Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: Rollback to version 169.1
Summary
-
Page properties (1 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
-
Objects (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Content
-
... ... @@ -5,996 +5,734 @@ 5 5 6 6 = Serial Protocol = 7 7 8 -The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available. 8 +The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servo motor is available. 9 9 10 -In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo ( see details onCID [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRCorchecksum implemented as part of10 +In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol. 11 11 12 12 == Session == 13 13 14 -{{html clean="false" wiki="true"}} 15 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 16 -A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.<div class="wikimodel-emptyline"></div> 14 +A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 17 17 18 -**Note #1:** For a given session, the action related to a specific command overrides the stored value in EEPROM.<div class="wikimodel-emptyline"></div> 19 -**Note #2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).<div class="wikimodel-emptyline"></div> 20 -You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays. 21 -<div class="wikimodel-emptyline"></div></div></div> 22 -{{/html}} 16 +Note #1: For a given session, the action related to a specific commands overrides the stored value in EEPROM. 17 +Note #2: During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s). 18 +You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended. 23 23 24 24 == Action Commands == 25 25 26 -{{html wiki="true" clean="false"}} 27 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 28 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]]. Action commands are sent serially to the servo's Rx pin and must be sent in the following format:<div class="wikimodel-emptyline"></div> 22 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format: 29 29 30 -1. Start with a number sign **#**(Unicode Character: U+0023)24 +1. Start with a number sign # (U+0023) 31 31 1. Servo ID number as an integer 32 -1. Action command (one o rmore letters, nowhitespace, capital or lower case)26 +1. Action command (one to three letters, no spaces, capital or lower case) 33 33 1. Action value in the correct units with no decimal 34 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)28 +1. End with a control / carriage return '<cr>' 35 35 36 36 ((( 37 -Ex: #5D1 800<cr><divclass="wikimodel-emptyline"></div>31 +Ex: #5PD1443<cr> 38 38 39 -This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 40 -<div class="wikimodel-emptyline"></div></div></div> 41 -{{/html}} 33 +This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 42 42 43 -== Modifiers == 35 +== Action Modifiers == 44 44 45 -{{html wiki="true" clean="false"}} 46 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 47 -Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div> 37 +Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is: 48 48 49 -1. Start with a number sign **#**(Unicode Character: U+0023)39 +1. Start with a number sign # (U+0023) 50 50 1. Servo ID number as an integer 51 51 1. Action command (one to three letters, no spaces, capital or lower case) 52 52 1. Action value in the correct units with no decimal 53 -1. Modifier command (one letter to too letters)43 +1. Modifier command (one letter) 54 54 1. Modifier value in the correct units with no decimal 55 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)45 +1. End with a control / carriage return '<cr>' 56 56 57 -Ex: #5 D1800T1500<cr><divclass="wikimodel-emptyline"></div>47 +Ex: #5P1456T1263<cr> 58 58 59 -This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div> 60 -<div class="wikimodel-emptyline"></div></div></div> 61 -{{/html}} 49 +This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds. 50 +))) 62 62 63 63 == Query Commands == 64 64 65 -{{html wiki="true" clean="false"}} 66 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 67 -Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div> 54 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format: 68 68 69 -1. Start with a number sign **#**(Unicode Character: U+0023)56 +1. Start with a number sign # (U+0023) 70 70 1. Servo ID number as an integer 71 -1. Query command (one to four72 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<divclass="wikimodel-emptyline"></div>58 +1. Query command (one to three letters, no spaces, capital or lower case) 59 +1. End with a control / carriage return '<cr>' 73 73 74 -Ex: #5QD<cr> Query position in (tenth of) degrees for servo #5<div class="wikimodel-emptyline"></div> 61 +((( 62 +Ex: #5QD<cr>Query position in degrees for servo #5 63 +))) 75 75 65 +((( 76 76 The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format: 77 77 78 -1. Start with an asterisk * (U nicode Character: U+0023)68 +1. Start with an asterisk * (U+002A) 79 79 1. Servo ID number as an integer 80 -1. Query command (one to four70 +1. Query command (one to three letters, no spaces, capital letters) 81 81 1. The reported value in the units described, no decimals. 82 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<divclass="wikimodel-emptyline"></div>72 +1. End with a control / carriage return '<cr>' 83 83 84 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries tomultiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a newquerycommand. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>74 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be: 85 85 86 -Ex: *5QD1800<cr><div class="wikimodel-emptyline"></div> 76 +((( 77 +Ex: *5QD1443<cr> 78 +))) 87 87 88 -This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees). 89 -<div class="wikimodel-emptyline"></div></div></div> 90 -{{/html}} 80 +This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees). 91 91 92 92 == Configuration Commands == 93 93 94 -{{html wiki="true" clean="false"}} 95 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 96 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div> 84 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 97 97 98 -These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div> 99 - 100 -The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div> 101 - 102 -1. Start with a number sign **#** (Unicode Character: U+0023) 86 +1. Start with a number sign # (U+0023) 103 103 1. Servo ID number as an integer 104 -1. Configuration command (two to four88 +1. Configuration command (two to three letters, no spaces, capital or lower case) 105 105 1. Configuration value in the correct units with no decimal 106 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<divclass="wikimodel-emptyline"></div>90 +1. End with a control / carriage return '<cr>' 107 107 108 -Ex: #5CO-50 <cr><divclass="wikimodel-emptyline"></div>92 +Ex: #5CO-50<cr> 109 109 110 -This configures an absolute origin offset ("CO") with respect to factory origin ofservo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory resetthatclears all configurations(through the button menu or with DEFAULT commanddescribed below).<div class="wikimodel-emptyline"></div>94 +This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below. 111 111 112 -**Session vs Configuration Query** <div class="wikimodel-emptyline"></div>96 +**Session vs Configuration Query** 113 113 114 -By default, the query command returns the session 's<div class="wikimodel-emptyline"></div>98 +By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: 115 115 116 -Ex: #5CSR20 <cr>immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<divclass="wikimodel-emptyline"></div>100 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory. 117 117 118 -After RESET, a command of #5SR4 <cr>sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>102 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore: 119 119 120 -#5QSR <cr>or #5QSR0<cr>would return *5QSR4<cr>which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>104 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas 121 121 122 -#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 123 -<div class="wikimodel-emptyline"></div></div></div> 124 -{{/html}} 106 +#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 125 125 126 126 == Virtual Angular Position == 127 127 128 -{{html wiki="true" clean="false"}} 129 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 130 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div> 110 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset). 131 131 132 -[[image:LSS-servo-positions.jpg]] <div class="wikimodel-emptyline"></div>112 +[[image:LSS-servo-positions.jpg]] 133 133 134 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: <div class="wikimodel-emptyline"></div>114 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 135 135 136 -#1D-300 <cr>This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div>116 +#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow) 137 137 138 -#1D2100 <cr>This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div>118 +#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow) 139 139 140 -#1D-4200 <cr>This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<divclass="wikimodel-emptyline"></div>120 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees. 141 141 142 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. <divclass="wikimodel-emptyline"></div>122 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 143 143 144 -#1D4800 <cr>This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<divclass="wikimodel-emptyline"></div>124 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 145 145 146 -#1D3300 <cr>would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>126 +#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow). 147 147 148 -If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°]. 149 -<div class="wikimodel-emptyline"></div></div></div> 150 -{{/html}} 128 +If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). 129 +))) 151 151 152 152 = Command List = 153 153 154 - **Latestfirmwareversion currently: 368.29.14**133 +== Regular == 155 155 156 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]] 157 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 158 -| |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Soft reset. See command for details. 159 -| |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Revert to firmware default values. See command for details 160 -| |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Update firmware. See command for details. 161 -| |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 162 -| |[[**C**hange to **RC**>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CRC|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Change to RC mode 1 (position) or 2 (wheel). 163 -| |[[**ID** #>>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %) |(% style="text-align:center" %)✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 164 -| |[[**B**audrate>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QB|(% style="text-align:center" %)CB|(% style="text-align:center" %) |(% style="text-align:center" %)✓|115200| |Reset required after change. 135 +|= #|=Description|=Mod|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 136 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| | L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 137 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| | H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 138 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]|T| | | | | | ✓|milliseconds|(% style="width:510px" %)Modifier only for {P, D, MD}. Time is estimated and can change based on load|(% style="text-align:center; width:113px" %) 139 +| 4|[[**S**peed>>||anchor="H4.Speed28S2CSD29modifier"]]|S/SD| |QS| | | | ✓|microseconds per second / degrees per second|(% style="width:510px" %)S modifier only for {P}. SD modifier only for {D, MD}.|(% style="text-align:center; width:113px" %) 140 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| | MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 141 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| | O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 142 +0 143 +))) 144 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| | AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 145 +1800 146 +))) 147 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| | P| QP| | | | ✓|microseconds|(% style="width:510px" %)((( 148 +Inherited from SSC-32 serial protocol 149 +)))|(% style="text-align:center; width:113px" %) 150 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| | D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 151 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| | WD| QWD| | | | ✓|degrees per second|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 152 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| | WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 153 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| | SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)((( 154 +QSD: Add modifier "2" for instantaneous speed. 165 165 166 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]] 167 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 168 -| |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 169 -| |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 170 -| |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation" 171 -| |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation" 172 -| |[[Position in **P**WM>>||anchor="HPositioninPWM28P29"]]|(% style="text-align:center" %)P|(% style="text-align:center" %)QP|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|Inherited from SSC-32 serial protocol 173 -| |[[**M**ove in PWM (relative)>>||anchor="H28Relative29MoveinPWM28M29"]]|(% style="text-align:center" %)M|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us| 174 -| |[[**R**aw **D**uty-cycle **M**ove>>||anchor="HRawDuty-cycleMove28RDM29"]]|(% style="text-align:center" %)RDM|(% style="text-align:center" %)QMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW 175 -| |[[**Q**uery Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1 to 8 integer|See command description for details 176 -| |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 177 -| |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 156 +SD overwrites SR / CSD overwrites CSR and vice-versa. 157 +)))|(% style="text-align:center; width:113px" %)Max per servo 158 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| | SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 159 +QSR: Add modifier "2" for instantaneous speed 178 178 179 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]] 180 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 181 -| |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|(% style="text-align:center" %) |(% style="text-align:center" %)✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile 182 -| |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|5| |Affects motion only when motion profile is disabled (EM0) 183 -| |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|1/10°| 184 -| |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1800|1/10°| 185 -| |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|-4 to +4 integer|Suggested values are between 0 to +4 186 -| |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|4|-10 to +10 integer| 187 -| |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 188 -| |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 189 -| |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 190 -| |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|No value|1/10°|Reset required after change. 191 -| |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓|1023|255 to 1023 integer| 192 -| |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 193 -| |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 161 +SR overwrites SD / CSR overwrites CSD and vice-versa. 162 +)))|(% style="text-align:center; width:113px" %)Max per servo 163 +| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| | LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 7)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)0 (OFF) 164 +| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| | G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 165 +| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0 166 +| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)115200 167 +| 18|//{coming soon}//| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 168 + 169 +))) 170 +| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstA0Position28Degrees29"]]| | | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)No Value 171 +| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)|(% style="text-align:center; width:113px" %) 172 +| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 173 +| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 174 +| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 175 +| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 176 +| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 177 +| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 178 +| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | | |CRC|✓| | ✓|none|(% style="width:510px" %)((( 179 +Change to RC mode 1 (position) or 2 (wheel). 180 +)))|(% style="text-align:center; width:113px" %)Serial 181 +| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 182 +| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 183 +| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 194 194 195 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]] 196 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 197 -| |[[**S**peed>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)S|(% style="text-align:center" %)QS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |uS/s |For P action command 198 -| |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|For D and MD action commands 199 -| |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |ms|Modifier only for P, D and MD. Time can change based on load 200 -| |[[**C**urrent **H**old>>||anchor="HCurrentHalt26Hold28CH29modifier"]]|(% style="text-align:center" %)CH|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 201 -| |[[**C**urrent **L**imp>>||anchor="HCurrentLimp28CL29modifier"]]|(% style="text-align:center" %)CL|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 185 +== Advanced == 202 202 203 -|(% colspan="10" style="color:orange;font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]]204 -|(% style="width:2 5px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center;width:100px" %)**Action**|(% style="text-align:center;width:75px" %)**Query**|(% style="text-align:center;width:75px" %)**Config**|(% style="text-align:center;width:75px" %)**RC**|(% style="text-align:center;width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**205 -| |[[** Q**uery**V**oltage>>||anchor="HQueryVoltage28QV29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QV|(% style="text-align:center" %)ext-align:center"%)|(% style="text-align:center"%)✓||mV|206 -| |[[** Q**uery**T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %)ext-align:center" %) |(% style="text-align:center"%)✓||1/10°C|207 -| |[[** Q**uery**C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %)ext-align:center" %)QC|(% style="text-align:center" %) |(% style="text-align:center"%)|(% style="text-align:center"%)✓||mA|208 -| |[[** Q**uery**M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓||Returnshemodel ofservo(ex: LSS-ST1,LSS-HS1,LSS-HT1)209 -| |[[** Q**uery**F**irmwareVersion>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center"%)✓|||210 - | |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(%style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center"%)|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returnsthe unique serialumber for the servo187 +|= #|=(% style="width: 182px;" %)Description|=(% style="width: 56px;" %)Mod|=(% style="width: 70px;" %) Action|=(% style="width: 71px;" %) Query|=(% style="width: 77px;" %) Config|=(% style="width: 77px;" %)Session|=(% style="width: 56px;" %) RC|=(% style="width: 151px;" %) Serial|= Units|=(% style="width: 510px;" %) Notes 188 +| A1|(% style="width:182px" %)[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|(% style="width:56px" %) |(% style="width:70px" %)AS|(% style="width:71px" %)QAS|(% style="width:77px" %)CAS|(% style="width:77px" %)✓|(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4 189 +| A2|(% style="width:182px" %)[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|(% style="width:56px" %) |(% style="width:70px" %)AH|(% style="width:71px" %)QAH|(% style="width:77px" %)CAH|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|none (integer -10 to +10)|(% style="width:510px" %)Effect is different between serial and RC 190 +| A3|(% style="width:182px" %)[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|(% style="width:56px" %) |(% style="width:70px" %)AA|(% style="width:71px" %)QAA|(% style="width:77px" %)CAA|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared 191 +| A4|(% style="width:182px" %)[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|(% style="width:56px" %) |(% style="width:70px" %)AD|(% style="width:71px" %)QAD|(% style="width:77px" %)CAD|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared 192 +| A5|(% style="width:182px" %)[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|(% style="width:56px" %) |(% style="width:70px" %)EM|(% style="width:71px" %)QEM|(% style="width:77px" %) |(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %) ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable 193 +| A6|(% style="width:182px" %)[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]|(% style="width:56px" %) |(% style="width:70px" %) |(% style="width:71px" %)QLB|(% style="width:77px" %) CLB|(% style="width:77px" %) |(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer from 0 to 63)|(% style="width:510px" %)((( 194 +0=No blinking, 63=Always blink; 211 211 212 - |(% colspan="10"style="color:orange;font-size:18px"%)[[**RGB LED**>>||anchor="HRGBLED"]]213 - |(% style="width:25px" %)|(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**214 -| |[[** LED**Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓||0to7integer|0=Off; 1=Red;2=Green;3=Blue; 4=Yellow;5=Cyan;6=Magenta;7=White215 -| |[[**C** onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QLB|(% style="text-align:center" %)CLB|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓||0to63 integer|Resetrequiredafter change.See command fordetails.196 +Blink while: 1=Limp; 2=Holding; 4=Accel; 8=Decel; 16=Free 32=Travel; 197 +))) 198 +| A7|(% style="width:182px" %)[[**C**urrent **H**alt & **H**old>>||anchor="HA7.CurrentHalt26Hold28CH29"]]|(% style="width:56px" %)CH|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR 199 +| A8|(% style="width:182px" %)[[**C**urrent **L**imp>>||anchor="HA8.CurrentLimp28CL29"]]|(% style="width:56px" %)CL|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR 216 216 217 -= (% style="color:inherit;font-family:inherit" %)Details(%%)=201 +== Details - Basic == 218 218 219 - {{idname="COMMUNICATION_SETUP"/}}203 +====== __1. Limp (**L**)__ ====== 220 220 221 - == (% style="color:inherit; font-family:inherit"%)Communication Setup(%%) ==205 +Example: #5L<cr> 222 222 223 - ======__Reset__======207 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 224 224 225 -{{html wiki="true" clean="false"}} 226 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 227 -Ex: #5RESET<cr><div class="wikimodel-emptyline"></div> 228 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). 229 -Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div> 230 -</div></div> 231 -{{/html}} 209 +====== __2. Halt & Hold (**H**)__ ====== 232 232 233 - ====== __Default&confirm__ ======211 +Example: #5H<cr> 234 234 235 -{{html wiki="true" clean="false"}} 236 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 237 -Ex: #5DEFAULT<cr><div class="wikimodel-emptyline"></div> 213 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position. 238 238 239 - Thiscommandsetsinmotion thereset of all values to thedefaultvalues included with the version of the firmware installedon that servo.Theservo then waits for the CONFIRM command. Anyother commandreceived will causethe servoto exit the DEFAULT function.<div class="wikimodel-emptyline"></div>215 +====== __3. Timed move (**T**) modifier__ ====== 240 240 241 -E X: #5DEFAULT<cr> followed by #5CONFIRM<cr><divclass="wikimodel-emptyline"></div>217 +Example: #5P1500T2500<cr> 242 242 243 - Sinceit it notcommontohavetorestoreallconfigurations,aconfirmation commandisneeded after a firmwarecommandis sent.Shouldany command otherthanCONFIRMbeceivedbythe servoafter thefirmwarecommandhasbeen received,itwillexitthecommand.<divclass="wikimodel-emptyline"></div>219 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 244 244 245 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 246 -</div></div> 247 -{{/html}} 221 +Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 248 248 249 -====== __ Update&confirm__ ======223 +====== __4. Speed (**S**, **SD**) modifier__ ====== 250 250 251 -{{html wiki="true" clean="false"}} 252 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 253 -Ex: #5UPDATE<cr><div class="wikimodel-emptyline"></div> 225 +Example: #5P1500S750<cr> 226 +Example: #5D0SD180<cr> 254 254 255 - Thiscommandsetsinmotiontheequivalentfalongbutton presswhenthe servois notpoweredinorder to enterfirmwareupdatemode.Thisisusefulshould thebuttonbe brokenor inaccessible.TheservothenwaitsfortheCONFIRMcommand.Any othercommandreceivedwillcause theservotoexit the UPDATEfunction.<divclass="wikimodel-emptyline"></div>228 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 256 256 257 - EX:#5UPDATE<cr>followedby#5CONFIRM<cr><div class="wikimodel-emptyline"></div>230 +Modifer (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second. 258 258 259 - Since it it not common to have toupdatefirmware, a confirmation command is needed after an UPDATE command is sent. Should anycommand other than CONFIRM bereceivedby the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div>232 +Query Speed (**QS**) 260 260 261 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 262 -</div></div> 263 -{{/html}} 234 +Example: #5QS<cr> might return *5QS300<cr> 264 264 265 - ======__Confirm__======236 +This command queries the current speed in microseconds per second. 266 266 267 -{{html wiki="true" clean="false"}} 268 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 269 -Ex: #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 238 +====== __5. (Relative) Move in Degrees (**MD**)__ ====== 270 270 271 - This command is used to confirmchanges after a Default or Updatecommand.<divclass="wikimodel-emptyline"></div>240 +Example: #5MD123<cr> 272 272 273 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 274 -</div></div> 275 -{{/html}} 242 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 276 276 277 -====== __ ConfigureRC Mode(**CRC**)__ ======244 +====== __6. Origin Offset Action (**O**)__ ====== 278 278 279 -{{html wiki="true" clean="false"}} 280 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 281 -This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.<div class="wikimodel-emptyline"></div> 246 +Example: #5O2400<cr> 282 282 283 -|**Command sent**|**Note** 284 -|ex: #5CRC1<cr>|Change to RC position mode. 285 -|ex: #5CRC2<cr>|Change to RC continuous rotation (wheel) mode. 286 -|ex: #5CRC*<cr>|Where * is any value other than 1 or 2 (or no value): stay in smart mode.<div class="wikimodel-emptyline"></div> 248 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 287 287 288 - EX: #5CRC2<cr><div class="wikimodel-emptyline"></div>250 +[[image:LSS-servo-default.jpg]] 289 289 290 - This commandwould placethe servoinRC wheelmodeaftera RESETorpower cycle. Note thataftera RESETorpowercycle, theservowill be inRC modeand will notreplyto serial commands. Usingthecommand#5CRC<cr>or #5CRC3<cr>whichrequests that theservo remaininserial mode still requiresaRESET command.<divclass="wikimodel-emptyline"></div>252 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: 291 291 292 -**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.<div class="wikimodel-emptyline"></div> 293 -</div></div> 294 -{{/html}} 254 +[[image:LSS-servo-origin.jpg]] 295 295 296 - ====== __IdentificationNumber (**ID**)__ ======256 +Origin Offset Query (**QO**) 297 297 298 -{{html wiki="true" clean="false"}} 299 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 300 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div> 258 +Example: #5QO<cr> Returns: *5QO-13 301 301 302 - QueryIdentification(**QID**)<divclass="wikimodel-emptyline"></div>260 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero. 303 303 304 - EX: #254QID<cr> might return*QID5<cr><divclass="wikimodel-emptyline"></div>262 +Configure Origin Offset (**CO**) 305 305 306 - When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is usefulwhen you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to255 will still result in the servo responding with its "real" ID.<divclass="wikimodel-emptyline"></div>264 +Example: #5CO-24<cr> 307 307 308 - ConfigureID(**CID**)<divclass="wikimodel-emptyline"></div>266 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 309 309 310 - Ex:#4CID5<cr><divclass="wikimodel-emptyline"></div>268 +====== __7. Angular Range (**AR**)__ ====== 311 311 312 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div> 313 -</div></div> 314 -{{/html}} 270 +Example: #5AR1800<cr> 315 315 316 - ======__Baud Rate__======272 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: 317 317 318 -{{html wiki="true" clean="false"}} 319 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 320 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div> 274 +[[image:LSS-servo-default.jpg]] 321 321 322 - QueryBaudRate(**QB**)<divclass="wikimodel-emptyline"></div>276 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 323 323 324 - Ex: #5QB<cr> might return *5QB115200<cr><divclass="wikimodel-emptyline"></div>278 +[[image:LSS-servo-ar.jpg]] 325 325 326 - Sincethecommand to querythe baudrate must be done atthe servo's existingbaudrate,itcansimply be usedtoconfirm theCB configuration commandwascorrectlyreceivedbeforetheservo is powercycledand thenew baudrate takes effect.<div class="wikimodel-emptyline"></div>280 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range: 327 327 328 - ConfigureBaud Rate(**CB**)<divclass="wikimodel-emptyline"></div>282 +[[image:LSS-servo-ar-o-1.jpg]] 329 329 330 - **Important Note:** the servo's current sessionretainsthe givenbaud rate and the new baud rate will only take effect when the servois power cycled /RESET.<div class="wikimodel-emptyline"></div>284 +Query Angular Range (**QAR**) 331 331 332 -Ex: #5 CB9600<cr><divclass="wikimodel-emptyline"></div>286 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees. 333 333 334 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div> 335 -</div></div> 336 -{{/html}} 288 +Configure Angular Range (**CAR**) 337 337 338 - {{id name="MOTION"/}}290 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 339 339 340 -== Motion ==292 +====== __8. Position in Pulse (**P**)__ ====== 341 341 342 - ======__Position in Degrees (**D**)__ ======294 +Example: #5P2334<cr> 343 343 344 -{{html wiki="true" clean="false"}} 345 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 346 -Example: #5D1456<cr><div class="wikimodel-emptyline"></div> 296 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points. 347 347 348 - This moves the servotoan angle of 145.6 degrees, where the center (0) position is centered.Negative values (ex. -176 representing -17.6 degrees) could also beused. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle(absolute position)as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div>298 +Query Position in Pulse (**QP**) 349 349 350 - Larger valuesarepermitted and allow for multi-turn functionality usingthe conceptof virtual position(explained above). <div class="wikimodel-emptyline"></div>300 +Example: #5QP<cr> might return *5QP2334 351 351 352 -Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div> 302 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 303 +Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 353 353 354 - Example:#5QD<cr>mightreturn*5QD132<cr><divclass="wikimodel-emptyline"></div>305 +====== __9. Position in Degrees (**D**)__ ====== 355 355 356 - This means the servo islocatedat13.2 degrees.<divclass="wikimodel-emptyline"></div>307 +Example: #5D1456<cr> 357 357 358 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 359 -Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div> 309 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction. 360 360 361 - Ex:#5QDT<cr>might return*5QDT6783<cr><div class="wikimodel-emptyline"></div>311 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position. 362 362 363 -The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 364 -<div class="wikimodel-emptyline"></div></div></div> 365 -{{/html}} 313 +Query Position in Degrees (**QD**) 366 366 367 - ====== __(Relative)Movein Degrees(**MD**)__ ======315 +Example: #5QD<cr> might return *5QD132<cr> 368 368 369 -{{html wiki="true" clean="false"}} 370 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 371 -Example: #5MD123<cr><div class="wikimodel-emptyline"></div> 317 +This means the servo is located at 13.2 degrees. 372 372 373 -The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 374 -<div class="wikimodel-emptyline"></div></div></div> 375 -{{/html}} 319 +(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 320 +Query Target Position in Degrees (**QDT**) 376 376 377 - ======__WheelModein Degrees(**WD**)__ ======322 +Ex: #5QDT<cr> might return *5QDT6783<cr> 378 378 379 -{{html wiki="true" clean="false"}} 380 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 381 -Ex: #5WD90<cr><div class="wikimodel-emptyline"></div> 324 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 382 382 383 - Thiscommandsets theservo to wheelmodewhereit will rotate inthedesired direction at the selected speed. The example above would have the servo rotate at 90.0 degreesper second clockwise(assuming factory default configurations).<divclass="wikimodel-emptyline"></div>326 +====== __10. Wheel Mode in Degrees (**WD**)__ ====== 384 384 385 - QueryWheel Mode inDegrees (**QWD**)<divclass="wikimodel-emptyline"></div>328 +Ex: #5WD90<cr> 386 386 387 - Ex:#5QWD<cr>might return*5QWD90<cr><divclass="wikimodel-emptyline"></div>330 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). 388 388 332 +Query Wheel Mode in Degrees (**QWD**) 333 + 334 +Ex: #5QWD<cr> might return *5QWD90<cr> 335 + 389 389 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 390 -<div class="wikimodel-emptyline"></div></div></div> 391 -{{/html}} 392 392 393 -====== __Wheel Mode in RPM (**WR**)__ ====== 338 +====== __11. Wheel Mode in RPM (**WR**)__ ====== 394 394 395 -{{html wiki="true" clean="false"}} 396 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 397 -Ex: #5WR40<cr><div class="wikimodel-emptyline"></div> 340 +Ex: #5WR40<cr> 398 398 399 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). <div class="wikimodel-emptyline"></div>342 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). 400 400 401 -Query Wheel Mode in RPM (**QWR**) <div class="wikimodel-emptyline"></div>344 +Query Wheel Mode in RPM (**QWR**) 402 402 403 -Ex: #5QWR <cr>might return *5QWR40<cr><divclass="wikimodel-emptyline"></div>346 +Ex: #5QWR<cr> might return *5QWR40<cr> 404 404 405 405 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 406 -<div class="wikimodel-emptyline"></div></div></div> 407 -{{/html}} 408 408 409 -====== __ PositioninPWM(**P**)__ ======350 +====== __12. Max Speed in Degrees (**SD**)__ ====== 410 410 411 -{{html wiki="true" clean="false"}} 412 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 413 -Example: #5P2334<cr><div class="wikimodel-emptyline"></div> 352 +Ex: #5SD1800<cr> 414 414 415 -Th epositioninPWM pulseswasretainedinordertobe backward compatiblewiththeSSC-32 / 32U protocol. This relatesthedesiredanglewithn RC standardPWMsignalandis furtherexplainedintheSSC-32and[[SSC-32Umanuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]].Withoutanymodificationsto configurationconsidered,anda±90.0 degreesstandard rangewhere1500microsecondsiscentered,aPWMsignalof2334wouldsetthe servoto 165.1 degrees.Validvaluesfor Pare[500,2500].Valuesoutside thisrange are corrected/restricted to endpoints.<divclass="wikimodel-emptyline"></div>354 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 416 416 417 -Query PositioninPulse (**QP**)<div class="wikimodel-emptyline"></div>356 +Query Speed in Degrees (**QSD**) 418 418 419 -Ex ample: #5QP<cr>might return *5QP2334<divclass="wikimodel-emptyline"></div>358 +Ex: #5QSD<cr> might return *5QSD1800<cr> 420 420 421 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 422 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 423 -<div class="wikimodel-emptyline"></div></div></div> 424 -{{/html}} 360 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. 361 +If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 425 425 426 -====== __(Relative) Move in PWM (**M**)__ ====== 363 +|**Command sent**|**Returned value (1/10 °)** 364 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 365 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 366 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 367 +|ex: #5QSD3<cr>|Target travel speed 427 427 428 -{{html wiki="true" clean="false"}} 429 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 430 -Example: #5M1500<cr><div class="wikimodel-emptyline"></div> 369 +Configure Speed in Degrees (**CSD**) 431 431 432 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 433 -<div class="wikimodel-emptyline"></div></div></div> 434 -{{/html}} 371 +Ex: #5CSD1800<cr> 435 435 436 - ======__Raw Duty-cycleMove (**RDM**)__======373 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 437 437 438 -{{html wiki="true" clean="false"}} 439 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 440 -Example: #5RDM512<cr><div class="wikimodel-emptyline"></div> 375 +====== __13. Max Speed in RPM (**SR**)__ ====== 441 441 442 - Theraw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a gearedDC motor.<divclass="wikimodel-emptyline"></div>377 +Ex: #5SD45<cr> 443 443 444 -Th edutyvalues rangefrom0to1023.Negativevalueswillrotate the servo in theoppositedirection(forfactorydefaultanegative valuewould becounter clockwise).<divclass="wikimodel-emptyline"></div>379 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 445 445 446 -Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div>381 +Query Speed in Degrees (**QSR**) 447 447 448 -Ex ample: #5QMD<cr>might return *5QMD512<divclass="wikimodel-emptyline"></div>383 +Ex: #5QSR<cr> might return *5QSR45<cr> 449 449 450 -This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 451 -<div class="wikimodel-emptyline"></div></div></div> 452 -{{/html}} 385 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. 386 +If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 453 453 454 -====== __Query Status (**Q**)__ ====== 388 +|**Command sent**|**Returned value (1/10 °)** 389 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 390 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 391 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 392 +|ex: #5QSR3<cr>|Target travel speed 455 455 456 -{{html wiki="true" clean="false"}} 457 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 458 -The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div> 394 +Configure Speed in RPM (**CSR**) 459 459 460 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div> 461 -</div></div> 462 -{{/html}} 396 +Ex: #5CSR45<cr> 463 463 464 -|(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description** 465 -| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 466 -| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 467 -| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command 468 -| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 469 -| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 470 -| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 471 -| |ex: *5Q6<cr>|6: Holding|Keeping current position 472 -| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 473 -| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 474 -| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 475 -| |ex: *5Q10<cr>|10: Safe Mode|((( 476 -A safety limit has been exceeded (temperature, peak current or extended high current draw). 398 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 477 477 478 -Send a Q1 command to know which limit has been reached (described below). 479 -))) 400 +====== __14. LED Color (**LED**)__ ====== 480 480 481 -{{html wiki="true" clean="false"}} 482 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 483 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div> 484 -</div></div> 485 -{{/html}} 402 +Ex: #5LED3<cr> 486 486 487 -|(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description** 488 -| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 489 -| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 490 -| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 491 -| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 404 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. 492 492 493 -= =====__Limp(**L**)__======406 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White; 494 494 495 -{{html wiki="true" clean="false"}} 496 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 497 -Example: #5L<cr><div class="wikimodel-emptyline"></div> 408 +Query LED Color (**QLED**) 498 498 499 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 500 -<div class="wikimodel-emptyline"></div></div></div> 501 -{{/html}} 410 +Ex: #5QLED<cr> might return *5QLED5<cr> 502 502 503 - ======__Halt&Hold(**H**)__======412 +This simple query returns the indicated servo's LED color. 504 504 505 -{{html wiki="true" clean="false"}} 506 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 507 -Example: #5H<cr><div class="wikimodel-emptyline"></div> 414 +Configure LED Color (**CLED**) 508 508 509 -This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 510 -<div class="wikimodel-emptyline"></div></div></div> 511 -{{/html}} 416 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 512 512 513 - {{idname="MOTION_SETUP"/}}418 +====== __15. Gyre Rotation Direction (**G**)__ ====== 514 514 515 - ==MotionSetup==420 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 516 516 517 - ====== __EnableMotion Profile (**EM**)__ ======422 +Ex: #5G-1<cr> 518 518 519 -{{html wiki="true" clean="false"}} 520 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 521 -Ex: #5EM1<cr><div class="wikimodel-emptyline"></div> 424 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 522 522 523 - This commandenables a trapezoidal motion profile. Bydefault, the trapezoidalmotion profileis enabled. If the motion profile is enabled, angular acceleration (AA)and angular deceleration(AD) will have an effect on the motion. Also, SD/S and T modifiers can be used.<div class="wikimodel-emptyline"></div>426 +Query Gyre Direction (**QG**) 524 524 525 -Ex: #5 EM0<cr><divclass="wikimodel-emptyline"></div>428 +Ex: #5QG<cr> might return *5QG-1<cr> 526 526 527 -Th iscommand will disabletheapezoidalmotion profile.Assuch,the servowill move at fullspeedfor D/MD actioncommands.Angular acceleration (AA) and angular deceleration(AD) won'thavean effecton motion in thismodeand modifiers SD/S or T cannotbe used.<div class="wikimodel-emptyline"></div>430 +The value returned above means the servo is in a counter-clockwise gyration. 528 528 529 - Query MotionProfile (**QEM**)<div class="wikimodel-emptyline"></div>432 +Configure Gyre (**CG**) 530 530 531 -Ex: #5 QEM<cr> might return *5QEM1<cr><divclass="wikimodel-emptyline"></div>434 +Ex: #5CG-1<cr> 532 532 533 -This c ommand will querythemotion profile.**0:** motionprofiledisabled/ **1:** trapezoidal motion profileenabled.<divclass="wikimodel-emptyline"></div>436 +This changes the gyre direction as described above and also writes to EEPROM. 534 534 535 - Configure MotionProfile (**CEM**)<divclass="wikimodel-emptyline"></div>438 +====== __16. Identification Number (**ID**)__ ====== 536 536 537 - Ex:#5CEM0<cr><div class="wikimodel-emptyline"></div>440 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate). 538 538 539 -This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 540 -<div class="wikimodel-emptyline"></div></div></div> 541 -{{/html}} 442 +Query Identification (**QID**) 542 542 543 - ======__FilterPositionCount(**FPC**)__ ======444 +EX: #254QID<cr> might return *QID5<cr> 544 544 545 -{{html wiki="true" clean="false"}} 546 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 547 -Ex: #5FPC10<cr><div class="wikimodel-emptyline"></div> 548 -This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div> 446 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 549 549 550 - Query FilterPositionCount(**QFPC**)<div class="wikimodel-emptyline"></div>448 +Configure ID (**CID**) 551 551 552 -Ex: # 5QFPC<cr> might return *5QFPC10<cr><divclass="wikimodel-emptyline"></div>450 +Ex: #4CID5<cr> 553 553 554 - This commandwillquerytheFilterPositionCount value.<divclass="wikimodel-emptyline"></div>452 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect. 555 555 556 - ConfigureFilterPosition Count (**CFPC**)<divclass="wikimodel-emptyline"></div>454 +====== __17. Baud Rate__ ====== 557 557 558 - Ex:#5CFPC10<cr><divclass="wikimodel-emptyline"></div>456 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200. The baud rates are currently restricted to those above. 559 559 560 -This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 561 -<div class="wikimodel-emptyline"></div></div></div> 562 -{{/html}} 458 +Query Baud Rate (**QB**) 563 563 564 - ======__OriginOffset(**O**)__ ======460 +Ex: #5QB<cr> might return *5QB115200<cr> 565 565 566 -{{html wiki="true" clean="false"}} 567 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 568 -Example: #5O2400<cr><div class="wikimodel-emptyline"></div> 462 +Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect. 569 569 570 - This command allows you to change the origin ofthe servoin relation to the factory zero position for that session. As with all action commands, the settingwill be lostupon servo reset/ power cycle. Origin offset commands are not cumulative and always relateto factory zero. In the first image, the origin at factory offset '0'(centered).<div class="wikimodel-emptyline"></div>464 +Configure Baud Rate (**CB**) 571 571 572 - [[image:LSS-servo-default.jpg]]<divclass="wikimodel-emptyline"></div>466 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET. 573 573 574 - In the second image, the origin, and the corresponding angular range (explainedbelow) have been shifted by +240.0degrees:<divclass="wikimodel-emptyline"></div>468 +Ex: #5CB9600<cr> 575 575 576 - [[image:LSS-servo-origin.jpg]]<divclass="wikimodel-emptyline"></div>470 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 577 577 578 - OriginOffsetQuery (**QO**)<divclass="wikimodel-emptyline"></div>472 +====== __18. {//Coming soon//}__ ====== 579 579 580 - Example: #5QO<cr>might return*5QO-13<divclass="wikimodel-emptyline"></div>474 +Command coming soon.... 581 581 582 - Thisallowsyou to query the angle (in tenths of degrees) oftheorigin in relation to the factory zero position.In thisexample, the new origin is at -1.3 degreesfrom the factory zero.<div class="wikimodel-emptyline"></div>476 +====== __19. First Position (Degrees)__ ====== 583 583 584 - ConfigureOriginOffset (**CO**)<divclass="wikimodel-emptyline"></div>478 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. 585 585 586 - Example:#5CO-24<cr><divclass="wikimodel-emptyline"></div>480 +Query First Position in Degrees (**QFD**) 587 587 588 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 589 -<div class="wikimodel-emptyline"></div></div></div> 590 -{{/html}} 482 +Ex: #5QFD<cr> might return *5QFD64<cr> 591 591 592 - ======__AngularRange(**AR**)__======484 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If there is no first position value stored, the reply will be DIS 593 593 594 -{{html wiki="true" clean="false"}} 595 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 596 -Example: #5AR1800<cr><div class="wikimodel-emptyline"></div> 486 +Configure First Position in Degrees (**CFD**) 597 597 598 - Thiscommand allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RCmode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<divclass="wikimodel-emptyline"></div>488 +Ex: #5CD64<cr> 599 599 600 - [[image:LSS-servo-default.jpg]]<divclass="wikimodel-emptyline"></div>490 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 601 601 602 - Below,theangular rangeisrestrictedto180.0degrees,or -90.0to +90.0. The centerhas remained unchanged.<divclass="wikimodel-emptyline"></div>492 +====== __20. Query Model String (**QMS**)__ ====== 603 603 604 - [[image:LSS-servo-ar.jpg]]<divclass="wikimodel-emptyline"></div>494 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr> 605 605 606 - Finally,thegularrangeactioncommand(ex. #5AR1800<cr>) and origin offsetactioncommand (ex. #5O-1200<cr>)areused to move boththecenter andlimit theangular range:<divclass="wikimodel-emptyline"></div>496 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 607 607 608 - [[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div>498 +====== __21. Query Serial Number (**QN**)__ ====== 609 609 610 -Q ueryAngularRange(**QAR**)<divclass="wikimodel-emptyline"></div>500 +Ex: #5QN<cr> might return *5QN12345678<cr> 611 611 612 - Example:#5QAR<cr>might return*5AR1800,indicatingthetotalangularrangeis180.0 degrees.<divclass="wikimodel-emptyline"></div>502 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user. 613 613 614 - ConfigureAngularRange (**CAR**)<divclass="wikimodel-emptyline"></div>504 +====== __22. Query Firmware (**QF**)__ ====== 615 615 616 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 617 -<div class="wikimodel-emptyline"></div></div></div> 618 -{{/html}} 506 +Ex: #5QF<cr> might return *5QF411<cr> 619 619 620 - ======__AngularStiffness(**AS**)__======508 +The number in the reply represents the firmware version, in this example being 411. 621 621 622 -{{html wiki="true" clean="false"}} 623 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 624 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div> 510 +====== __23. Query Status (**Q**)__ ====== 625 625 626 - Ahighervalue of "angularstiffness":<divclass="wikimodel-emptyline"></div>512 +The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses. 627 627 628 -* The more torque will be applied to try to keep the desired position against external input / changes 629 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div> 514 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 630 630 631 -A lower value on the other hand:<div class="wikimodel-emptyline"></div> 516 +|***Value returned (Q)**|**Status**|**Detailed description** 517 +|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 518 +|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 519 +|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely 520 +|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 521 +|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 522 +|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 523 +|ex: *5Q6<cr>|6: Holding|Keeping current position 524 +|ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 525 +|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 526 +|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 527 +|ex: *5Q10<cr>|10: Safe Mode|((( 528 +A safety limit has been exceeded (temperature, peak current or extended high current draw). 632 632 633 - * Causesasloweracceleration tothetravel speed, andaslowerdeceleration634 - * Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div>530 +Send a Q1 command to know which limit has been reached (described below). 531 +))) 635 635 636 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 533 +(% class="wikigeneratedid" %) 534 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 637 637 638 -Ex: #5AS-2<cr><div class="wikimodel-emptyline"></div> 536 +|***Value returned (Q1)**|**Status**|**Detailed description** 537 +|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 538 +|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 539 +|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 540 +|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 639 639 640 - Thisreduces the angular stiffness to -2for that session, allowing the servo to deviate more around thedesiredposition. This can be beneficialin many situations such as impacts (leggedrobots)where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div>542 +====== __24. Query Voltage (**QV**)__ ====== 641 641 642 -Ex: #5Q AS<cr><divclass="wikimodel-emptyline"></div>544 +Ex: #5QV<cr> might return *5QV11200<cr> 643 643 644 - Queries thevalue beingused.<divclass="wikimodel-emptyline"></div>546 +The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 645 645 646 - Ex:#5CAS-2<cr><divclass="wikimodel-emptyline"></div>548 +====== __25. Query Temperature (**QT**)__ ====== 647 647 648 -Writes the desired angular stiffness value to EEPROM. 649 -<div class="wikimodel-emptyline"></div></div></div> 650 -{{/html}} 550 +Ex: #5QT<cr> might return *5QT564<cr> 651 651 652 - ======__AngularHoldingStiffness(**AH**)__======552 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 653 653 654 -{{html wiki="true" clean="false"}} 655 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 656 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 554 +====== __26. Query Current (**QC**)__ ====== 657 657 658 -Ex: #5 AH3<cr><divclass="wikimodel-emptyline"></div>556 +Ex: #5QC<cr> might return *5QC140<cr> 659 659 660 -Th is setstheholdingstiffnessforservo#5to3forthatsession.<divclass="wikimodel-emptyline"></div>558 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 661 661 662 - QueryAngularHolding Stiffness(**QAH**)<divclass="wikimodel-emptyline"></div>560 +====== __27. Configure RC Mode (**CRC**)__ ====== 663 663 664 - Ex:#5QAH<cr>might return*5QAH3<cr><divclass="wikimodel-emptyline"></div>562 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 665 665 666 -This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div> 564 +|**Command sent**|**Note** 565 +|ex: #5CRC1<cr>|Change to RC position mode. 566 +|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 567 +|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode. 667 667 668 - ConfigureAngular Holding Stiffness (**CAH**)<divclass="wikimodel-emptyline"></div>569 +EX: #5CRC2<cr> 669 669 670 - Ex:#5CAH2<cr><div class="wikimodel-emptyline"></div>571 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command. 671 671 672 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 673 -<div class="wikimodel-emptyline"></div></div></div> 674 -{{/html}} 573 +Important note:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe. 675 675 676 -====== __ AngularAcceleration (**AA**)__ ======575 +====== __28. **RESET**__ ====== 677 677 678 -{{html wiki="true" clean="false"}} 679 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 680 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 577 +Ex: #5RESET<cr> or #5RS<cr> 681 681 682 -Ex: #5AA30<cr><div class="wikimodel-emptyline"></div> 579 +This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 580 +Note: after a RESET command is received the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details. 683 683 684 - Thissets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<divclass="wikimodel-emptyline"></div>582 +====== __29. **DEFAULT** & CONFIRM__ ====== 685 685 686 - QueryAngular Acceleration (**QAA**)<divclass="wikimodel-emptyline"></div>584 +Ex: #5DEFAULT<cr> 687 687 688 - Ex:#5QAA<cr>might return*5QAA30<cr><divclass="wikimodel-emptyline"></div>586 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 689 689 690 - Thisreturnsthe servo's angular acceleration in degrees per secondsquared(°/s^^2^^).<divclass="wikimodel-emptyline"></div>588 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 691 691 692 - ConfigureAngularAcceleration(**CAA**)<divclass="wikimodel-emptyline"></div>590 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command. 693 693 694 - Ex:#5CAA30<cr><divclass="wikimodel-emptyline"></div>592 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 695 695 696 -This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 697 -<div class="wikimodel-emptyline"></div></div></div> 698 -{{/html}} 594 +====== __30. **UPDATE** & CONFIRM__ ====== 699 699 700 - ======__AngularDeceleration (**AD**)__ ======596 +Ex: #5UPDATE<cr> 701 701 702 -{{html wiki="true" clean="false"}} 703 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 704 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 598 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. 705 705 706 -E x: #5AD30<cr><divclass="wikimodel-emptyline"></div>600 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr> 707 707 708 - This setstheangulardecelerationforservo#5to30degreespersecondsquared(°/s^^2^^).<divclass="wikimodel-emptyline"></div>602 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 709 709 710 - QueryAngularDeceleration(**QAD**)<divclass="wikimodel-emptyline"></div>604 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 711 711 712 - Ex:#5QAD<cr> mightreturn*5QAD30<cr><divclass="wikimodel-emptyline"></div>606 +== Details - Advanced == 713 713 714 -Thi sreturnsthe servo'sangulardeceleration in degreespersecondsquared(°/s^^2^^).<divclass="wikimodel-emptyline"></div>608 +The motion controller used in serial mode is not the same as the motion controller use in RC mode. RC mode is intended to add functionality to what would be considered "normal" RC behavior based on PWM input. 715 715 716 - ConfigureAngularDeceleration (**CAD**)<divclass="wikimodel-emptyline"></div>610 +====== __A1. Angular Stiffness (**AS**)__ ====== 717 717 718 - Ex:#5CAD30<cr><divclass="wikimodel-emptyline"></div>612 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units. 719 719 720 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 721 -<div class="wikimodel-emptyline"></div></div></div> 722 -{{/html}} 614 +A positive value of "angular stiffness": 723 723 724 -====== __Gyre Direction (**G**)__ ====== 616 +* The more torque will be applied to try to keep the desired position against external input / changes 617 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 725 725 726 -{{html wiki="true" clean="false"}} 727 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 728 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div> 619 +A negative value on the other hand: 729 729 730 -Ex: #5G-1<cr><div class="wikimodel-emptyline"></div> 621 +* Causes a slower acceleration to the travel speed, and a slower deceleration 622 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back 731 731 732 -Th iscommandwillcauseservo#5'spositions to be inverted, effectively causing theervoto rotatein the oppositerectioniven thesamecommand.Forexampleina 2WD robot, servosareoftenphysically installedback toback, thereforesettingoneof the servos toanegativegyration,thesamewheelcommand (ex WR30)toboth servoswill causeherobot tomoveforwardor backwardrather than rotate.<divclass="wikimodel-emptyline"></div>624 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 733 733 734 - QueryGyre Direction (**QG**)<divclass="wikimodel-emptyline"></div>626 +Ex: #5AS-2<cr> 735 735 736 - Ex:#5QG<cr>might return*5QG-1<cr><divclass="wikimodel-emptyline"></div>628 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 737 737 738 - Thevalue returned above means the servo is in a counter-clockwise gyration. Sending a#5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<divclass="wikimodel-emptyline"></div>630 +Ex: #5QAS<cr> 739 739 740 - ConfigureGyre(**CG**)<divclass="wikimodel-emptyline"></div>632 +Queries the value being used. 741 741 742 -Ex: #5C G-1<cr><divclass="wikimodel-emptyline"></div>634 +Ex: #5CAS<cr> 743 743 744 -This changes the gyre direction as described above and also writes to EEPROM. 745 -<div class="wikimodel-emptyline"></div></div></div> 746 -{{/html}} 636 +Writes the desired angular stiffness value to memory. 747 747 748 -====== __ FirstPosition__ ======638 +====== __A2. Angular Holding Stiffness (**AH**)__ ====== 749 749 750 -{{html wiki="true" clean="false"}} 751 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 752 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div> 640 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when considering altering a stiffness value, the end effect depends on the mode being tested. 753 753 754 - QueryFirst Position in Degrees (**QFD**)<divclass="wikimodel-emptyline"></div>642 +Ex: #5AH3<cr> 755 755 756 - Ex:#5QFD<cr>might return*5QFD900<cr><divclass="wikimodel-emptyline"></div>644 +This sets the holding stiffness for servo #5 to 3 for that session. 757 757 758 - Theeplyabove indicates that servowith ID 5 has a first position of 90.0degrees.Ifthereis nofirst positionvaluetored, the reply will be DIS.<div class="wikimodel-emptyline"></div>646 +Query Angular Hold Stiffness (**QAH**) 759 759 760 - ConfigureFirstPositionin Degrees(**CFD**)<divclass="wikimodel-emptyline"></div>648 +Ex: #5QAH<cr> might return *5QAH3<cr> 761 761 762 - Ex:#5CFD900<cr><divclass="wikimodel-emptyline"></div>650 +This returns the servo's angular holding stiffness value. 763 763 764 -This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 765 -<div class="wikimodel-emptyline"></div></div></div> 766 -{{/html}} 652 +Configure Angular Hold Stiffness (**CAH**) 767 767 768 - ====== __MaximumMotorDuty (**MMD**)__ ======654 +Ex: #5CAH2<cr> 769 769 770 -{{html wiki="true" clean="false"}} 771 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 772 -This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div> 656 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. Note that when considering altering a stiffness value, the end effect depends on the mode being tested. 773 773 774 - Ex:#5MMD512<cr><divclass="wikimodel-emptyline"></div>658 +====== __A3: Angular Acceleration (**AA**)__ ====== 775 775 776 -Th iswill settheduty-cycle512forservowithID5forthatsession.<divclass="wikimodel-emptyline"></div>660 +The default value for angular acceleration is 100, which is the same as the maximum deceleration. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 777 777 778 - Query MaximumMotor Duty (**QMMD**)<divclass="wikimodel-emptyline"></div>662 +Ex: #5AA30<cr> 779 779 780 - Ex: #5QMMDD<cr>might return *5QMMD512<cr><divclass="wikimodel-emptyline"></div>664 +Query Angular Acceleration (**QAD**) 781 781 782 -This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 783 -<div class="wikimodel-emptyline"></div></div></div> 784 -{{/html}} 666 +Ex: #5QA<cr> might return *5QA30<cr> 785 785 786 - ====== __Maximum SpeedinDegrees(**SD**)__ ======668 +Configure Angular Acceleration (**CAD**) 787 787 788 -{{html wiki="true" clean="false"}} 789 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 790 -Ex: #5SD1800<cr><div class="wikimodel-emptyline"></div> 791 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 670 +Ex: #5CA30<cr> 792 792 793 - QuerySpeedin Degrees(**QSD**)<divclass="wikimodel-emptyline"></div>672 +====== __A4: Angular Deceleration (**AD**)__ ====== 794 794 795 - Ex:#5QSD<cr>mightreturn*5QSD1800<cr><divclass="wikimodel-emptyline"></div>674 +The default value for angular deceleration is 100, which is the same as the maximum acceleration. Values between 1 and 15 have the greatest impact. 796 796 797 - Bydefault QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If#5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<divclass="wikimodel-emptyline"></div>676 +Ex: #5AD8<cr> 798 798 799 -|**Command sent**|**Returned value (1/10 °)** 800 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 801 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 802 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 803 -|ex: #5QSD3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 678 +Query Angular Deceleration (**QAD**) 804 804 805 - ConfigureSpeedin Degrees(**CSD**)<divclass="wikimodel-emptyline"></div>680 +Ex: #5QD<cr> might return *5QD8<cr> 806 806 807 -Ex: #5CSD1800<cr><div class="wikimodel-emptyline"></div> 808 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 809 -</div></div> 810 -{{/html}} 682 +Configure Angular Deceleration (**CAD**) 811 811 812 - ====== __MaximumSpeed in RPM (**SR**)__ ======684 +Ex: #5CD8<cr> 813 813 814 -{{html wiki="true" clean="false"}} 815 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 816 -Ex: #5SR45<cr><div class="wikimodel-emptyline"></div> 817 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 686 +====== __A5: Motion Control (**EM**)__ ====== 818 818 819 - QuerySpeedinRPM(**QSR**)<div class="wikimodel-emptyline"></div>688 +The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller. 820 820 821 - Ex:#5QSR<cr>mightreturn*5QSR45<cr><divclass="wikimodel-emptyline"></div>690 +Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used. 822 822 823 - BydefaultQSR will return the current sessionvalue, which is set to the value of CSR asreset/powercycle and changed whenever an SD/SRcommand is processed. If #5QSR1<cr>is sent, the configuredmaximum speed(CSR value)will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>692 +====== __A6. Configure LED Blinking (**CLB**)__ ====== 824 824 825 -|**Command sent**|**Returned value (1/10 °)** 826 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 827 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 828 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 829 -|ex: #5QSR3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 694 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value: 830 830 831 -Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div> 696 +(% style="width:195px" %) 697 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 698 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 699 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1 700 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2 701 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 702 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 703 +|(% style="width:134px" %)Free|(% style="width:58px" %)16 704 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 705 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63 832 832 833 -Ex: #5CSR45<cr><div class="wikimodel-emptyline"></div> 834 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 835 -</div></div> 836 -{{/html}} 707 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 837 837 838 -{{id name="MODIFIERS"/}} 709 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 710 +Ex: #5CLB1<cr> only blink when limp (1) 711 +Ex: #5CLB2<cr> only blink when holding (2) 712 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12) 713 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48) 714 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32) 839 839 840 - ==Modifiers==716 +RESETTING the servo is needed. 841 841 842 -====== __ Speed (**S**, **SD**)modifier__ ======718 +====== __A7. Current Halt & Hold (**CH**)__ ====== 843 843 844 -{{html wiki="true" clean="false"}} 845 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 846 -Example: #5P1500S750<cr><div class="wikimodel-emptyline"></div> 847 -Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 848 -Example: #5D0SD180<cr><div class="wikimodel-emptyline"></div> 849 -Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second.<div class="wikimodel-emptyline"></div> 850 -Query Speed (**QS**)<div class="wikimodel-emptyline"></div> 851 -Example: #5QS<cr> might return *5QS300<cr><div class="wikimodel-emptyline"></div> 852 -This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div> 853 -</div></div> 854 -{{/html}} 720 +This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR. 855 855 856 - ======__Timed move (**T**) modifier__ ======722 +Ex: #5D1423CH400<cr> 857 857 858 -{{html wiki="true" clean="false"}} 859 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 860 -Example: #5P1500T2500<cr><div class="wikimodel-emptyline"></div> 724 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position. 861 861 862 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 863 -**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div> 864 -</div></div> 865 -{{/html}} 726 +====== __A8. Current Limp (**CL**)__ ====== 866 866 867 - ======__CurrentHalt&Hold(**CH**)modifier__======728 +This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR. 868 868 869 -{{html wiki="true" clean="false"}} 870 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 871 -Example: #5D1423CH400<cr><div class="wikimodel-emptyline"></div> 730 +Ex: #5D1423CH400<cr> 872 872 873 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div> 874 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 875 -</div></div> 876 -{{/html}} 732 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp. 877 877 878 -= =====__CurrentLimp(**CL**) modifier__======734 += RGB LED Patterns = 879 879 880 -{{html wiki="true" clean="false"}} 881 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 882 -Example: #5D1423CL400<cr><div class="wikimodel-emptyline"></div> 883 - 884 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div> 885 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 886 -</div></div> 887 -{{/html}} 888 - 889 -{{id name="TELEMETRY"/}} 890 - 891 -== Telemetry == 892 - 893 -====== __Query Voltage (**QV**)__ ====== 894 - 895 -{{html wiki="true" clean="false"}} 896 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 897 -Ex: #5QV<cr> might return *5QV11200<cr><div class="wikimodel-emptyline"></div> 898 -The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div> 899 -</div></div> 900 -{{/html}} 901 - 902 -====== __Query Temperature (**QT**)__ ====== 903 - 904 -{{html wiki="true" clean="false"}} 905 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 906 -Ex: #5QT<cr> might return *5QT564<cr><div class="wikimodel-emptyline"></div> 907 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div> 908 -</div></div> 909 -{{/html}} 910 - 911 -====== __Query Current (**QC**)__ ====== 912 - 913 -{{html wiki="true" clean="false"}} 914 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 915 -Ex: #5QC<cr> might return *5QC140<cr><div class="wikimodel-emptyline"></div> 916 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div> 917 -</div></div> 918 -{{/html}} 919 - 920 -====== __Query Model String (**QMS**)__ ====== 921 - 922 -{{html wiki="true" clean="false"}} 923 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 924 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr><div class="wikimodel-emptyline"></div> 925 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div> 926 -</div></div> 927 -{{/html}} 928 - 929 -====== __Query Firmware (**QF**)__ ====== 930 - 931 -{{html wiki="true" clean="false"}} 932 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 933 -Ex: #5QF<cr> might return *5QF368<cr><div class="wikimodel-emptyline"></div> 934 -The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div> 935 -The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div> 936 -</div></div> 937 -{{/html}} 938 - 939 -====== __Query Serial Number (**QN**)__ ====== 940 - 941 -{{html wiki="true" clean="false"}} 942 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 943 -Ex: #5QN<cr> might return *5QN12345678<cr><div class="wikimodel-emptyline"></div> 944 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div> 945 -</div></div> 946 -{{/html}} 947 - 948 -{{id name="RGB_LED"/}} 949 - 950 -== RGB LED == 951 - 952 -====== __LED Color (**LED**)__ ====== 953 - 954 -{{html wiki="true" clean="false"}} 955 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 956 -Ex: #5LED3<cr><div class="wikimodel-emptyline"></div> 957 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div> 958 -0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div> 959 -Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div> 960 -Ex: #5QLED<cr> might return *5QLED5<cr><div class="wikimodel-emptyline"></div> 961 -This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div> 962 -Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div> 963 -Ex: #5CLED3<cr><div class="wikimodel-emptyline"></div> 964 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div> 965 -</div></div> 966 -{{/html}} 967 - 968 -====== __Configure LED Blinking (**CLB**)__ ====== 969 - 970 -{{html wiki="true" clean="false"}} 971 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 972 -This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div> 973 - 974 -(% style="width:195px" %) 975 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 976 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 977 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1 978 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2 979 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 980 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 981 -|(% style="width:134px" %)Free|(% style="width:58px" %)16 982 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 983 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div> 984 - 985 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div> 986 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div> 987 -Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div> 988 -Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div> 989 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div> 990 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div> 991 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div> 992 -RESETTING the servo is needed.<div class="wikimodel-emptyline"></div> 993 -</div></div> 994 -{{/html}} 995 - 996 -== RGB LED Patterns == 997 - 998 998 The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] 999 999 1000 1000 [[image:LSS - LED Patterns.png]]
- LSS-Protocol-Backup-2020-05-01.zip
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -47.4 KB - Content
- XWiki.StyleSheetExtension[0]
-
- Caching policy
-
... ... @@ -1,1 +1,0 @@ 1 -long - Code
-
... ... @@ -1,13 +1,0 @@ 1 -div.cmdcnt 2 -{ 3 - display:table-row; 4 -} 5 -div.cmdpad 6 -{ 7 - display:table-cell; 8 - padding:16px; 9 -} 10 -div.cmdtxt 11 -{ 12 - display:table-cell; 13 -} - Content Type
-
... ... @@ -1,1 +1,0 @@ 1 -CSS - Name
-
... ... @@ -1,1 +1,0 @@ 1 -DivTextIndentation - Parse content
-
... ... @@ -1,1 +1,0 @@ 1 -0 - Use this extension
-
... ... @@ -1,1 +1,0 @@ 1 -currentPage