Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 2 removed)
-
Objects (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 - lynxmotion-smart-servo.WebHome1 +Lynxmotion Smart Servo (LSS).WebHome - Hidden
-
... ... @@ -1,1 +1,1 @@ 1 - false1 +true - Content
-
... ... @@ -1,1000 +1,649 @@ 1 1 (% class="wikigeneratedid" id="HTableofContents" %) 2 -** Page Contents**2 +**Table of Contents** 3 3 4 4 {{toc depth="3"/}} 5 5 6 -= SerialProtocol =6 += Protocol Concepts = 7 7 8 -The Lynxmotion Smart Servo (LSS) serialprotocol was created in order to be as simple and straightforward as possible from a user perspective("human readable format"), while at the same timestaying compact and robust yet highly versatile.The protocolwas based on Lynxmotion'sSSC-32 & SSC-32U RC servo controllersand almosteverything one might expect to be able to configure for a smart servomotor is available.8 +The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available. 9 9 10 -In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on CID [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC or checksum implemented as part of the protocol. 11 - 12 12 == Session == 13 13 14 -{{html clean="false" wiki="true"}} 15 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 16 -A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.<div class="wikimodel-emptyline"></div> 12 +A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 17 17 18 -**Note #1:** For a given session, the action related to a specific command overrides the stored value in EEPROM.<div class="wikimodel-emptyline"></div> 19 -**Note #2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).<div class="wikimodel-emptyline"></div> 20 -You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays. 21 -<div class="wikimodel-emptyline"></div></div></div> 22 -{{/html}} 23 - 24 24 == Action Commands == 25 25 26 -{{html wiki="true" clean="false"}} 27 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 28 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]]. Action commands are sent serially to the servo's Rx pin and must be sent in the following format:<div class="wikimodel-emptyline"></div> 16 +Action commands are sent serially to the servo's Rx pin and must be set in the following format: 29 29 30 -1. Start with a number sign **#**(Unicode Character: U+0023)18 +1. Start with a number sign # (U+0023) 31 31 1. Servo ID number as an integer 32 -1. Action command (one o rmore letters, nowhitespace, capital or lower case)20 +1. Action command (one to three letters, no spaces, capital or lower case) 33 33 1. Action value in the correct units with no decimal 34 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)22 +1. End with a control / carriage return '<cr>' 35 35 36 36 ((( 37 -Ex: #5D1 800<cr><divclass="wikimodel-emptyline"></div>25 +Ex: #5PD1443<cr> 38 38 39 -This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 40 -<div class="wikimodel-emptyline"></div></div></div> 41 -{{/html}} 27 +Move servo with ID #5 to a position of 144.3 degrees. 42 42 43 - ==Modifiers==29 +Action commands cannot be combined with query commands, and only one action command can be sent at a time. 44 44 45 -{{html wiki="true" clean="false"}} 46 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 47 -Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div> 31 +Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page). 48 48 49 -1. Start with a number sign **#** (Unicode Character: U+0023) 33 +== Action Modifiers == 34 + 35 +Two commands can be used as action modifiers only: Timed Move and Speed. The format is: 36 + 37 +1. Start with a number sign # (U+0023) 50 50 1. Servo ID number as an integer 51 51 1. Action command (one to three letters, no spaces, capital or lower case) 52 52 1. Action value in the correct units with no decimal 53 -1. Modifier command (one letter to too letters)41 +1. Modifier command (one letter) 54 54 1. Modifier value in the correct units with no decimal 55 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)43 +1. End with a control / carriage return '<cr>' 56 56 57 -Ex: #5 D1800T1500<cr><divclass="wikimodel-emptyline"></div>45 +Ex: #5P1456T1263<cr> 58 58 59 -This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div> 60 -<div class="wikimodel-emptyline"></div></div></div> 61 -{{/html}} 47 +Results in the servo rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds. 62 62 63 -== Query Commands == 49 +Action modifiers can only be used with certain commands. 50 +))) 64 64 65 -{{html wiki="true" clean="false"}} 66 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 67 -Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div> 68 - 69 -1. Start with a number sign **#** (Unicode Character: U+0023) 70 -1. Servo ID number as an integer 71 -1. Query command (one to four letters, no spaces, capital or lower case) 72 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 73 - 74 -Ex: #5QD<cr> Query position in (tenth of) degrees for servo #5<div class="wikimodel-emptyline"></div> 75 - 76 -The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format: 77 - 78 -1. Start with an asterisk * (Unicode Character: U+0023) 79 -1. Servo ID number as an integer 80 -1. Query command (one to four letters, no spaces, capital letters) 81 -1. The reported value in the units described, no decimals. 82 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 83 - 84 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div> 85 - 86 -Ex: *5QD1800<cr><div class="wikimodel-emptyline"></div> 87 - 88 -This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees). 89 -<div class="wikimodel-emptyline"></div></div></div> 90 -{{/html}} 91 - 92 92 == Configuration Commands == 93 93 94 -{{html wiki="true" clean="false"}} 95 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 96 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div> 54 +Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. 97 97 98 -These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div> 99 - 100 -The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div> 101 - 102 -1. Start with a number sign **#** (Unicode Character: U+0023) 56 +1. Start with a number sign # (U+0023) 103 103 1. Servo ID number as an integer 104 -1. Configuration command (two to four58 +1. Configuration command (two to three letters, no spaces, capital or lower case) 105 105 1. Configuration value in the correct units with no decimal 106 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<divclass="wikimodel-emptyline"></div>60 +1. End with a control / carriage return '<cr>' 107 107 108 -Ex: #5CO-50 <cr><divclass="wikimodel-emptyline"></div>62 +Ex: #5CO-50<cr> 109 109 110 - Thisconfigures an absolute origin offset("CO") with respect toactoryorigin of servo with ID #5 and changes the offset for that session to-5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroingtheservo will causeit to move to -5.0 degreeswith respect tothefactory originand reportits positionas0 degrees. Configurationcommandscanbeundone / reseteitherby sending the servo'sdefaultvaluefor thatconfiguration, or by doing a factory reset that clearsall configurations(throughthebutton menu or with DEFAULT commanddescribed below).<div class="wikimodel-emptyline"></div>64 +Assigns an absolute origin offset of -5.0 degrees (with respect to factory origin) to servo #5 and changes the offset for that session to -5.0 degrees. 111 111 112 - **SessionvsConfigurationQuery**<divclass="wikimodel-emptyline"></div>66 +Configuration commands are not cumulative, in that if two configurations are sent at any time, only the last configuration is used and stored. 113 113 114 - By default,thequerycommandreturns thesession's value. Shouldnoactioncommandshavebeensent to changehesessionvalue, it willreturn the valuesavedin EEPROM which will eitherbe theservo'sdefault,ormodifiedwitha configurationcommand. In orderto querythevaluestored in EEPROM (configuration),adda '1' tothequerycommand:<divclass="wikimodel-emptyline"></div>68 +*Important Note: the one exception is the baud rate - the servo's current session retains the given baud rate. The new baud rate will only be in place when the servo is power cycled. 115 115 116 - Ex:#5CSR20<cr> immediately sets the maximum speed forservo#5 to 20rpm(explainedbelow) and changesthe value in memory.<div class="wikimodel-emptyline"></div>70 +== Query Commands == 117 117 118 - AfterRESET, acommandof #5SR4<cr>sets the session'sspeedto 4rpm, butdoesnotchangetheconfiguration valueinmemory. Therefore:<div class="wikimodel-emptyline"></div>72 +Query commands are sent serially to the servo's Rx pin and must be set in the following format: 119 119 120 -#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas<div class="wikimodel-emptyline"></div> 74 +1. Start with a number sign # (U+0023) 75 +1. Servo ID number as an integer 76 +1. Query command (one to three letters, no spaces, capital or lower case) 77 +1. End with a control / carriage return '<cr>' 121 121 122 - #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM123 - <divclass="wikimodel-emptyline"></div></div></div>124 - {{/html}}79 +((( 80 +Ex: #5QD<cr>Query position in degrees for servo #5 81 +))) 125 125 126 -== Virtual Angular Position == 83 +((( 84 +The query will return a value via the Tx pin with the following format: 127 127 128 -{{html wiki="true" clean="false"}} 129 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 130 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div> 86 +1. Start with an asterisk (U+002A) 87 +1. Servo ID number as an integer 88 +1. Query command (one to three letters, no spaces, capital letters) 89 +1. The reported value in the units described, no decimals. 90 +1. End with a control / carriage return '<cr>' 131 131 132 -[[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div> 92 +((( 93 +Ex: *5QD1443<cr> 94 +))) 133 133 134 -In this example, the gyredirection (explainedbelow, a.k.a. "rotationdirection") ispositive(clockwise),andorigin offsethas not been modified. Each squarerepresents30degrees.The following command is sent:<div class="wikimodel-emptyline"></div>96 +Indicates that servo #5 is currently at 144.3 degrees. 135 135 136 - #1D-300<cr> This causestheservoto moveto-30.0 degrees (greenarrow)<div class="wikimodel-emptyline"></div>98 +**Session vs Configuration Query** 137 137 138 - #1D2100<cr>Thissecondposition commandis sent totheservo,whichmoves itto210.0 degrees(orange arrow)<divclass="wikimodel-emptyline"></div>100 +By default, the query command returns the sessions' value; should no action commands have been sent to change, it will return the value saved in EEPROM from the last configuration command. 139 139 140 - #1D-4200<cr> Thisnextcommandotatestheservo counterclockwiseto a positionof-420degrees (red arrow),whichmeans one full rotationof 360 degrees plus 60.0 degrees (420.0 - 360.0), witha virtual position of -420.0 degrees.<divclass="wikimodel-emptyline"></div>102 +In order to query the value in EEPROM, add a '1' to the query command. 141 141 142 - Althoughthe final physicalpositionwould bethesameasiftheservo were commandedtomove to -60.0 degrees,theservoisin factat -420.0 degrees.<div class="wikimodel-emptyline"></div>104 +Ex: #5CSR20<cr> sets the maximum speed for servo #5 to 20rpm upon RESET (explained below). 143 143 144 - #1D4800<cr>Thisnewcommandissentwhich would then causethe servo to rotate from -420.0 degreesto 480.0 degrees(blue arrow), which would be a total of 900 degreesof clockwiserotation,or2.5 complete rotations.<divclass="wikimodel-emptyline"></div>106 +After RESET: #5SR4<cr> sets the session's speed to 4rpm. 145 145 146 -# 1D3300<cr>wouldcauseheservotorotatefrom 480.0 degrees to 330.0 degrees(yellowarrow).<divclass="wikimodel-emptyline"></div>108 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session. 147 147 148 -If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°]. 149 -<div class="wikimodel-emptyline"></div></div></div> 150 -{{/html}} 110 +#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 151 151 152 -= CommandList =112 +== Virtual Angular Position == 153 153 154 - **Latestfirmware version currently : 368.29.14**114 +{In progress} 155 155 156 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]] 157 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 158 -| |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Soft reset. See command for details. 159 -| |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Revert to firmware default values. See command for details 160 -| |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Update firmware. See command for details. 161 -| |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 162 -| |[[**C**hange to **RC**>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CRC|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Change to RC mode 1 (position) or 2 (wheel). 163 -| |[[**ID** #>>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %) |(% style="text-align:center" %)✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 164 -| |[[**B**audrate>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QB|(% style="text-align:center" %)CB|(% style="text-align:center" %) |(% style="text-align:center" %)✓|115200| |Reset required after change. 116 +A "virtual position" is one which allows for multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to 360.0 degrees. 165 165 166 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]] 167 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 168 -| |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 169 -| |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 170 -| |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation" 171 -| |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation" 172 -| |[[Position in **P**WM>>||anchor="HPositioninPWM28P29"]]|(% style="text-align:center" %)P|(% style="text-align:center" %)QP|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|Inherited from SSC-32 serial protocol 173 -| |[[**M**ove in PWM (relative)>>||anchor="H28Relative29MoveinPWM28M29"]]|(% style="text-align:center" %)M|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us| 174 -| |[[**R**aw **D**uty-cycle **M**ove>>||anchor="HRawDuty-cycleMove28RDM29"]]|(% style="text-align:center" %)RDM|(% style="text-align:center" %)QMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW 175 -| |[[**Q**uery Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1 to 8 integer|See command description for details 176 -| |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 177 -| |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 118 +[[image:LSS-servo-positions.jpg]] 178 178 179 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]] 180 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 181 -| |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|(% style="text-align:center" %) |(% style="text-align:center" %)✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile 182 -| |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|5| |Affects motion only when motion profile is disabled (EM0) 183 -| |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|1/10°| 184 -| |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1800|1/10°| 185 -| |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|-4 to +4 integer|Suggested values are between 0 to +4 186 -| |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|4|-10 to +10 integer| 187 -| |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 188 -| |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 189 -| |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 190 -| |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|No value|1/10°|Reset required after change. 191 -| |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓|1023|255 to 1023 integer| 192 -| |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 193 -| |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 120 +Example: Gyre direction / rotation is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. 194 194 195 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]] 196 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 197 -| |[[**S**peed>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)S|(% style="text-align:center" %)QS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |uS/s |For P action command 198 -| |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|For D and MD action commands 199 -| |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |ms|Modifier only for P, D and MD. Time can change based on load 200 -| |[[**C**urrent **H**old>>||anchor="HCurrentHalt26Hold28CH29modifier"]]|(% style="text-align:center" %)CH|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 201 -| |[[**C**urrent **L**imp>>||anchor="HCurrentLimp28CL29modifier"]]|(% style="text-align:center" %)CL|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 122 +#1D-300<cr> The servo is sent a command to move to -30.0 degrees (green arrow) 202 202 203 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]] 204 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 205 -| |[[**Q**uery **V**oltage>>||anchor="HQueryVoltage28QV29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QV|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mV| 206 -| |[[**Q**uery **T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°C| 207 -| |[[**Q**uery **C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA| 208 -| |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1) 209 -| |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 210 -| |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the unique serial number for the servo 124 +#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow) 211 211 212 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]] 213 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 214 -| |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White 215 -| |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QLB|(% style="text-align:center" %)CLB|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 63 integer|Reset required after change. See command for details. 126 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees, stopping at an absolute position of 60.0 degrees (420.0-360.0), with a virtual position of -420.0 degrees. 216 216 217 - =(% style="color:inherit;font-family:inherit"%)Details(%%)=128 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 218 218 219 - {{id name="COMMUNICATION_SETUP"/}}130 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 220 220 221 - ==(%style="color:inherit;font-family:inherit"%)CommunicationSetup(%%)==132 +#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow). 222 222 223 -====== __Reset__ ====== 134 +If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). 135 +))) 224 224 225 -{{html wiki="true" clean="false"}} 226 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 227 -Ex: #5RESET<cr><div class="wikimodel-emptyline"></div> 228 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). 229 -Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div> 230 -</div></div> 231 -{{/html}} 137 += Command List = 232 232 233 -====== __Default & confirm__ ====== 139 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes|=(% style="width: 50px;" %) 140 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none| | 141 +| 2|[[**H**alt & Hold>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none| | 142 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds| Modifier only (P, D, MD)| 143 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds / second| Modifier only (P)| 144 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| | 145 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| | 146 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| | 147 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|((( 148 +See details below 149 +)))| 150 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| | 151 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|A.K.A. "Speed mode" or "Continuous rotation"| 152 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|A.K.A. "Speed mode" or "Continuous rotation"| 153 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD| CSD| ✓| ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed| 154 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR| CSR| ✓| ✓|rpm|QSR: Add modifier "2" for instantaneous speed| 155 +| 14|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4| 156 +| 15|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0. | 157 +|15b|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared| 158 +|15c|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared| 159 +|15d|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles| 160 +| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|7 161 +| 16b|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;| 162 +| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to| 163 +| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)| | 164 +| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)| 165 +| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none | | 166 +| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none | | 167 +| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| | 168 +| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)| Recommended to determine the model| | 169 +| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)| Returns a raw value representing the three model inputs (36 bit)| | 170 +| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)| | 171 +| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)| | 172 +| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)| See command description for details| 173 +| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)| | 174 +| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)| 175 +| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)| | 176 +| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|((( 177 +CRC: Add modifier "1" for RC-position mode. 178 +CRC: Add modifier "2" for RC-wheel mode. 179 +Any other value for the modifier results in staying in smart mode. 180 +Puts the servo into RC mode. To revert to smart mode, use the button menu. 181 +)))| 182 +|31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|Soft reset. See command for details.| 183 +|32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|Revert to firmware default values. See command for details| 184 +|33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|Update firmware. See command for details.| 234 234 235 -{{html wiki="true" clean="false"}} 236 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 237 -Ex: #5DEFAULT<cr><div class="wikimodel-emptyline"></div> 186 +== Details == 238 238 239 - Thiscommand sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo.The servo then waits for the CONFIRM command.Any other command received will cause the servo to exit the DEFAULTfunction.<div class="wikimodel-emptyline"></div>188 +====== __1. Limp (**L**)__ ====== 240 240 241 -E X: #5DEFAULT<cr> followedby#5CONFIRM<cr><divclass="wikimodel-emptyline"></div>190 +Example: #5L<cr> 242 242 243 - Sinceitt notcommontohavetorestoreallconfigurations, aconfirmationcommandisneededaftera firmwarecommandissent.Shouldanycommand otherthanCONFIRM be receivedbytheservoafterthefirmwarecommandhasbeenreceived,itwillexitthecommand.<divclass="wikimodel-emptyline"></div>192 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 244 244 245 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 246 -</div></div> 247 -{{/html}} 194 +====== __2. Halt & Hold (**H**)__ ====== 248 248 249 - ====== __Update&confirm__ ======196 +Example: #5H<cr> 250 250 251 -{{html wiki="true" clean="false"}} 252 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 253 -Ex: #5UPDATE<cr><div class="wikimodel-emptyline"></div> 198 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position. 254 254 255 - Thiscommand sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful shouldthe button be broken or inaccessible. The servo then waits for the CONFIRM command. Anyother command receivedwill cause the servo to exit the UPDATEfunction.<div class="wikimodel-emptyline"></div>200 +====== __3. Timed move (**T**)__ ====== 256 256 257 -E X: #5UPDATE<cr> followed by #5CONFIRM<cr><divclass="wikimodel-emptyline"></div>202 +Example: #5P1500T2500<cr> 258 258 259 - Sinceit it notcommontohavetoupdatefirmware,aconfirmation commandisneededafteranUPDATEcommandis sent. Shouldanycommand otherthanCONFIRMbe receivedbythe servoafterthe firmwarecommandhasbeenreceived,itwillleave thefirmware action.<divclass="wikimodel-emptyline"></div>204 +Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 260 260 261 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 262 -</div></div> 263 -{{/html}} 206 +Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 264 264 265 -====== __ Confirm__ ======208 +====== __4. Speed (**S**)__ ====== 266 266 267 -{{html wiki="true" clean="false"}} 268 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 269 -Ex: #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 210 +Example: #5P1500S750<cr> 270 270 271 -This command is used to confirmchangesafteraDefault orUpdatecommand.<divclass="wikimodel-emptyline"></div>212 +This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 272 272 273 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 274 -</div></div> 275 -{{/html}} 214 +====== __5. (Relative) Move in Degrees (**MD**)__ ====== 276 276 277 - ====== __ConfigureRCMode (**CRC**)__ ======216 +Example: #5MD123<cr> 278 278 279 -{{html wiki="true" clean="false"}} 280 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 281 -This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.<div class="wikimodel-emptyline"></div> 282 - 283 -|**Command sent**|**Note** 284 -|ex: #5CRC1<cr>|Change to RC position mode. 285 -|ex: #5CRC2<cr>|Change to RC continuous rotation (wheel) mode. 286 -|ex: #5CRC*<cr>|Where * is any value other than 1 or 2 (or no value): stay in smart mode.<div class="wikimodel-emptyline"></div> 287 - 288 -EX: #5CRC2<cr><div class="wikimodel-emptyline"></div> 289 - 290 -This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.<div class="wikimodel-emptyline"></div> 291 - 292 -**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.<div class="wikimodel-emptyline"></div> 293 -</div></div> 294 -{{/html}} 295 - 296 -====== __Identification Number (**ID**)__ ====== 297 - 298 -{{html wiki="true" clean="false"}} 299 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 300 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div> 301 - 302 -Query Identification (**QID**)<div class="wikimodel-emptyline"></div> 303 - 304 -EX: #254QID<cr> might return *QID5<cr><div class="wikimodel-emptyline"></div> 305 - 306 -When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div> 307 - 308 -Configure ID (**CID**)<div class="wikimodel-emptyline"></div> 309 - 310 -Ex: #4CID5<cr><div class="wikimodel-emptyline"></div> 311 - 312 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div> 313 -</div></div> 314 -{{/html}} 315 - 316 -====== __Baud Rate__ ====== 317 - 318 -{{html wiki="true" clean="false"}} 319 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 320 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div> 321 - 322 -Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div> 323 - 324 -Ex: #5QB<cr> might return *5QB115200<cr><div class="wikimodel-emptyline"></div> 325 - 326 -Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div> 327 - 328 -Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div> 329 - 330 -**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div> 331 - 332 -Ex: #5CB9600<cr><div class="wikimodel-emptyline"></div> 333 - 334 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div> 335 -</div></div> 336 -{{/html}} 337 - 338 -{{id name="MOTION"/}} 339 - 340 -== Motion == 341 - 342 -====== __Position in Degrees (**D**)__ ====== 343 - 344 -{{html wiki="true" clean="false"}} 345 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 346 -Example: #5D1456<cr><div class="wikimodel-emptyline"></div> 347 - 348 -This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div> 349 - 350 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div> 351 - 352 -Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div> 353 - 354 -Example: #5QD<cr> might return *5QD132<cr><div class="wikimodel-emptyline"></div> 355 - 356 -This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div> 357 - 358 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 359 -Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div> 360 - 361 -Ex: #5QDT<cr> might return *5QDT6783<cr><div class="wikimodel-emptyline"></div> 362 - 363 -The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 364 -<div class="wikimodel-emptyline"></div></div></div> 365 -{{/html}} 366 - 367 -====== __(Relative) Move in Degrees (**MD**)__ ====== 368 - 369 -{{html wiki="true" clean="false"}} 370 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 371 -Example: #5MD123<cr><div class="wikimodel-emptyline"></div> 372 - 373 373 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 374 -<div class="wikimodel-emptyline"></div></div></div> 375 -{{/html}} 376 376 377 -====== __ WheelModeinDegrees (**WD**)__ ======220 +====== __6. Origin Offset Action (**O**)__ ====== 378 378 379 -{{html wiki="true" clean="false"}} 380 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 381 -Ex: #5WD90<cr><div class="wikimodel-emptyline"></div> 222 +Example: #5O2400<cr> 382 382 383 -This command s etsthe servo towheelmode whereit willrotate in thedesireddirectionat theselectedspeed. The exampleabovewouldhave theservo rotateat90.0degreesper secondclockwise(assumingfactorydefaultconfigurations).<div class="wikimodel-emptyline"></div>224 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position. The setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. Note that for a given session, the O command overrides the CO command. In the first image, the origin at factory offset '0' (centered). 384 384 385 - Query Wheel Modein Degrees(**QWD**)<divclass="wikimodel-emptyline"></div>226 +[[image:LSS-servo-default.jpg]] 386 386 387 - Ex:#5QWD<cr>might return*5QWD90<cr><divclass="wikimodel-emptyline"></div>228 +In the second image, the origina, as well as the angular range (explained below) have been shifted by 240.0 degrees: 388 388 389 -The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 390 -<div class="wikimodel-emptyline"></div></div></div> 391 -{{/html}} 230 +[[image:LSS-servo-origin.jpg]] 392 392 393 - ======__WheelModein RPM(**WR**)__ ======232 +Origin Offset Query (**QO**) 394 394 395 -{{html wiki="true" clean="false"}} 396 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 397 -Ex: #5WR40<cr><div class="wikimodel-emptyline"></div> 234 +Example: #5QO<cr> Returns: *5QO-13 398 398 399 -This command sets the servotowheelmodewhere itwill rotatein thedesireddirection at theselectedrpm. Wheel mode(a.k.a. "continuousrotation") hastheservooperatelikeagearedDC motor.Theservo's maximumrpm cannot be set higher than itsphysicallimitata givenvoltage. The example abovewould havetheservo rotate at 40 rpm clockwise (assumingfactorydefault configurations).<divclass="wikimodel-emptyline"></div>236 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. 400 400 401 - Query WheelModeinRPM(**QWR**)<div class="wikimodel-emptyline"></div>238 +Configure Origin Offset (**CO**) 402 402 403 -Ex: #5 QWR<cr> might return *5QWR40<cr><divclass="wikimodel-emptyline"></div>240 +Example: #5CO-24<cr> 404 404 405 -The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 406 -<div class="wikimodel-emptyline"></div></div></div> 407 -{{/html}} 242 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. 408 408 409 -====== __ PositioninPWM(**P**)__ ======244 +====== __7. Angular Range (**AR**)__ ====== 410 410 411 -{{html wiki="true" clean="false"}} 412 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 413 -Example: #5P2334<cr><div class="wikimodel-emptyline"></div> 246 +Example: #5AR1800<cr> 414 414 415 -Th epositionin PWM pulseswasretained inordertobebackward compatiblewith theSSC-32 / 32U protocol.This relates the desired angle withanRC standard PWM signaland isfurtherexplainedin theSSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]].Withoutany modifications toconfigurationconsidered,and a±90.0 degrees standardrangewhere 1500microsecondsiscentered,aPWMsignalof2334 wouldsettheservoto165.1degrees.Validvalues forP are [500,2500]. Values outsidethis range arecorrected/restrictedto end points.<divclass="wikimodel-emptyline"></div>248 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). In the first image, 416 416 417 - Query Position in Pulse(**QP**)<divclass="wikimodel-emptyline"></div>250 +[[image:LSS-servo-default.jpg]] 418 418 419 - Example:#5QP<cr>mightreturn *5QP2334<divclass="wikimodel-emptyline"></div>252 +Here, the angular range has been restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 420 420 421 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 422 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 423 -<div class="wikimodel-emptyline"></div></div></div> 424 -{{/html}} 254 +[[image:LSS-servo-ar.jpg]] 425 425 426 - ====== __(Relative)Move inPWM(**M**)__======256 +The angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) an be used to move both the center and limit the angular range: 427 427 428 -{{html wiki="true" clean="false"}} 429 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 430 -Example: #5M1500<cr><div class="wikimodel-emptyline"></div> 258 +[[image:LSS-servo-ar-o-1.jpg]] 431 431 432 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 433 -<div class="wikimodel-emptyline"></div></div></div> 434 -{{/html}} 260 +Query Angular Range (**QAR**) 435 435 436 - ======__RawDuty-cycleMove(**RDM**)__ ======262 +Example: #5QAR<cr> might return *5AR2756 437 437 438 -{{html wiki="true" clean="false"}} 439 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 440 -Example: #5RDM512<cr><div class="wikimodel-emptyline"></div> 264 +Configure Angular Range (**CAR**) 441 441 442 -Th eraw duty-cycle move command(orfreemovecommand)will rotate the servoata specifiedduty cyclevalue inwheelmode(a.k.a. "continuous rotation")like agearedDC motor.<divclass="wikimodel-emptyline"></div>266 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 443 443 444 - Theduty values range from 0 to 1023.Negative values will rotate theservointhe opposite direction(for factory default a negativevalue would be counter clockwise).<divclass="wikimodel-emptyline"></div>268 +====== __8. Position in Pulse (**P**)__ ====== 445 445 446 - Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div>270 +Example: #5P2334<cr> 447 447 448 - Example:#5QMD<cr>might return*5QMD512<divclass="wikimodel-emptyline"></div>272 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected to end points. 449 449 450 -This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 451 -<div class="wikimodel-emptyline"></div></div></div> 452 -{{/html}} 274 +Query Position in Pulse (**QP**) 453 453 454 - ======__QueryStatus(**Q**)__ ======276 +Example: #5QP<cr> might return *5QP2334 455 455 456 -{{html wiki="true" clean="false"}} 457 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 458 -The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div> 278 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 279 +Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 459 459 460 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div> 461 -</div></div> 462 -{{/html}} 281 +====== __9. Position in Degrees (**D**)__ ====== 463 463 464 -|(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description** 465 -| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 466 -| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 467 -| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command 468 -| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 469 -| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 470 -| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 471 -| |ex: *5Q6<cr>|6: Holding|Keeping current position 472 -| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 473 -| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 474 -| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 475 -| |ex: *5Q10<cr>|10: Safe Mode|((( 476 -A safety limit has been exceeded (temperature, peak current or extended high current draw). 283 +Example: #5PD1456<cr> 477 477 478 -Send a Q1 command to know which limit has been reached (described below). 479 -))) 285 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction. 480 480 481 -{{html wiki="true" clean="false"}} 482 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 483 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div> 484 -</div></div> 485 -{{/html}} 287 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position. 486 486 487 -|(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description** 488 -| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 489 -| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 490 -| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 491 -| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 289 +Query Position in Degrees (**QD**) 492 492 493 - ====== __Limp(**L**)__======291 +Example: #5QD<cr> might return *5QD132<cr> 494 494 495 -{{html wiki="true" clean="false"}} 496 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 497 -Example: #5L<cr><div class="wikimodel-emptyline"></div> 293 +This means the servo is located at 13.2 degrees. 498 498 499 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 500 -<div class="wikimodel-emptyline"></div></div></div> 501 -{{/html}} 295 +====== __10. Wheel Mode in Degrees (**WD**)__ ====== 502 502 503 - ======__Halt & Hold (**H**)__ ======297 +Ex: #5WD900<cr> 504 504 505 -{{html wiki="true" clean="false"}} 506 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 507 -Example: #5H<cr><div class="wikimodel-emptyline"></div> 299 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). 508 508 509 -This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 510 -<div class="wikimodel-emptyline"></div></div></div> 511 -{{/html}} 301 +Query Wheel Mode in Degrees (**QWD**) 512 512 513 - {{idname="MOTION_SETUP"/}}303 +Ex: #5QWD<cr> might return *5QWD900<cr> 514 514 515 - ==MotionSetup==305 +The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 516 516 517 -====== __ Enable Motion Profile(**EM**)__ ======307 +====== __11. Wheel Mode in RPM (**WR**)__ ====== 518 518 519 -{{html wiki="true" clean="false"}} 520 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 521 -Ex: #5EM1<cr><div class="wikimodel-emptyline"></div> 309 +Ex: #5WR40<cr> 522 522 523 -This command e nablesatrapezoidal motionprofile.Bydefault,the trapezoidalmotionprofileis enabled.Ifthe motion profileisnabled,angularacceleration(AA)andangulardeceleration(AD)willhavean effecton themotion.Also,SD/SandTmodifierscan beused.<div class="wikimodel-emptyline"></div>311 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). 524 524 525 - Ex: #5EM0<cr><divclass="wikimodel-emptyline"></div>313 +Query Wheel Mode in RPM (**QWR**) 526 526 527 - Thiscommand will disable the trapezoidalmotion profile. As such,theservo will moveatfull speed forD/MD actioncommands. Angular acceleration (AA) and angular deceleration(AD) won't have an effect on motion in this mode and modifiers SD/S or T cannot be used.<divclass="wikimodel-emptyline"></div>315 +Ex: #5QWR<cr> might return *5QWR40<cr> 528 528 529 - QueryMotionProfile(**QEM**)<divclass="wikimodel-emptyline"></div>317 +The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 530 530 531 - Ex:#5QEM<cr>mightreturn*5QEM1<cr><divclass="wikimodel-emptyline"></div>319 +====== __12. Speed in Degrees (**SD**)__ ====== 532 532 533 - This command will query the motion profile. **0:**motion profile disabled / **1:** trapezoidal motion profile enabled.<divclass="wikimodel-emptyline"></div>321 +Ex: #5SD1800<cr> 534 534 535 - ConfigureMotionProfile(**CEM**)<divclass="wikimodel-emptyline"></div>323 +This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session. 536 536 537 - Ex: #5CEM0<cr><divclass="wikimodel-emptyline"></div>325 +Query Speed in Degrees (**QSD**) 538 538 539 -This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 540 -<div class="wikimodel-emptyline"></div></div></div> 541 -{{/html}} 327 +Ex: #5QSD<cr> might return *5QSD1800<cr> 542 542 543 -====== __Filter Position Count (**FPC**)__ ====== 329 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed. 330 +If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 544 544 545 -{{html wiki="true" clean="false"}} 546 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 547 -Ex: #5FPC10<cr><div class="wikimodel-emptyline"></div> 548 -This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div> 332 +|**Command sent**|**Returned value (1/10 °)** 333 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 334 +|ex: #5QSD1<cr>|Configured maximum speed (set by CSD/CSR) 335 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 336 +|ex: #5QSD3<cr>|Target travel speed 549 549 550 - QueryFilterPositionCount(**QFPC**)<div class="wikimodel-emptyline"></div>338 +Configure Speed in Degrees (**CSD**) 551 551 552 -Ex: #5 QFPC<cr> might return *5QFPC10<cr><divclass="wikimodel-emptyline"></div>340 +Ex: #5CSD1800<cr> 553 553 554 - This command willquerytheFilterPositionCount value.<divclass="wikimodel-emptyline"></div>342 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 555 555 556 - ConfigureFilterPositionCount(**CFPC**)<divclass="wikimodel-emptyline"></div>344 +====== __13. Speed in RPM (**SR**)__ ====== 557 557 558 -Ex: #5 CFPC10<cr><divclass="wikimodel-emptyline"></div>346 +Ex: #5SD45<cr> 559 559 560 -This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 561 -<div class="wikimodel-emptyline"></div></div></div> 562 -{{/html}} 348 +This command sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session. 563 563 564 - ====== __OriginOffset(**O**)__ ======350 +Query Speed in Degrees (**QSR**) 565 565 566 -{{html wiki="true" clean="false"}} 567 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 568 -Example: #5O2400<cr><div class="wikimodel-emptyline"></div> 352 +Ex: #5QSR<cr> might return *5QSR45<cr> 569 569 570 -This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div> 354 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed. 355 +If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 571 571 572 -[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 357 +|**Command sent**|**Returned value (1/10 °)** 358 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 359 +|ex: #5QSR1<cr>|Configured maximum speed (set by CSD/CSR) 360 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 361 +|ex: #5QSR3<cr>|Target travel speed 573 573 574 - In the secondimage, the origin, and the corresponding angularrange(explained below) have been shiftedby +240.0 degrees:<div class="wikimodel-emptyline"></div>363 +Configure Speed in RPM (**CSR**) 575 575 576 - [[image:LSS-servo-origin.jpg]]<divclass="wikimodel-emptyline"></div>365 +Ex: #5CSR45<cr> 577 577 578 - OriginOffsetQuery(**QO**)<divclass="wikimodel-emptyline"></div>367 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 579 579 580 - Example:#5QO<cr>might return *5QO-13<div class="wikimodel-emptyline"></div>369 +====== __14. Angular Stiffness (**AS**)__ ====== 581 581 582 -Th isallowsyou to querytheangle(intenthsofdegrees)of theorigininrelationtothe factoryzeroposition.Inthisexample,the neworigin isat-1.3degreesfromthefactoryzero.<divclass="wikimodel-emptyline"></div>371 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 583 583 584 - ConfigureOrigin Offset(**CO**)<div class="wikimodel-emptyline"></div>373 +A positive value of "angular stiffness": 585 585 586 -Example: #5CO-24<cr><div class="wikimodel-emptyline"></div> 375 +* The more torque will be applied to try to keep the desired position against external input / changes 376 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 587 587 588 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 589 -<div class="wikimodel-emptyline"></div></div></div> 590 -{{/html}} 378 +A negative value on the other hand: 591 591 592 -====== __Angular Range (**AR**)__ ====== 380 +* Causes a slower acceleration to the travel speed, and a slower deceleration 381 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back 593 593 594 -{{html wiki="true" clean="false"}} 595 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 596 -Example: #5AR1800<cr><div class="wikimodel-emptyline"></div> 383 +The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior. 597 597 598 - Thiscommand allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard-180.0 to +180.0 range, with no offset:<divclass="wikimodel-emptyline"></div>385 +Ex: #5AS-2<cr> 599 599 600 - [[image:LSS-servo-default.jpg]]<divclass="wikimodel-emptyline"></div>387 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 601 601 602 - Below,the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<divclass="wikimodel-emptyline"></div>389 +Ex: #5QAS<cr> 603 603 604 - [[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div>391 +Queries the value being used. 605 605 606 - Finally, the angular range action command (ex.#5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:<divclass="wikimodel-emptyline"></div>393 +Ex: #5CAS<cr> 607 607 608 - [[image:LSS-servo-ar-o-1.jpg]]<divclass="wikimodel-emptyline"></div>395 +Writes the desired angular stiffness value to memory. 609 609 610 - QueryAngularRange (**QAR**)<divclass="wikimodel-emptyline"></div>397 +====== __15. Angular Hold Stiffness (**AH**)__ ====== 611 611 612 - Example:#5QAR<cr>might return*5AR1800, indicating the totalangularrangeis180.0degrees.<divclass="wikimodel-emptyline"></div>399 +The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 613 613 614 - ConfigureAngular Range (**CAR**)<divclass="wikimodel-emptyline"></div>401 +Ex: #5AH3<cr> 615 615 616 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 617 -<div class="wikimodel-emptyline"></div></div></div> 618 -{{/html}} 403 +This sets the holding stiffness for servo #5 to 3 for that session. 619 619 620 - ======__Angular Stiffness (**AS**)__ ======405 +Query Angular Hold Stiffness (**QAH**) 621 621 622 -{{html wiki="true" clean="false"}} 623 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 624 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div> 407 +Ex: #5QAH<cr> might return *5QAH3<cr> 625 625 626 - Ahighervalue of"angular stiffness":<divclass="wikimodel-emptyline"></div>409 +This returns the servo's angular holding stiffness value. 627 627 628 -* The more torque will be applied to try to keep the desired position against external input / changes 629 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div> 411 +Configure Angular Hold Stiffness (**CAH**) 630 630 631 - A lower value on the other hand:<divclass="wikimodel-emptyline"></div>413 +Ex: #5CAH2<cr> 632 632 633 -* Causes a slower acceleration to the travel speed, and a slower deceleration 634 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div> 415 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM 635 635 636 - Thedefaultvalue for stiffness dependingon the firmwaremay be 0 or 1. Greater values produce increasinglyerratic behavior andtheeffect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>417 +====== __15b: Angular Acceleration (**AA**)__ ====== 637 637 638 - Ex: #5AS-2<cr><div class="wikimodel-emptyline"></div>419 +{More details to come} 639 639 640 - Thisreducesthe angularstiffness to -2 for that session, allowing theservo to deviate more around the desired position.This can be beneficial in many situations such as impacts(legged robots)where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div>421 +====== __15c: Angular Deceleration (**AD**)__ ====== 641 641 642 - Ex: #5QAS<cr><div class="wikimodel-emptyline"></div>423 +{More details to come} 643 643 644 - Queriesthevalue beingused.<div class="wikimodel-emptyline"></div>425 +====== __15d: Motion Control (**EM**)__ ====== 645 645 646 - Ex: #5CAS-2<cr><div class="wikimodel-emptyline"></div>427 +{More details to come} 647 647 648 -Writes the desired angular stiffness value to EEPROM. 649 -<div class="wikimodel-emptyline"></div></div></div> 650 -{{/html}} 429 +====== __16. RGB LED (**LED**)__ ====== 651 651 652 - ======__AngularHolding Stiffness (**AH**)__ ======431 +Ex: #5LED3<cr> 653 653 654 -{{html wiki="true" clean="false"}} 655 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 656 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 433 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. 657 657 658 -E x:#5AH3<cr><divclass="wikimodel-emptyline"></div>435 +0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE 659 659 660 - This setstheholding stiffness forservo #5 to 3 for that session.<div class="wikimodel-emptyline"></div>437 +Query LED Color (**QLED**) 661 661 662 -Q ueryAngular HoldingStiffness(**QAH**)<divclass="wikimodel-emptyline"></div>439 +Ex: #5QLED<cr> might return *5QLED5<cr> 663 663 664 - Ex:#5QAH<cr>mightreturn*5QAH3<cr><divclass="wikimodel-emptyline"></div>441 +This simple query returns the indicated servo's LED color. 665 665 666 - This returns the servo's angularholding stiffnessvalue.<divclass="wikimodel-emptyline"></div>443 +Configure LED Color (**CLED**) 667 667 668 -Configure AngularHoldingStiffness(**CAH**)<divclass="wikimodel-emptyline"></div>445 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 669 669 670 - Ex:#5CAH2<cr><divclass="wikimodel-emptyline"></div>447 +====== __16b. Configure LED Blinking (**CLB**)__ ====== 671 671 672 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 673 -<div class="wikimodel-emptyline"></div></div></div> 674 -{{/html}} 449 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 450 +You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 675 675 676 - ======__AngularAcceleration(**AA**)__======452 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 677 677 678 -{{html wiki="true" clean="false"}} 679 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 680 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 454 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 455 +Ex: #5CLB1<cr> only blink when limp 456 +Ex: #5CLB2<cr> only blink when holding 457 +Ex: #5CLB12<cr> only blink when accel or decel 458 +Ex: #5CLB48<cr> only blink when free or travel 459 +Ex: #5CLB63<cr> blink in all status 681 681 682 - Ex:#5AA30<cr><divclass="wikimodel-emptyline"></div>461 +====== __17. Identification Number__ ====== 683 683 684 - Thissets the angular acceleration for servo#5to30degreespersecondsquared(°/s^^2^^).<divclass="wikimodel-emptyline"></div>463 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 685 685 686 -Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div>465 +Query Identification (**QID**) 687 687 688 -E x: #5QAA<cr>might return *5QAA30<cr><divclass="wikimodel-emptyline"></div>467 +EX: #254QID<cr> might return *QID5<cr> 689 689 690 - Thisreturns the servo'sangular accelerationin degreesper secondsquared(°/s^^2^^).<divclass="wikimodel-emptyline"></div>469 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply using the broadcast command (ID 254). Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 691 691 692 -Configure AngularAcceleration(**CAA**)<div class="wikimodel-emptyline"></div>471 +Configure ID (**CID**) 693 693 694 -Ex: # 5CAA30<cr><divclass="wikimodel-emptyline"></div>473 +Ex: #4CID5<cr> 695 695 696 -This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 697 -<div class="wikimodel-emptyline"></div></div></div> 698 -{{/html}} 475 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. 699 699 700 -====== __ AngularDeceleration (**AD**)__ ======477 +====== __18. Baud Rate__ ====== 701 701 702 -{{html wiki="true" clean="false"}} 703 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 704 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 479 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 480 +\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. 705 705 706 - Ex: #5AD30<cr><divclass="wikimodel-emptyline"></div>482 +Query Baud Rate (**QB**) 707 707 708 - Thissets the angular decelerationforservo #5to 30 degrees per secondsquared (°/s^^2^^).<divclass="wikimodel-emptyline"></div>484 +Ex: #5QB<cr> might return *5QB9600<cr> 709 709 710 -Query AngularDeceleration(**QAD**)<divclass="wikimodel-emptyline"></div>486 +Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled. 711 711 712 - Ex: #5QAD<cr> might return*5QAD30<cr><divclass="wikimodel-emptyline"></div>488 +Configure Baud Rate (**CB**) 713 713 714 - Thisreturns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<divclass="wikimodel-emptyline"></div>490 +Ex: #5CB9600<cr> 715 715 716 - ConfigureAngularDeceleration(**CAD**)<div class="wikimodel-emptyline"></div>492 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 717 717 718 - Ex:#5CAD30<cr><divclass="wikimodel-emptyline"></div>494 +====== __19. Gyre Rotation Direction__ ====== 719 719 720 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 721 -<div class="wikimodel-emptyline"></div></div></div> 722 -{{/html}} 496 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 723 723 724 - ====== __GyreDirection(**G**)__======498 +{images showing before and after with AR and Origin offset} 725 725 726 -{{html wiki="true" clean="false"}} 727 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 728 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div> 500 +Query Gyre Direction (**QG**) 729 729 730 -Ex: #5G -1<cr><divclass="wikimodel-emptyline"></div>502 +Ex: #5QG<cr> might return *5QG-1<cr> 731 731 732 -Th iscommand will causeservo #5's positions to beinverted, effectively causing the servo to rotate intheoppositedirectiongiven the same command. For example in a 2WD robot, servos areoften physically installedbackto back, thereforesetting one of the servosto a negativegyration,the samewheelcommand (ex WR30)to both servos willcause the robot to move forward or backward ratherthanrotate.<div class="wikimodel-emptyline"></div>504 +The value returned above means the servo is in a counter-clockwise gyration. 733 733 734 - QueryGyreDirection(**QG**)<div class="wikimodel-emptyline"></div>506 +Configure Gyre (**CG**) 735 735 736 -Ex: #5 QG<cr> might return *5QG-1<cr><divclass="wikimodel-emptyline"></div>508 +Ex: #5CG-1<cr> 737 737 738 -The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div> 739 - 740 -Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div> 741 - 742 -Ex: #5CG-1<cr><div class="wikimodel-emptyline"></div> 743 - 744 744 This changes the gyre direction as described above and also writes to EEPROM. 745 -<div class="wikimodel-emptyline"></div></div></div> 746 -{{/html}} 747 747 748 -====== __First Position__ ====== 512 +====== __20. First / Initial Position (pulse)__ ====== 749 749 750 -{{html wiki="true" clean="false"}} 751 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 752 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div> 514 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 753 753 754 -Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div>516 +Query First Position in Pulses (**QFP**) 755 755 756 -Ex: #5QF D<cr>might return *5QFD900<cr><divclass="wikimodel-emptyline"></div>518 +Ex: #5QFP<cr> might return *5QFP1550<cr> 757 757 758 -The reply above indicates that servo with ID 5 has a first position of 90.0degrees. Ifthere isno first positionvalue stored,theeplywillbe DIS.<divclass="wikimodel-emptyline"></div>520 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If no first position has been set, servo will respond with DIS ("disabled"). 759 759 760 -Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div>522 +Configure First Position in Pulses (**CFP**) 761 761 762 -Ex: #5C FD900<cr><divclass="wikimodel-emptyline"></div>524 +Ex: #5CP1550<cr> 763 763 764 -This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 765 -<div class="wikimodel-emptyline"></div></div></div> 766 -{{/html}} 526 +This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 767 767 768 -====== __ MaximumMotorDuty(**MMD**)__ ======528 +====== __21. First / Initial Position (Degrees)__ ====== 769 769 770 -{{html wiki="true" clean="false"}} 771 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 772 -This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div> 530 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 773 773 774 - Ex:#5MMD512<cr><divclass="wikimodel-emptyline"></div>532 +Query First Position in Degrees (**QFD**) 775 775 776 - Thiswill set the duty-cycle to512 forservo withID 5 forthatsession.<divclass="wikimodel-emptyline"></div>534 +Ex: #5QFD<cr> might return *5QFD64<cr> 777 777 778 - QueryMaximumMotorDuty(**QMMD**)<divclass="wikimodel-emptyline"></div>536 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. 779 779 780 - Ex: #5QMMDD<cr> might return*5QMMD512<cr><div class="wikimodel-emptyline"></div>538 +Configure First Position in Degrees (**CFD**) 781 781 782 -This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 783 -<div class="wikimodel-emptyline"></div></div></div> 784 -{{/html}} 540 +Ex: #5CD64<cr> 785 785 786 - ======__MaximumSpeed inDegrees(**SD**)__======542 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up. 787 787 788 -{{html wiki="true" clean="false"}} 789 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 790 -Ex: #5SD1800<cr><div class="wikimodel-emptyline"></div> 791 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 544 +====== __22. Query Target Position in Degrees (**QDT**)__ ====== 792 792 793 -Q uerySpeedin Degrees(**QSD**)<divclass="wikimodel-emptyline"></div>546 +Ex: #5QDT<cr> might return *5QDT6783<cr> 794 794 795 - Ex:#5QSD<cr>might return*5QSD1800<cr><divclass="wikimodel-emptyline"></div>548 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 796 796 797 - BydefaultQSD will return thecurrent session value, which is set to the value of CSD as reset/power cycleand changed whenever an SD/SR commandis processed.If #5QSD1<cr>is sent, the configuredmaximum speed(CSD value)will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>550 +====== __23. Query Model String (**QMS**)__ ====== 798 798 799 -|**Command sent**|**Returned value (1/10 °)** 800 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 801 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 802 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 803 -|ex: #5QSD3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 552 +Ex: #5QMS<cr> might return *5QMSLSS-HS1cr> 804 804 805 - ConfigureSpeedinDegrees(**CSD**)<divclass="wikimodel-emptyline"></div>554 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 806 806 807 -Ex: #5CSD1800<cr><div class="wikimodel-emptyline"></div> 808 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 809 -</div></div> 810 -{{/html}} 556 +====== __23b. Query Model (**QM**)__ ====== 811 811 812 - ======__MaximumSpeed inRPM (**SR**)__ ======558 +Ex: #5QM<cr> might return *5QM68702699520cr> 813 813 814 -{{html wiki="true" clean="false"}} 815 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 816 -Ex: #5SR45<cr><div class="wikimodel-emptyline"></div> 817 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 560 +This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision. 818 818 819 -Query S peedinRPM(**QSR**)<divclass="wikimodel-emptyline"></div>562 +====== __24. Query Serial Number (**QN**)__ ====== 820 820 821 -Ex: #5Q SR<cr>might return *5QSR45<cr><divclass="wikimodel-emptyline"></div>564 +Ex: #5QN<cr> might return *5QN~_~_<cr> 822 822 823 - By defaultQSR will return thecurrentsessionvalue,which issetto thevalue of CSR asreset/powercycle and changed whenever an SD/SR command isprocessed. If #5QSR1<cr>issent, the configuredmaximum speed (CSR value) willbeeturnedinstead. Youcanalsoquerythecurrent speed using "2"andthecurrent target travel speed using "3". Seethetablebelow for an example:<divclass="wikimodel-emptyline"></div>566 +The number in the response is the servo's serial number which is set and cannot be changed. 824 824 825 -|**Command sent**|**Returned value (1/10 °)** 826 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 827 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 828 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 829 -|ex: #5QSR3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 568 +====== __25. Query Firmware (**QF**)__ ====== 830 830 831 - ConfigureSpeed inRPM (**CSR**)<divclass="wikimodel-emptyline"></div>570 +Ex: #5QF<cr> might return *5QF11<cr> 832 832 833 -Ex: #5CSR45<cr><div class="wikimodel-emptyline"></div> 834 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 835 -</div></div> 836 -{{/html}} 572 +The integer in the reply represents the firmware version with one decimal, in this example being 1.1 837 837 838 - {{idname="MODIFIERS"/}}574 +====== __26. Query Status (**Q**)__ ====== 839 839 840 - ==Modifiers==576 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 841 841 842 -====== __Speed (**S**, **SD**) modifier__ ====== 578 +|*Value returned|**Status**|**Detailed description** 579 +|ex: *5Q0<cr>|Unknown|LSS is unsure 580 +|ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely 581 +|ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 582 +|ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed 583 +|ex: *5Q4<cr>|Traveling|Moving at a stable speed 584 +|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position. 585 +|ex: *5Q6<cr>|Holding|Keeping current position 586 +|ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque 587 +|ex: *5Q8<cr>|Outside limits|{More details coming soon} 588 +|ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 589 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 843 843 844 -{{html wiki="true" clean="false"}} 845 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 846 -Example: #5P1500S750<cr><div class="wikimodel-emptyline"></div> 847 -Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 848 -Example: #5D0SD180<cr><div class="wikimodel-emptyline"></div> 849 -Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second.<div class="wikimodel-emptyline"></div> 850 -Query Speed (**QS**)<div class="wikimodel-emptyline"></div> 851 -Example: #5QS<cr> might return *5QS300<cr><div class="wikimodel-emptyline"></div> 852 -This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div> 853 -</div></div> 854 -{{/html}} 591 +====== __27. Query Voltage (**QV**)__ ====== 855 855 856 - ======__Timedmove (**T**) modifier__======593 +Ex: #5QV<cr> might return *5QV11200<cr> 857 857 858 -{{html wiki="true" clean="false"}} 859 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 860 -Example: #5P1500T2500<cr><div class="wikimodel-emptyline"></div> 595 +The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 861 861 862 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 863 -**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div> 864 -</div></div> 865 -{{/html}} 597 +====== __28. Query Temperature (**QT**)__ ====== 866 866 867 - ======__CurrentHalt & Hold (**CH**)modifier__======599 +Ex: #5QT<cr> might return *5QT564<cr> 868 868 869 -{{html wiki="true" clean="false"}} 870 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 871 -Example: #5D1423CH400<cr><div class="wikimodel-emptyline"></div> 601 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 872 872 873 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div> 874 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 875 -</div></div> 876 -{{/html}} 603 +====== __29. Query Current (**QC**)__ ====== 877 877 878 - ======__CurrentLimp (**CL**) modifier__ ======605 +Ex: #5QC<cr> might return *5QC140<cr> 879 879 880 -{{html wiki="true" clean="false"}} 881 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 882 -Example: #5D1423CL400<cr><div class="wikimodel-emptyline"></div> 607 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 883 883 884 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div> 885 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 886 -</div></div> 887 -{{/html}} 609 +====== __30. RC Mode (**CRC**)__ ====== 888 888 889 - {{id name="TELEMETRY"/}}611 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 890 890 891 -== Telemetry == 613 +|**Command sent**|**Note** 614 +|ex: #5CRC<cr>|Stay in smart mode. 615 +|ex: #5CRC1<cr>|Change to RC position mode. 616 +|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 617 +|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode. 892 892 893 - ======__Query Voltage (**QV**)__ ======619 +EX: #5CRC<cr> 894 894 895 -{{html wiki="true" clean="false"}} 896 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 897 -Ex: #5QV<cr> might return *5QV11200<cr><div class="wikimodel-emptyline"></div> 898 -The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div> 899 -</div></div> 900 -{{/html}} 621 +====== __31. RESET__ ====== 901 901 902 - ======__QueryTemperature(**QT**)__ ======623 +Ex: #5RESET<cr> or #5RS<cr> 903 903 904 -{{html wiki="true" clean="false"}} 905 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 906 -Ex: #5QT<cr> might return *5QT564<cr><div class="wikimodel-emptyline"></div> 907 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div> 908 -</div></div> 909 -{{/html}} 625 +This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 910 910 911 -====== __ QueryCurrent(**QC**)__ ======627 +====== __32. DEFAULT & CONFIRM__ ====== 912 912 913 -{{html wiki="true" clean="false"}} 914 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 915 -Ex: #5QC<cr> might return *5QC140<cr><div class="wikimodel-emptyline"></div> 916 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div> 917 -</div></div> 918 -{{/html}} 629 +Ex: #5DEFAULT<cr> 919 919 920 - ======__QueryModelString(**QMS**)__======631 +This command sets in motion the reset all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 921 921 922 -{{html wiki="true" clean="false"}} 923 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 924 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr><div class="wikimodel-emptyline"></div> 925 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div> 926 -</div></div> 927 -{{/html}} 633 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 928 928 929 - ======__Query Firmware(**QF**)__======635 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 930 930 931 -{{html wiki="true" clean="false"}} 932 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 933 -Ex: #5QF<cr> might return *5QF368<cr><div class="wikimodel-emptyline"></div> 934 -The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div> 935 -The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div> 936 -</div></div> 937 -{{/html}} 637 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 938 938 939 -====== __ QuerySerialNumber (**QN**)__ ======639 +====== __33. UPDATE & CONFIRM__ ====== 940 940 941 -{{html wiki="true" clean="false"}} 942 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 943 -Ex: #5QN<cr> might return *5QN12345678<cr><div class="wikimodel-emptyline"></div> 944 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div> 945 -</div></div> 946 -{{/html}} 641 +Ex: #5UPDATE<cr> 947 947 948 - {{id name="RGB_LED"/}}643 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. 949 949 950 - == RGB LED==645 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr> 951 951 952 - ======__LEDColor(**LED**)__======647 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 953 953 954 -{{html wiki="true" clean="false"}} 955 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 956 -Ex: #5LED3<cr><div class="wikimodel-emptyline"></div> 957 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div> 958 -0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div> 959 -Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div> 960 -Ex: #5QLED<cr> might return *5QLED5<cr><div class="wikimodel-emptyline"></div> 961 -This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div> 962 -Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div> 963 -Ex: #5CLED3<cr><div class="wikimodel-emptyline"></div> 964 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div> 965 -</div></div> 966 -{{/html}} 967 - 968 -====== __Configure LED Blinking (**CLB**)__ ====== 969 - 970 -{{html wiki="true" clean="false"}} 971 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 972 -This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div> 973 - 974 -(% style="width:195px" %) 975 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 976 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 977 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1 978 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2 979 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 980 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 981 -|(% style="width:134px" %)Free|(% style="width:58px" %)16 982 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 983 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div> 984 - 985 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div> 986 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div> 987 -Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div> 988 -Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div> 989 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div> 990 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div> 991 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div> 992 -RESETTING the servo is needed.<div class="wikimodel-emptyline"></div> 993 -</div></div> 994 -{{/html}} 995 - 996 -== RGB LED Patterns == 997 - 998 -The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] 999 - 1000 -[[image:LSS - LED Patterns.png]] 649 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
- LSS - LED Patterns.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.RB1 - Size
-
... ... @@ -1,1 +1,0 @@ 1 -116.3 KB - Content
- LSS-Protocol-Backup-2020-05-01.zip
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -47.4 KB - Content
- XWiki.StyleSheetExtension[0]
-
- Caching policy
-
... ... @@ -1,1 +1,0 @@ 1 -long - Code
-
... ... @@ -1,13 +1,0 @@ 1 -div.cmdcnt 2 -{ 3 - display:table-row; 4 -} 5 -div.cmdpad 6 -{ 7 - display:table-cell; 8 - padding:16px; 9 -} 10 -div.cmdtxt 11 -{ 12 - display:table-cell; 13 -} - Content Type
-
... ... @@ -1,1 +1,0 @@ 1 -CSS - Name
-
... ... @@ -1,1 +1,0 @@ 1 -DivTextIndentation - Parse content
-
... ... @@ -1,1 +1,0 @@ 1 -0 - Use this extension
-
... ... @@ -1,1 +1,0 @@ 1 -currentPage