERATION" /}}
722 -====== __Angular Deceleration (**AD**)__ ======
586 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
723 723  
724 -{{html wiki="true" clean="false"}}
725 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
726 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
588 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
727 727  
728 -Ex: #5AD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
590 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
729 729  
730 -This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
592 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
731 731  
732 -Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div>
594 +====== __30. **UPDATE** & CONFIRM__ ======
733 733  
734 -Ex: #5QAD&lt;cr&gt; might return *5QAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
596 +Ex: #5UPDATE<cr>
735 735  
736 -This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
598 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
737 737  
738 -Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div>
600 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
739 739  
740 -Ex: #5CAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
602 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
741 741  
742 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
743 -<div class="wikimodel-emptyline"></div></div></div>
744 -{{/html}}
604 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
745 745  
746 -{{id name="GYRE_DIRECTION" /}}
747 -====== __Gyre Direction (**G**)__ ======
606 +== Details - Advanced ==
748 748  
749 -{{html wiki="true" clean="false"}}
750 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
751 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div>
608 +The motion controller used in serial mode is not the same as the motion controller use in RC mode. RC mode is intended to add functionality to what would be considered "normal" RC behavior based on PWM input.
752 752  
753 -Ex: #5G-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
610 +====== __A1. Angular Stiffness (**AS**)__ ======
754 754  
755 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div>
612 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.
756 756  
757 -Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div>
614 +A positive value of "angular stiffness":
758 758  
759 -Ex: #5QG&lt;cr&gt; might return *5QG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
616 +* The more torque will be applied to try to keep the desired position against external input / changes
617 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
760 760  
761 -The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div>
619 +A negative value on the other hand:
762 762  
763 -Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div>
621 +* Causes a slower acceleration to the travel speed, and a slower deceleration
622 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back
764 764  
765 -Ex: #5CG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
624 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
766 766  
767 -This changes the gyre direction as described above and also writes to EEPROM.
768 -<div class="wikimodel-emptyline"></div></div></div>
769 -{{/html}}
626 +Ex: #5AS-2<cr>
770 770  
771 -{{id name="FIRST_POSITION" /}}
772 -====== __First Position__ ======
628 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
773 773  
774 -{{html wiki="true" clean="false"}}
775 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
776 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div>
630 +Ex: #5QAS<cr>
777 777  
778 -Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div>
632 +Queries the value being used.
779 779  
780 -Ex: #5QFD&lt;cr&gt; might return *5QFD900&lt;cr&gt; <div class="wikimodel-emptyline"></div>
634 +Ex: #5CAS<cr>
781 781  
782 -The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div>
636 +Writes the desired angular stiffness value to memory.
783 783  
784 -Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div>
638 +====== __A2. Angular Holding Stiffness (**AH**)__ ======
785 785  
786 -Ex: #5CD900&lt;cr&gt;<div class="wikimodel-emptyline"></div>
640 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
787 787  
788 -This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD&lt;cr&gt;) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD&lt;cr&gt;
789 -<div class="wikimodel-emptyline"></div></div></div>
790 -{{/html}}
642 +Ex: #5AH3<cr>
791 791  
792 -{{id name="MAXIMUM_RAW" /}}
793 -====== __Maximum Motor Duty (**MMD**)__ ======
644 +This sets the holding stiffness for servo #5 to 3 for that session.
794 794  
795 -{{html wiki="true" clean="false"}}
796 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
797 -This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div>
646 +Query Angular Hold Stiffness (**QAH**)
798 798  
799 -Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div>
648 +Ex: #5QAH<cr> might return *5QAH3<cr>
800 800  
801 -Ex: #5QMMDD&lt;cr&gt; might return *5QMMD512&lt;cr&gt; <div class="wikimodel-emptyline"></div>
650 +This returns the servo's angular holding stiffness value.
802 802  
803 -The reply above indicates that servo with ID 5 motor duty is limited to 512.<div class="wikimodel-emptyline"></div>
804 -<div class="w
652 +Configure Angular Hold Stiffness (**CAH**)
805 805  
806 -{{id name="MAXIMUM_SPEED_D" /}}
807 -====== __Maximum Speed in Degrees (**SD**)__ ======
654 +Ex: #5CAH2<cr>
808 808  
809 -{{html wiki="true" clean="false"}}
810 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
811 -Ex: #5SD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
812 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
656 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
813 813  
814 -Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div>
658 +====== __A3: Angular Acceleration (**AA**)__ ======
815 815  
816 -Ex: #5QSD&lt;cr&gt; might return *5QSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
660 +The default value for angular acceleration is 100, which is the same as the maximum deceleration. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
817 817  
818 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1&lt;cr&gt; is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
662 +Ex: #5AA30<cr>
819 819  
820 -|**Command sent**|**Returned value (1/10 °)**
821 -|ex: #5QSD&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
822 -|ex: #5QSD1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
823 -|ex: #5QSD2&lt;cr&gt;|Instantaneous speed (same as QWD)
824 -|ex: #5QSD3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
664 +Query Angular Acceleration (**QAD**)
825 825  
826 -Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div>
666 +Ex: #5QA<cr> might return *5QA30<cr>
827 827  
828 -Ex: #5CSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
829 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
830 -</div></div>
831 -{{/html}}
668 +Configure Angular Acceleration (**CAD**)
832 832  
833 -{{id name="MAXIMUM_SPEED_RPM" /}}
834 -====== __Maximum Speed in RPM (**SR**)__ ======
670 +Ex: #5CA30<cr>
835 835  
836 -{{html wiki="true" clean="false"}}
837 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
838 -Ex: #5SR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
839 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
672 +====== __A4: Angular Deceleration (**AD**)__ ======
840 840  
841 -Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div>
674 +The default value for angular deceleration is 100, which is the same as the maximum acceleration. Values between 1 and 15 have the greatest impact.
842 842  
843 -Ex: #5QSR&lt;cr&gt; might return *5QSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
676 +Ex: #5AD8<cr>
844 844  
845 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1&lt;cr&gt; is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
678 +Query Angular Deceleration (**QAD**)
846 846  
847 -|**Command sent**|**Returned value (1/10 °)**
848 -|ex: #5QSR&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
849 -|ex: #5QSR1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
850 -|ex: #5QSR2&lt;cr&gt;|Instantaneous speed (same as QWD)
851 -|ex: #5QSR3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
680 +Ex: #5QD<cr> might return *5QD8<cr>
852 852  
853 -Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div>
682 +Configure Angular Deceleration (**CAD**)
854 854  
855 -Ex: #5CSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
856 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
857 -</div></div>
858 -{{/html}}
684 +Ex: #5CD8<cr>
859 859  
860 -{{id name="MODIFIERS" /}}
861 -== Modifiers ==
686 +====== __A5: Motion Control (**EM**)__ ======
862 862  
863 -{{id name="SPEEDS" /}}
864 -====== __Speed (**S**, **SD**) modifier__ ======
688 +The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller.
865 865  
866 -{{html wiki="true" clean="false"}}
867 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
868 -Example: #5P1500S750&lt;cr&gt;<div class="wikimodel-emptyline"></div>
869 -Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
870 -Example: #5D0SD180&lt;cr&gt;<div class="wikimodel-emptyline"></div>
871 -Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second.<div class="wikimodel-emptyline"></div>
872 -Query Speed (**QS**)<div class="wikimodel-emptyline"></div>
873 -Example: #5QS&lt;cr&gt; might return *5QS300&lt;cr&gt;<div class="wikimodel-emptyline"></div>
874 -This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div>
875 -</div></div>
876 -{{/html}}
690 +Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used.
877 877  
878 -{{id name="TIMED_MOVE" /}}
879 -====== __Timed move (**T**) modifier__ ======
692 +====== __A6. Configure LED Blinking (**CLB**)__ ======
880 880  
881 -{{html wiki="true" clean="false"}}
882 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
883 -Example: #5P1500T2500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
694 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:
884 884  
885 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
886 -**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div>
887 -</div></div>
888 -{{/html}}
696 +(% style="width:195px" %)
697 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
698 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0
699 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1
700 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2
701 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
702 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
703 +|(% style="width:134px" %)Free|(% style="width:58px" %)16
704 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32
705 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63
889 889  
890 -{{id name="CURRENT_HOLD" /}}
891 -====== __Current Halt & Hold (**CH**) modifier__ ======
707 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
892 892  
893 -{{html wiki="true" clean="false"}}
894 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
895 -Example: #5D1423CH400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
709 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
710 +Ex: #5CLB1<cr> only blink when limp (1)
711 +Ex: #5CLB2<cr> only blink when holding (2)
712 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)
713 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)
714 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)
896 896  
897 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div>
898 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
899 -</div></div>
900 -{{/html}}
716 +RESETTING the servo is needed.
901 901  
902 -{{id name="CURRENT_LIMP" /}}
903 -====== __Current Limp (**CL**) modifier__ ======
718 +====== __A7. Current Halt & Hold (**CH**)__ ======
904 904  
905 -{{html wiki="true" clean="false"}}
906 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
907 -Example: #5D1423CL400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
720 +This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR.
908 908  
909 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div>
910 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
911 -</div></div>
912 -{{/html}}
722 +Ex: #5D1423CH400<cr>
913 913  
914 -{{id name="TELEMETRY" /}}
915 -== Telemetry ==
724 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.
916 916  
917 -{{id name="QUERY_VOLTAGE" /}}
918 -====== __Query Voltage (**QV**)__ ======
726 +====== __A8. Current Limp (**CL**)__ ======
919 919  
920 -{{html wiki="true" clean="false"}}
921 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
922 -Ex: #5QV&lt;cr&gt; might return *5QV11200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
923 -The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div>
924 -</div></div>
925 -{{/html}}
728 +This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR.
926 926  
927 -{{id name="QUERY_TEMP" /}}
928 -====== __Query Temperature (**QT**)__ ======
730 +Ex: #5D1423CH400<cr>
929 929  
930 -{{html wiki="true" clean="false"}}
931 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
932 -Ex: #5QT&lt;cr&gt; might return *5QT564&lt;cr&gt;<div class="wikimodel-emptyline"></div>
933 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div>
934 -</div></div>
935 -{{/html}}
732 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.
936 936  
937 -{{id name="QUERY_CURRENT" /}}
938 -====== __Query Current (**QC**)__ ======
939 -
940 -{{html wiki="true" clean="false"}}
941 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
942 -Ex: #5QC&lt;cr&gt; might return *5QC140&lt;cr&gt;<div class="wikimodel-emptyline"></div>
943 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div>
944 -</div></div>
945 -{{/html}}
946 -
947 -{{id name="QUERY_MODEL" /}}
948 -====== __Query Model String (**QMS**)__ ======
949 -
950 -{{html wiki="true" clean="false"}}
951 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
952 -Ex: #5QMS&lt;cr&gt; might return *5QMSLSS-HS1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
953 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div>
954 -</div></div>
955 -{{/html}}
956 -
957 -{{id name="QUERY_FIRMWARE" /}}
958 -====== __Query Firmware (**QF**)__ ======
959 -
960 -{{html wiki="true" clean="false"}}
961 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
962 -Ex: #5QF&lt;cr&gt; might return *5QF368&lt;cr&gt;<div class="wikimodel-emptyline"></div>
963 -The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div>
964 -The command #5QF3&lt;cr&gt; can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div>
965 -</div></div>
966 -{{/html}}
967 -
968 -{{id name="QUERY_SERIAL" /}}
969 -====== __Query Serial Number (**QN**)__ ======
970 -
971 -{{html wiki="true" clean="false"}}
972 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
973 -Ex: #5QN&lt;cr&gt; might return *5QN12345678&lt;cr&gt;<div class="wikimodel-emptyline"></div>
974 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div>
975 -</div></div>
976 -{{/html}}
977 -
978 -{{id name="RGB_LED" /}}
979 -== RGB LED ==
980 -
981 -{{id name="LED_COLOR" /}}
982 -====== __LED Color (**LED**)__ ======
983 -
984 -{{html wiki="true" clean="false"}}
985 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
986 -Ex: #5LED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
987 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div>
988 -0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div>
989 -Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div>
990 -Ex: #5QLED&lt;cr&gt; might return *5QLED5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
991 -This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div>
992 -Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div>
993 -Ex: #5CLED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
994 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div>
995 -</div></div>
996 -{{/html}}
997 -
998 -{{id name="LED_BLINK" /}}
999 -====== __Configure LED Blinking (**CLB**)__ ======
1000 -
1001 -{{html wiki="true" clean="false"}}
1002 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
1003 -This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div>
1004 -
1005 -(% style="width:195px" %)
1006 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
1007 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0
1008 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1
1009 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2
1010 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
1011 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
1012 -|(% style="width:134px" %)Free|(% style="width:58px" %)16
1013 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32
1014 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div>
1015 -
1016 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div>
1017 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div>
1018 -Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div>
1019 -Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div>
1020 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div>
1021 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div>
1022 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div>
1023 -RESETTING the servo is needed.<div class="wikimodel-emptyline"></div>
1024 -</div></div>
1025 -{{/html}}
1026 -
1027 1027  = RGB LED Patterns =
1028 1028  
1029 1029  The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]]
XWiki.StyleSheetExtension[0]
Caching policy
... ... @@ -1,1 +1,0 @@
1 -long
Code
... ... @@ -1,13 +1,0 @@
1 -div.cmdcnt
2 -{
3 - display:table-row;
4 -}
5 -div.cmdpad
6 -{
7 - display:table-cell;
8 - padding:16px;
9 -}
10 -div.cmdtxt
11 -{
12 - display:table-cell;
13 -}
Content Type
... ... @@ -1,1 +1,0 @@
1 -CSS
Name
... ... @@ -1,1 +1,0 @@
1 -DivTextIndentation
Parse content
... ... @@ -1,1 +1,0 @@
1 -0
Use this extension
... ... @@ -1,1 +1,0 @@
1 -currentPage
Copyright RobotShop 2018