Last modified by Eric Nantel on 2025/06/06 07:47

From version < 208.1 >
edited by Eric Nantel
on 2022/05/10 15:12
To version < 171.1 >
edited by Eric Nantel
on 2020/05/01 09:24
< >
Change comment: Rollback to version 169.1

Summary

Details

Page properties
Content
... ... @@ -5,1005 +5,734 @@
5 5  
6 6  = Serial Protocol =
7 7  
8 -The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available.
8 +The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servo motor is available.
9 9  
10 -In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
10 +In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol.
11 11  
12 12  == Session ==
13 13  
14 -{{html clean="false" wiki="true"}}
15 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
16 -A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.<div class="wikimodel-emptyline"></div>
14 +A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
17 17  
18 -**Note 1:** For a given session, the action related to a specific command overrides the stored value in EEPROM.<div class="wikimodel-emptyline"></div>
19 -**Note 2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (~1.25 s).<div class="wikimodel-emptyline"></div>
20 -**Note 3:** You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r described below). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays.
21 -<div class="wikimodel-emptyline"></div></div></div>
22 -{{/html}}
16 +Note #1: For a given session, the action related to a specific commands overrides the stored value in EEPROM.
17 +Note #2: During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).
18 +You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended.
23 23  
24 24  == Action Commands ==
25 25  
26 -{{html clean="false" wiki="true"}}
27 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
28 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:<div class="wikimodel-emptyline"></div>
22 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
29 29  
30 -1. Start with a number sign **#** (Unicode Character: U+0023)
31 -1. Servo ID number as an integer (assigning an ID described below)
32 -1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
24 +1. Start with a number sign # (U+0023)
25 +1. Servo ID number as an integer
26 +1. Action command (one to three letters, no spaces, capital or lower case)
33 33  1. Action value in the correct units with no decimal
34 -1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
28 +1. End with a control / carriage return '<cr>'
35 35  
36 36  (((
37 -Ex: #5D1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
31 +Ex: #5PD1443<cr>
38 38  
39 -This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
40 -<div class="wikimodel-emptyline"></div></div></div>
41 -{{/html}}
33 +This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
42 42  
43 -== Modifiers ==
35 +== Action Modifiers ==
44 44  
45 -{{html clean="false" wiki="true"}}
46 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
47 -Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div>
37 +Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is:
48 48  
49 -1. Start with a number sign **#** (Unicode Character: U+0023)
39 +1. Start with a number sign # (U+0023)
50 50  1. Servo ID number as an integer
51 -1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
41 +1. Action command (one to three letters, no spaces, capital or lower case)
52 52  1. Action value in the correct units with no decimal
53 -1. Modifier command (one or two letters from the list of modifiers below)
43 +1. Modifier command (one letter)
54 54  1. Modifier value in the correct units with no decimal
55 -1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)
45 +1. End with a control / carriage return '<cr>'
56 56  
57 -Ex: #5D1800T1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
47 +Ex: #5P1456T1263<cr>
58 58  
59 -This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div>
60 -<div class="wikimodel-emptyline"></div></div></div>
61 -{{/html}}
49 +This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds.
50 +)))
62 62  
63 63  == Query Commands ==
64 64  
65 -{{html clean="false" wiki="true"}}
66 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
67 -Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div>
54 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
68 68  
69 -1. Start with a number sign **#** (Unicode Character: U+0023)
56 +1. Start with a number sign # (U+0023)
70 70  1. Servo ID number as an integer
71 -1. Query command (one to four letters, no spaces, capital or lower case)
72 -1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
58 +1. Query command (one to three letters, no spaces, capital or lower case)
59 +1. End with a control / carriage return '<cr>'
73 73  
74 -Ex: #5QD&lt;cr&gt; Query the position in (tenth of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div>
61 +(((
62 +Ex: #5QD<cr>Query position in degrees for servo #5
63 +)))
75 75  
65 +(((
76 76  The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
77 77  
78 -1. Start with an asterisk * (Unicode Character: U+0023)
68 +1. Start with an asterisk * (U+002A)
79 79  1. Servo ID number as an integer
80 -1. Query command (one to four letters, no spaces, capital letters)
70 +1. Query command (one to three letters, no spaces, capital letters)
81 81  1. The reported value in the units described, no decimals.
82 -1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
72 +1. End with a control / carriage return '<cr>'
83 83  
84 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>
74 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be:
85 85  
86 -Ex: *5QD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
76 +(((
77 +Ex: *5QD1443<cr>
78 +)))
87 87  
88 -This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees).
89 -<div class="wikimodel-emptyline"></div></div></div>
90 -{{/html}}
80 +This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees).
91 91  
92 92  == Configuration Commands ==
93 93  
94 -{{html clean="false" wiki="true"}}
95 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
96 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div>
84 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
97 97  
98 -These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div>
99 -
100 -The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div>
101 -
102 -1. Start with a number sign **#** (Unicode Character: U+0023)
86 +1. Start with a number sign # (U+0023)
103 103  1. Servo ID number as an integer
104 -1. Configuration command (two to four letters, no spaces, capital or lower case)
88 +1. Configuration command (two to three letters, no spaces, capital or lower case)
105 105  1. Configuration value in the correct units with no decimal
106 -1. End with a carriage return **&#92;r** or **&lt;cr&gt;** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div>
90 +1. End with a control / carriage return '<cr>'
107 107  
108 -Ex: #5CO-50&lt;cr&gt;<div class="wikimodel-emptyline"></div>
92 +Ex: #5CO-50<cr>
109 109  
110 -This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div>
94 +This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.
111 111  
112 -**Session vs Configuration Query**<div class="wikimodel-emptyline"></div>
96 +**Session vs Configuration Query**
113 113  
114 -By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div>
98 +By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
115 115  
116 -Ex: #5CSR20&lt;cr&gt; immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div>
100 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
117 117  
118 -After RESET, a command of #5SR4&lt;cr&gt; sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>
102 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
119 119  
120 -#5QSR&lt;cr&gt; or #5QSR0&lt;cr&gt; would return *5QSR4&lt;cr&gt; which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>
104 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas
121 121  
122 -#5QSR1&lt;cr&gt; would return *5QSR20&lt;cr&gt; which represents the value in EEPROM
123 -<div class="wikimodel-emptyline"></div></div></div>
124 -{{/html}}
106 +#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
125 125  
126 126  == Virtual Angular Position ==
127 127  
128 -{{html wiki="true" clean="false"}}
129 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
130 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div>
110 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
131 131  
132 -[[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div>
112 +[[image:LSS-servo-positions.jpg]]
133 133  
134 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div>
114 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
135 135  
136 -#1D-300&lt;cr&gt; This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div>
116 +#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
137 137  
138 -#1D2100&lt;cr&gt; This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div>
118 +#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
139 139  
140 -#1D-4200&lt;cr&gt; This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div>
120 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
141 141  
142 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.<div class="wikimodel-emptyline"></div>
122 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
143 143  
144 -#1D4800&lt;cr&gt; This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div>
124 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
145 145  
146 -#1D3300&lt;cr&gt; would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>
126 +#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).
147 147  
148 -If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°].
149 -<div class="wikimodel-emptyline"></div></div></div>
150 -{{/html}}
128 +If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified).
129 +)))
151 151  
152 152  = Command List =
153 153  
154 -**Latest firmware version currently : 368.29.14**
133 +== Regular ==
155 155  
156 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]]
157 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
158 -| |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Soft reset. See command for details.
159 -| |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Revert to firmware default values. See command for details
160 -| |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Update firmware. See command for details.
161 -| |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
162 -| |[[**C**hange to **RC**>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CRC|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Change to RC mode 1 (position) or 2 (wheel).
163 -| |[[**ID** #>>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %) |(% style="text-align:center" %)✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
164 -| |[[**B**audrate>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QB|(% style="text-align:center" %)CB|(% style="text-align:center" %) |(% style="text-align:center" %)✓|115200| |Reset required after change.
135 +|= #|=Description|=Mod|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
136 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| | L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
137 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| | H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
138 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]|T| | | | | | ✓|milliseconds|(% style="width:510px" %)Modifier only for {P, D, MD}. Time is estimated and can change based on load|(% style="text-align:center; width:113px" %)
139 +| 4|[[**S**peed>>||anchor="H4.Speed28S2CSD29modifier"]]|S/SD| |QS| | | | ✓|microseconds per second / degrees per second|(% style="width:510px" %)S modifier only for {P}. SD modifier only for {D, MD}.|(% style="text-align:center; width:113px" %)
140 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| | MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
141 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| | O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
142 +0
143 +)))
144 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| | AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
145 +1800
146 +)))
147 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| | P| QP| | | | ✓|microseconds|(% style="width:510px" %)(((
148 +Inherited from SSC-32 serial protocol
149 +)))|(% style="text-align:center; width:113px" %)
150 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| | D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
151 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| | WD| QWD| | | | ✓|degrees per second|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
152 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| | WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
153 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| | SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)(((
154 +QSD: Add modifier "2" for instantaneous speed.
165 165  
166 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]]
167 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
168 -| |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°|
169 -| |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°|
170 -| |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation"
171 -| |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation"
172 -| |[[Position in **P**WM>>||anchor="HPositioninPWM28P29"]]|(% style="text-align:center" %)P|(% style="text-align:center" %)QP|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|Inherited from SSC-32 serial protocol
173 -| |[[**M**ove in PWM (relative)>>||anchor="H28Relative29MoveinPWM28M29"]]|(% style="text-align:center" %)M|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|
174 -| |[[**R**aw **D**uty-cycle **M**ove>>||anchor="HRawDuty-cycleMove28RDM29"]]|(% style="text-align:center" %)RDM|(% style="text-align:center" %)QMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW
175 -| |[[**Q**uery Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1 to 8 integer|See command description for details
176 -| |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
177 -| |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
156 +SD overwrites SR / CSD overwrites CSR and vice-versa.
157 +)))|(% style="text-align:center; width:113px" %)Max per servo
158 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| | SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
159 +QSR: Add modifier "2" for instantaneous speed
178 178  
179 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]]
180 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
181 -| |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|(% style="text-align:center" %) |(% style="text-align:center" %)✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile
182 -| |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|5| |Affects motion only when motion profile is disabled (EM0)
183 -| |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|1/10°|
184 -| |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1800|1/10°|
185 -| |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|-4 to +4 integer|Suggested values are between 0 to +4
186 -| |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|4|-10 to +10 integer|
187 -| |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
188 -| |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
189 -| |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
190 -| |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|No value|1/10°|Reset required after change.
191 -| |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓|1023|255 to 1023 integer|
192 -| |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
193 -| |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
161 +SR overwrites SD / CSR overwrites CSD and vice-versa.
162 +)))|(% style="text-align:center; width:113px" %)Max per servo
163 +| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| | LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 7)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)0 (OFF)
164 +| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| | G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
165 +| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0
166 +| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)115200
167 +| 18|//{coming soon}//| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
168 +
169 +)))
170 +| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstA0Position28Degrees29"]]| | | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)No Value
171 +| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)|(% style="text-align:center; width:113px" %)
172 +| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
173 +| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
174 +| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
175 +| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
176 +| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
177 +| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
178 +| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | | |CRC|✓| | ✓|none|(% style="width:510px" %)(((
179 +Change to RC mode 1 (position) or 2 (wheel).
180 +)))|(% style="text-align:center; width:113px" %)Serial
181 +| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
182 +| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
183 +| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
194 194  
195 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]]
196 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
197 -| |[[**S**peed>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)S|(% style="text-align:center" %)QS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |uS/s |For P action command
198 -| |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |0.1°/s|For D and MD action commands
199 -| |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |ms|Modifier only for P, D and MD. Time can change based on load
200 -| |[[**C**urrent **H**old>>||anchor="HCurrentHalt26Hold28CH29modifier"]]|(% style="text-align:center" %)CH|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR
201 -| |[[**C**urrent **L**imp>>||anchor="HCurrentLimp28CL29modifier"]]|(% style="text-align:center" %)CL|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR
185 +== Advanced ==
202 202  
203 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]]
204 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
205 -| |[[**Q**uery **V**oltage>>||anchor="HQueryVoltage28QV29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QV|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mV|
206 -| |[[**Q**uery **T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°C|
207 -| |[[**Q**uery **C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|
208 -| |[[**Q**uery **M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
209 -| |[[**Q**uery **F**irmware Version>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |
210 -| |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the unique serial number for the servo
187 +|= #|=(% style="width: 182px;" %)Description|=(% style="width: 56px;" %)Mod|=(% style="width: 70px;" %) Action|=(% style="width: 71px;" %) Query|=(% style="width: 77px;" %) Config|=(% style="width: 77px;" %)Session|=(% style="width: 56px;" %) RC|=(% style="width: 151px;" %) Serial|= Units|=(% style="width: 510px;" %) Notes
188 +| A1|(% style="width:182px" %)[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|(% style="width:56px" %) |(% style="width:70px" %)AS|(% style="width:71px" %)QAS|(% style="width:77px" %)CAS|(% style="width:77px" %)|(% style="width:56px" %)|(% style="width:151px" %) ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4
189 +| A2|(% style="width:182px" %)[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|(% style="width:56px" %) |(% style="width:70px" %)AH|(% style="width:71px" %)QAH|(% style="width:77px" %)CAH|(% style="width:77px" %)|(% style="width:56px" %) |(% style="width:151px" %) ✓|none (integer -10 to +10)|(% style="width:510px" %)Effect is different between serial and RC
190 +| A3|(% style="width:182px" %)[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|(% style="width:56px" %) |(% style="width:70px" %)AA|(% style="width:71px" %)QAA|(% style="width:77px" %)CAA|(% style="width:77px" %)|(% style="width:56px" %) |(% style="width:151px" %) |degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
191 +| A4|(% style="width:182px" %)[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|(% style="width:56px" %) |(% style="width:70px" %)AD|(% style="width:71px" %)QAD|(% style="width:77px" %)CAD|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
192 +| A5|(% style="width:182px" %)[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|(% style="width:56px" %) |(% style="width:70px" %)EM|(% style="width:71px" %)QEM|(% style="width:77px" %) |(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %) ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable
193 +| A6|(% style="width:182px" %)[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]|(% style="width:56px" %) |(% style="width:70px" %) |(% style="width:71px" %)QLB|(% style="width:77px" %) CLB|(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %) ✓|none (integer from 0 to 63)|(% style="width:510px" %)(((
194 +0=No blinking, 63=Always blink;
211 211  
212 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**RGB LED**>>||anchor="HRGBLED"]]
213 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**
214 -| |[[**LED** Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
215 -| |[[**C**onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 63 integer|Reset required after change. See command for details.
196 +Blink while: 1=Limp; 2=Holding; 4=Accel; 8=Decel; 16=Free 32=Travel;
197 +)))
198 +| A7|(% style="width:182px" %)[[**C**urrent **H**alt & **H**old>>||anchor="HA7.CurrentHalt26Hold28CH29"]]|(% style="width:56px" %)CH|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR
199 +| A8|(% style="width:182px" %)[[**C**urrent **L**imp>>||anchor="HA8.CurrentLimp28CL29"]]|(% style="width:56px" %)CL|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR
216 216  
217 -= (% style="color:inherit; font-family:inherit" %)Details(%%) =
201 +== Details - Basic ==
218 218  
219 -== (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) ==
203 +====== __1. Limp (**L**)__ ======
220 220  
221 -====== __Reset__ ======
205 +Example: #5L<cr>
222 222  
223 -{{html wiki="true" clean="false"}}
224 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
225 -Ex: #5RESET&lt;cr&gt;<div class="wikimodel-emptyline"></div>
226 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands).
227 -Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div>
228 -</div></div>
229 -{{/html}}
207 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
230 230  
231 -====== __Default & confirm__ ======
209 +====== __2. Halt & Hold (**H**)__ ======
232 232  
233 -{{html wiki="true" clean="false"}}
234 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
235 -Ex: #5DEFAULT&lt;cr&gt;<div class="wikimodel-emptyline"></div>
211 +Example: #5H<cr>
236 236  
237 -This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div>
213 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position.
238 238  
239 -EX: #5DEFAULT&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
215 +====== __3. Timed move (**T**) modifier__ ======
240 240  
241 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div>
217 +Example: #5P1500T2500<cr>
242 242  
243 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
244 -</div></div>
245 -{{/html}}
219 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
246 246  
247 -====== __Update & confirm__ ======
221 +Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
248 248  
249 -{{html wiki="true" clean="false"}}
250 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
251 -Ex: #5UPDATE&lt;cr&gt;<div class="wikimodel-emptyline"></div>
223 +====== __4. Speed (**S**, **SD**) modifier__ ======
252 252  
253 -This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div>
225 +Example: #5P1500S750<cr>
226 +Example: #5D0SD180<cr>
254 254  
255 -EX: #5UPDATE&lt;cr&gt; followed by #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
228 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
256 256  
257 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div>
230 +Modifer (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second.
258 258  
259 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
260 -</div></div>
261 -{{/html}}
232 +Query Speed (**QS**)
262 262  
263 -====== __Confirm__ ======
234 +Example: #5QS<cr> might return *5QS300<cr>
264 264  
265 -{{html wiki="true" clean="false"}}
266 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
267 -Ex: #5CONFIRM&lt;cr&gt;<div class="wikimodel-emptyline"></div>
236 +This command queries the current speed in microseconds per second.
268 268  
269 -This command is used to confirm changes after a Default or Update command.<div class="wikimodel-emptyline"></div>
238 +====== __5. (Relative) Move in Degrees (**MD**)__ ======
270 270  
271 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div>
272 -</div></div>
273 -{{/html}}
240 +Example: #5MD123<cr>
274 274  
275 -====== __Configure RC Mode (**CRC**)__ ======
242 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
276 276  
277 -{{html wiki="true" clean="false"}}
278 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
279 -This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.<div class="wikimodel-emptyline"></div>
244 +====== __6. Origin Offset Action (**O**)__ ======
280 280  
281 -|**Command sent**|**Note**
282 -|ex: #5CRC1&lt;cr&gt;|Change to RC position mode.
283 -|ex: #5CRC2&lt;cr&gt;|Change to RC continuous rotation (wheel) mode.
284 -|ex: #5CRC*&lt;cr&gt;|Where * is any value other than 1 or 2 (or no value): stay in smart mode.<div class="wikimodel-emptyline"></div>
246 +Example: #5O2400<cr>
285 285  
286 -EX: #5CRC2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
248 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
287 287  
288 -This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC&lt;cr&gt; or #5CRC3&lt;cr&gt; which requests that the servo remain in serial mode still requires a RESET command.<div class="wikimodel-emptyline"></div>
250 +[[image:LSS-servo-default.jpg]]
289 289  
290 -**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.<div class="wikimodel-emptyline"></div>
291 -</div></div>
292 -{{/html}}
252 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
293 293  
294 -====== __Identification Number (**ID**)__ ======
254 +[[image:LSS-servo-origin.jpg]]
295 295  
296 -{{html wiki="true" clean="false"}}
297 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
298 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div>
256 +Origin Offset Query (**QO**)
299 299  
300 -Query Identification (**QID**)<div class="wikimodel-emptyline"></div>
258 +Example: #5QO<cr> Returns: *5QO-13
301 301  
302 -EX: #254QID&lt;cr&gt; might return *QID5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
260 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
303 303  
304 -When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div>
262 +Configure Origin Offset (**CO**)
305 305  
306 -Configure ID (**CID**)<div class="wikimodel-emptyline"></div>
264 +Example: #5CO-24<cr>
307 307  
308 -Ex: #4CID5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
266 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
309 309  
310 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div>
311 -</div></div>
312 -{{/html}}
268 +====== __7. Angular Range (**AR**)__ ======
313 313  
314 -====== __Baud Rate__ ======
270 +Example: #5AR1800<cr>
315 315  
316 -{{html clean="false" wiki="true"}}
317 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
318 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div>
272 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
319 319  
320 -Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div>
274 +[[image:LSS-servo-default.jpg]]
321 321  
322 -Ex: #5QB&lt;cr&gt; might return *5QB115200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
276 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
323 323  
324 -Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div>
278 +[[image:LSS-servo-ar.jpg]]
325 325  
326 -Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div>
280 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
327 327  
328 -**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div>
282 +[[image:LSS-servo-ar-o-1.jpg]]
329 329  
330 -Ex: #5CB9600&lt;cr&gt;<div class="wikimodel-emptyline"></div>
284 +Query Angular Range (**QAR**)
331 331  
332 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div>
333 -</div></div>
334 -{{/html}}
286 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
335 335  
336 -====== __Automatic Baud Rate__ ======
288 +Configure Angular Range (**CAR**)
337 337  
338 -{{html clean="false" wiki="true"}}
339 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
340 -This option allows the LSS to listen to it's serial input and select the right baudrate automatically.<div class="wikimodel-emptyline"></div>
290 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
341 341  
342 -Query Automatic Baud Rate (**QABR**)<div class="wikimodel-emptyline"></div>
292 +====== __8. Position in Pulse (**P**)__ ======
343 343  
344 -Enable Baud Rate (**ABR**)<div class="wikimodel-emptyline"></div>
294 +Example: #5P2334<cr>
345 345  
346 -Configure Baud Rate (**CABR**)<div class="wikimodel-emptyline"></div>
296 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.
347 347  
348 -</div></div>
349 -{{/html}}
298 +Query Position in Pulse (**QP**)
350 350  
351 -== Motion ==
300 +Example: #5QP<cr> might return *5QP2334
352 352  
353 -====== __Position in Degrees (**D**)__ ======
302 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 
303 +Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
354 354  
355 -{{html wiki="true" clean="false"}}
356 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
357 -Example: #5D1456&lt;cr&gt;<div class="wikimodel-emptyline"></div>
305 +====== __9. Position in Degrees (**D**)__ ======
358 358  
359 -This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div>
307 +Example: #5D1456<cr>
360 360  
361 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div>
309 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction.
362 362  
363 -Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div>
311 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position.
364 364  
365 -Example: #5QD&lt;cr&gt; might return *5QD132&lt;cr&gt;<div class="wikimodel-emptyline"></div>
313 +Query Position in Degrees (**QD**)
366 366  
367 -This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div>
315 +Example: #5QD<cr> might return *5QD132<cr>
368 368  
317 +This means the servo is located at 13.2 degrees.
318 +
369 369  (% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
370 -Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div>
320 +Query Target Position in Degrees (**QDT**)
371 371  
372 -Ex: #5QDT&lt;cr&gt; might return *5QDT6783&lt;cr&gt;<div class="wikimodel-emptyline"></div>
322 +Ex: #5QDT<cr> might return *5QDT6783<cr>
373 373  
374 -The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
375 -<div class="wikimodel-emptyline"></div></div></div>
376 -{{/html}}
324 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
377 377  
378 -====== __(Relative) Move in Degrees (**MD**)__ ======
326 +====== __10. Wheel Mode in Degrees (**WD**)__ ======
379 379  
380 -{{html wiki="true" clean="false"}}
381 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
382 -Example: #5MD123&lt;cr&gt;<div class="wikimodel-emptyline"></div>
328 +Ex: #5WD90<cr>
383 383  
384 -The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
385 -<div class="wikimodel-emptyline"></div></div></div>
386 -{{/html}}
330 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
387 387  
388 -====== __Wheel Mode in Degrees (**WD**)__ ======
332 +Query Wheel Mode in Degrees (**QWD**)
389 389  
390 -{{html wiki="true" clean="false"}}
391 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
392 -Ex: #5WD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
334 +Ex: #5QWD<cr> might return *5QWD90<cr>
393 393  
394 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
395 -
396 -Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div>
397 -
398 -Ex: #5QWD&lt;cr&gt; might return *5QWD90&lt;cr&gt;<div class="wikimodel-emptyline"></div>
399 -
400 400  The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
401 -<div class="wikimodel-emptyline"></div></div></div>
402 -{{/html}}
403 403  
404 -====== __Wheel Mode in RPM (**WR**)__ ======
338 +====== __11. Wheel Mode in RPM (**WR**)__ ======
405 405  
406 -{{html wiki="true" clean="false"}}
407 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
408 -Ex: #5WR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
340 +Ex: #5WR40<cr>
409 409  
410 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div>
342 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
411 411  
412 -Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div>
344 +Query Wheel Mode in RPM (**QWR**)
413 413  
414 -Ex: #5QWR&lt;cr&gt; might return *5QWR40&lt;cr&gt;<div class="wikimodel-emptyline"></div>
346 +Ex: #5QWR<cr> might return *5QWR40<cr>
415 415  
416 416  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
417 -<div class="wikimodel-emptyline"></div></div></div>
418 -{{/html}}
419 419  
420 -====== __Position in PWM (**P**)__ ======
350 +====== __12. Max Speed in Degrees (**SD**)__ ======
421 421  
422 -{{html wiki="true" clean="false"}}
423 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
424 -Example: #5P2334&lt;cr&gt;<div class="wikimodel-emptyline"></div>
352 +Ex: #5SD1800<cr>
425 425  
426 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div>
354 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
427 427  
428 -Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div>
356 +Query Speed in Degrees (**QSD**)
429 429  
430 -Example: #5QP&lt;cr&gt; might return *5QP2334<div class="wikimodel-emptyline"></div>
358 +Ex: #5QSD<cr> might return *5QSD1800<cr>
431 431  
432 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle.
433 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
434 -<div class="wikimodel-emptyline"></div></div></div>
435 -{{/html}}
360 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed.
361 +If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
436 436  
437 -====== __(Relative) Move in PWM (**M**)__ ======
363 +|**Command sent**|**Returned value (1/10 °)**
364 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
365 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
366 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
367 +|ex: #5QSD3<cr>|Target travel speed
438 438  
439 -{{html wiki="true" clean="false"}}
440 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
441 -Example: #5M1500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
369 +Configure Speed in Degrees (**CSD**)
442 442  
443 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
444 -<div class="wikimodel-emptyline"></div></div></div>
445 -{{/html}}
371 +Ex: #5CSD1800<cr>
446 446  
447 -====== __Raw Duty-cycle Move (**RDM**)__ ======
373 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
448 448  
449 -{{html wiki="true" clean="false"}}
450 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
451 -Example: #5RDM512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
375 +====== __13. Max Speed in RPM (**SR**)__ ======
452 452  
453 -The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div>
377 +Ex: #5SD45<cr>
454 454  
455 -The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div>
379 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
456 456  
457 -Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div>
381 +Query Speed in Degrees (**QSR**)
458 458  
459 -Example: #5QMD&lt;cr&gt; might return *5QMD512<div class="wikimodel-emptyline"></div>
383 +Ex: #5QSR<cr> might return *5QSR45<cr>
460 460  
461 -This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
462 -<div class="wikimodel-emptyline"></div></div></div>
463 -{{/html}}
385 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed.
386 +If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
464 464  
465 -====== __Query Status (**Q**)__ ======
388 +|**Command sent**|**Returned value (1/10 °)**
389 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
390 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
391 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWR)
392 +|ex: #5QSR3<cr>|Target travel speed
466 466  
467 -{{html wiki="true" clean="false"}}
468 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
469 -The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div>
394 +Configure Speed in RPM (**CSR**)
470 470  
471 -Ex: #5Q&lt;cr&gt; might return *5Q6&lt;cr&gt;, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div>
472 -</div></div>
473 -{{/html}}
396 +Ex: #5CSR45<cr>
474 474  
475 -|(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description**
476 -| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
477 -| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
478 -| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
479 -| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
480 -| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
481 -| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
482 -| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding)
483 -| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
484 -| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
485 -| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
486 -| |ex: *5Q10<cr>|10: Safe Mode|(((
487 -A safety limit has been exceeded (temperature, peak current or extended high current draw).
398 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
488 488  
489 -Send a Q1 command to know which limit has been reached (described below).
490 -)))
400 +====== __14. LED Color (**LED**)__ ======
491 491  
492 -{{html wiki="true" clean="false"}}
493 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
494 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div>
495 -</div></div>
496 -{{/html}}
402 +Ex: #5LED3<cr>
497 497  
498 -|(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description**
499 -| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
500 -| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
501 -| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
502 -| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
404 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
503 503  
504 -====== __Limp (**L**)__ ======
406 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;
505 505  
506 -{{html wiki="true" clean="false"}}
507 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
508 -Example: #5L&lt;cr&gt;<div class="wikimodel-emptyline"></div>
408 +Query LED Color (**QLED**)
509 509  
510 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L&lt;cr&gt;.
511 -<div class="wikimodel-emptyline"></div></div></div>
512 -{{/html}}
410 +Ex: #5QLED<cr> might return *5QLED5<cr>
513 513  
514 -====== __Halt & Hold (**H**)__ ======
412 +This simple query returns the indicated servo's LED color.
515 515  
516 -{{html wiki="true" clean="false"}}
517 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
518 -Example: #5H&lt;cr&gt;<div class="wikimodel-emptyline"></div>
414 +Configure LED Color (**CLED**)
519 519  
520 -This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
521 -<div class="wikimodel-emptyline"></div></div></div>
522 -{{/html}}
416 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
523 523  
524 -== Motion Setup ==
418 +====== __15. Gyre Rotation Direction (**G**)__ ======
525 525  
526 -====== __Enable Motion Profile (**EM**)__ ======
420 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
527 527  
528 -{{html clean="false" wiki="true"}}
529 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
530 -EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div>
422 +Ex: #5G-1<cr>
531 531  
532 -Ex: #5EM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
424 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
533 533  
534 -This command enables a trapezoidal motion profile for servo #5 <div class="wikimodel-emptyline"></div>
426 +Query Gyre Direction (**QG**)
535 535  
536 -Ex: #5EM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
428 +Ex: #5QG<cr> might return *5QG-1<cr>
537 537  
538 -This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
430 +The value returned above means the servo is in a counter-clockwise gyration.
539 539  
540 -<div class="wikimodel-emptyline"></div>
432 +Configure Gyre (**CG**)
541 541  
542 -Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div>
434 +Ex: #5CG-1<cr>
543 543  
544 -Ex: #5QEM&lt;cr&gt; might return *5QEM1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
436 +This changes the gyre direction as described above and also writes to EEPROM.
545 545  
546 -This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div>
438 +====== __16. Identification Number (**ID**)__ ======
547 547  
548 -Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div>
440 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate).
549 549  
550 -Ex: #5CEM0&lt;cr&gt;<div class="wikimodel-emptyline"></div>
442 +Query Identification (**QID**)
551 551  
552 -This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
553 -<div class="wikimodel-emptyline"></div></div></div>
554 -{{/html}}
444 +EX: #254QID<cr> might return *QID5<cr>
555 555  
556 -====== __Filter Position Count (**FPC**)__ ======
446 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
557 557  
558 -{{html clean="false" wiki="true"}}
559 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
560 -The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
561 -<div class="wikimodel-emptyline"></div>
562 -Ex: #5FPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
563 -This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div>
448 +Configure ID (**CID**)
564 564  
565 -Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div>
450 +Ex: #4CID5<cr>
566 566  
567 -Ex: #5QFPC&lt;cr&gt; might return *5QFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
452 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.
568 568  
569 -This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div>
454 +====== __17. Baud Rate__ ======
570 570  
571 -Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div>
456 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200. The baud rates are currently restricted to those above.
572 572  
573 -Ex: #5CFPC10&lt;cr&gt;<div class="wikimodel-emptyline"></div>
458 +Query Baud Rate (**QB**)
574 574  
575 -This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
576 -<div class="wikimodel-emptyline"></div></div></div>
577 -{{/html}}
460 +Ex: #5QB<cr> might return *5QB115200<cr>
578 578  
579 -====== __Origin Offset (**O**)__ ======
462 +Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.
580 580  
581 -{{html wiki="true" clean="false"}}
582 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
583 -Example: #5O2400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
464 +Configure Baud Rate (**CB**)
584 584  
585 -This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div>
466 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.
586 586  
587 -[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
468 +Ex: #5CB9600<cr>
588 588  
589 -In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div>
470 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
590 590  
591 -[[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div>
472 +====== __18. {//Coming soon//}__ ======
592 592  
593 -Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div>
474 +Command coming soon....
594 594  
595 -Example: #5QO&lt;cr&gt; might return *5QO-13<div class="wikimodel-emptyline"></div>
476 +====== __19. First Position (Degrees)__ ======
596 596  
597 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div>
478 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.
598 598  
599 -Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div>
480 +Query First Position in Degrees (**QFD**)
600 600  
601 -Example: #5CO-24&lt;cr&gt;<div class="wikimodel-emptyline"></div>
482 +Ex: #5QFD<cr> might return *5QFD64<cr>
602 602  
603 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
604 -<div class="wikimodel-emptyline"></div></div></div>
605 -{{/html}}
484 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If there is no first position value stored, the reply will be DIS
606 606  
607 -====== __Angular Range (**AR**)__ ======
486 +Configure First Position in Degrees (**CFD**)
608 608  
609 -{{html wiki="true" clean="false"}}
610 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
611 -Example: #5AR1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
488 +Ex: #5CD64<cr>
612 612  
613 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div>
490 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
614 614  
615 -[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div>
492 +====== __20. Query Model String (**QMS**)__ ======
616 616  
617 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div>
494 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
618 618  
619 -[[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div>
496 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
620 620  
621 -Finally, the angular range action command (ex. #5AR1800&lt;cr&gt;) and origin offset action command (ex. #5O-1200&lt;cr&gt;) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div>
498 +====== __21. Query Serial Number (**QN**)__ ======
622 622  
623 -[[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div>
500 +Ex: #5QN<cr> might return *5QN12345678<cr>
624 624  
625 -Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div>
502 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
626 626  
627 -Example: #5QAR&lt;cr&gt; might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div>
504 +====== __22. Query Firmware (**QF**)__ ======
628 628  
629 -Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div>
506 +Ex: #5QF<cr> might return *5QF411<cr>
630 630  
631 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
632 -<div class="wikimodel-emptyline"></div></div></div>
633 -{{/html}}
508 +The number in the reply represents the firmware version, in this example being 411.
634 634  
635 -====== __Angular Stiffness (**AS**)__ ======
510 +====== __23. Query Status (**Q**)__ ======
636 636  
637 -{{html wiki="true" clean="false"}}
638 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
639 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div>
512 +The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses.
640 640  
641 -A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div>
514 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
642 642  
643 -* The more torque will be applied to try to keep the desired position against external input / changes
644 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div>
516 +|***Value returned (Q)**|**Status**|**Detailed description**
517 +|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
518 +|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
519 +|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely
520 +|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
521 +|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
522 +|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
523 +|ex: *5Q6<cr>|6: Holding|Keeping current position
524 +|ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
525 +|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
526 +|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
527 +|ex: *5Q10<cr>|10: Safe Mode|(((
528 +A safety limit has been exceeded (temperature, peak current or extended high current draw).
645 645  
646 -A lower value on the other hand:<div class="wikimodel-emptyline"></div>
530 +Send a Q1 command to know which limit has been reached (described below).
531 +)))
647 647  
648 -* Causes a slower acceleration to the travel speed, and a slower deceleration
649 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div>
533 +(% class="wikigeneratedid" %)
534 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
650 650  
651 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
536 +|***Value returned (Q1)**|**Status**|**Detailed description**
537 +|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
538 +|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
539 +|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
540 +|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
652 652  
653 -Ex: #5AS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
542 +====== __24. Query Voltage (**QV**)__ ======
654 654  
655 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div>
544 +Ex: #5QV<cr> might return *5QV11200<cr>
656 656  
657 -Ex: #5QAS&lt;cr&gt;<div class="wikimodel-emptyline"></div>
546 +The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
658 658  
659 -Queries the value being used.<div class="wikimodel-emptyline"></div>
548 +====== __25. Query Temperature (**QT**)__ ======
660 660  
661 -Ex: #5CAS-2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
550 +Ex: #5QT<cr> might return *5QT564<cr>
662 662  
663 -Writes the desired angular stiffness value to EEPROM.
664 -<div class="wikimodel-emptyline"></div></div></div>
665 -{{/html}}
552 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
666 666  
667 -====== __Angular Holding Stiffness (**AH**)__ ======
554 +====== __26. Query Current (**QC**)__ ======
668 668  
669 -{{html wiki="true" clean="false"}}
670 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
671 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div>
556 +Ex: #5QC<cr> might return *5QC140<cr>
672 672  
673 -Ex: #5AH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
558 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
674 674  
675 -This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div>
560 +====== __27. Configure RC Mode (**CRC**)__ ======
676 676  
677 -Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div>
562 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
678 678  
679 -Ex: #5QAH&lt;cr&gt; might return *5QAH3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
564 +|**Command sent**|**Note**
565 +|ex: #5CRC1<cr>|Change to RC position mode.
566 +|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode.
567 +|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode.
680 680  
681 -This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div>
569 +EX: #5CRC2<cr>
682 682  
683 -Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div>
571 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.
684 684  
685 -Ex: #5CAH2&lt;cr&gt;<div class="wikimodel-emptyline"></div>
573 +Important note:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.
686 686  
687 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
688 -<div class="wikimodel-emptyline"></div></div></div>
689 -{{/html}}
575 +====== __28. **RESET**__ ======
690 690  
691 -====== __Angular Acceleration (**AA**)__ ======
577 +Ex: #5RESET<cr> or #5RS<cr>
692 692  
693 -{{html wiki="true" clean="false"}}
694 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
695 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
579 +This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
580 +Note: after a RESET command is received the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.
696 696  
697 -Ex: #5AA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
582 +====== __29. **DEFAULT** & CONFIRM__ ======
698 698  
699 -This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
584 +Ex: #5DEFAULT<cr>
700 700  
701 -Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div>
586 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
702 702  
703 -Ex: #5QAA&lt;cr&gt; might return *5QAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
588 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
704 704  
705 -This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
590 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
706 706  
707 -Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div>
592 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
708 708  
709 -Ex: #5CAA30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
594 +====== __30. **UPDATE** & CONFIRM__ ======
710 710  
711 -This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
712 -<div class="wikimodel-emptyline"></div></div></div>
713 -{{/html}}
596 +Ex: #5UPDATE<cr>
714 714  
715 -====== __Angular Deceleration (**AD**)__ ======
598 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
716 716  
717 -{{html wiki="true" clean="false"}}
718 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
719 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div>
600 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
720 720  
721 -Ex: #5AD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
602 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
722 722  
723 -This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
604 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
724 724  
725 -Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div>
606 +== Details - Advanced ==
726 726  
727 -Ex: #5QAD&lt;cr&gt; might return *5QAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
608 +The motion controller used in serial mode is not the same as the motion controller use in RC mode. RC mode is intended to add functionality to what would be considered "normal" RC behavior based on PWM input.
728 728  
729 -This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>
610 +====== __A1. Angular Stiffness (**AS**)__ ======
730 730  
731 -Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div>
612 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.
732 732  
733 -Ex: #5CAD30&lt;cr&gt;<div class="wikimodel-emptyline"></div>
614 +A positive value of "angular stiffness":
734 734  
735 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
736 -<div class="wikimodel-emptyline"></div></div></div>
737 -{{/html}}
616 +* The more torque will be applied to try to keep the desired position against external input / changes
617 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
738 738  
739 -====== __Gyre Direction (**G**)__ ======
619 +A negative value on the other hand:
740 740  
741 -{{html wiki="true" clean="false"}}
742 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
743 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div>
621 +* Causes a slower acceleration to the travel speed, and a slower deceleration
622 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back
744 744  
745 -Ex: #5G-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
624 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
746 746  
747 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div>
626 +Ex: #5AS-2<cr>
748 748  
749 -Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div>
628 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
750 750  
751 -Ex: #5QG&lt;cr&gt; might return *5QG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
630 +Ex: #5QAS<cr>
752 752  
753 -The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div>
632 +Queries the value being used.
754 754  
755 -Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div>
634 +Ex: #5CAS<cr>
756 756  
757 -Ex: #5CG-1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
636 +Writes the desired angular stiffness value to memory.
758 758  
759 -This changes the gyre direction as described above and also writes to EEPROM.
760 -<div class="wikimodel-emptyline"></div></div></div>
761 -{{/html}}
638 +====== __A2. Angular Holding Stiffness (**AH**)__ ======
762 762  
763 -====== __First Position__ ======
640 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
764 764  
765 -{{html wiki="true" clean="false"}}
766 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
767 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div>
642 +Ex: #5AH3<cr>
768 768  
769 -Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div>
644 +This sets the holding stiffness for servo #5 to 3 for that session.
770 770  
771 -Ex: #5QFD&lt;cr&gt; might return *5QFD900&lt;cr&gt; <div class="wikimodel-emptyline"></div>
646 +Query Angular Hold Stiffness (**QAH**)
772 772  
773 -The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div>
648 +Ex: #5QAH<cr> might return *5QAH3<cr>
774 774  
775 -Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div>
650 +This returns the servo's angular holding stiffness value.
776 776  
777 -Ex: #5CFD900&lt;cr&gt;<div class="wikimodel-emptyline"></div>
652 +Configure Angular Hold Stiffness (**CAH**)
778 778  
779 -This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD&lt;cr&gt;) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD&lt;cr&gt;
780 -<div class="wikimodel-emptyline"></div></div></div>
781 -{{/html}}
654 +Ex: #5CAH2<cr>
782 782  
783 -====== __Maximum Motor Duty (**MMD**)__ ======
656 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
784 784  
785 -{{html wiki="true" clean="false"}}
786 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
787 -This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div>
658 +====== __A3: Angular Acceleration (**AA**)__ ======
788 788  
789 -Ex: #5MMD512&lt;cr&gt;<div class="wikimodel-emptyline"></div>
660 +The default value for angular acceleration is 100, which is the same as the maximum deceleration. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
790 790  
791 -This will set the duty-cycle to 512 for servo with ID 5 for that session.<div class="wikimodel-emptyline"></div>
662 +Ex: #5AA30<cr>
792 792  
793 -Query Maximum Motor Duty (**QMMD**)<div class="wikimodel-emptyline"></div>
664 +Query Angular Acceleration (**QAD**)
794 794  
795 -Ex: #5QMMDD&lt;cr&gt; might return *5QMMD512&lt;cr&gt; <div class="wikimodel-emptyline"></div>
666 +Ex: #5QA<cr> might return *5QA30<cr>
796 796  
797 -This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
798 -<div class="wikimodel-emptyline"></div></div></div>
799 -{{/html}}
668 +Configure Angular Acceleration (**CAD**)
800 800  
801 -====== __Maximum Speed in Degrees (**SD**)__ ======
670 +Ex: #5CA30<cr>
802 802  
803 -{{html wiki="true" clean="false"}}
804 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
805 -Ex: #5SD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
806 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
672 +====== __A4: Angular Deceleration (**AD**)__ ======
807 807  
808 -Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div>
674 +The default value for angular deceleration is 100, which is the same as the maximum acceleration. Values between 1 and 15 have the greatest impact.
809 809  
810 -Ex: #5QSD&lt;cr&gt; might return *5QSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
676 +Ex: #5AD8<cr>
811 811  
812 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1&lt;cr&gt; is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
678 +Query Angular Deceleration (**QAD**)
813 813  
814 -|**Command sent**|**Returned value (1/10 °)**
815 -|ex: #5QSD&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
816 -|ex: #5QSD1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
817 -|ex: #5QSD2&lt;cr&gt;|Instantaneous speed (same as QWD)
818 -|ex: #5QSD3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
680 +Ex: #5QD<cr> might return *5QD8<cr>
819 819  
820 -Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div>
682 +Configure Angular Deceleration (**CAD**)
821 821  
822 -Ex: #5CSD1800&lt;cr&gt;<div class="wikimodel-emptyline"></div>
823 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
824 -</div></div>
825 -{{/html}}
684 +Ex: #5CD8<cr>
826 826  
827 -====== __Maximum Speed in RPM (**SR**)__ ======
686 +====== __A5: Motion Control (**EM**)__ ======
828 828  
829 -{{html wiki="true" clean="false"}}
830 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
831 -Ex: #5SR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
832 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
688 +The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller.
833 833  
834 -Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div>
690 +Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used.
835 835  
836 -Ex: #5QSR&lt;cr&gt; might return *5QSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
692 +====== __A6. Configure LED Blinking (**CLB**)__ ======
837 837  
838 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1&lt;cr&gt; is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>
694 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:
839 839  
840 -|**Command sent**|**Returned value (1/10 °)**
841 -|ex: #5QSR&lt;cr&gt;|Session value for maximum speed (set by latest SD/SR command)
842 -|ex: #5QSR1&lt;cr&gt;|Configured maximum speed in EEPROM (set by CSD/CSR)
843 -|ex: #5QSR2&lt;cr&gt;|Instantaneous speed (same as QWD)
844 -|ex: #5QSR3&lt;cr&gt;|Target travel speed<div class="wikimodel-emptyline"></div>
696 +(% style="width:195px" %)
697 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
698 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0
699 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1
700 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2
701 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
702 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
703 +|(% style="width:134px" %)Free|(% style="width:58px" %)16
704 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32
705 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63
845 845  
846 -Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div>
707 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
847 847  
848 -Ex: #5CSR45&lt;cr&gt;<div class="wikimodel-emptyline"></div>
849 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div>
850 -</div></div>
851 -{{/html}}
709 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
710 +Ex: #5CLB1<cr> only blink when limp (1)
711 +Ex: #5CLB2<cr> only blink when holding (2)
712 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)
713 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)
714 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)
852 852  
853 -== Modifiers ==
716 +RESETTING the servo is needed.
854 854  
855 -====== __Speed (**S**, **SD**) modifier__ ======
718 +====== __A7. Current Halt & Hold (**CH**)__ ======
856 856  
857 -{{html clean="false" wiki="true"}}
858 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
859 -Example: #5P1500S750&lt;cr&gt;<div class="wikimodel-emptyline"></div>
860 -Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
861 -Example: #5D0SD180&lt;cr&gt;<div class="wikimodel-emptyline"></div>
862 -Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div>
863 -Query Speed (**QS**)<div class="wikimodel-emptyline"></div>
864 -Example: #5QS&lt;cr&gt; might return *5QS300&lt;cr&gt;<div class="wikimodel-emptyline"></div>
865 -This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div>
866 -</div></div>
867 -{{/html}}
720 +This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR.
868 868  
869 -====== __Timed move (**T**) modifier__ ======
722 +Ex: #5D1423CH400<cr>
870 870  
871 -{{html wiki="true" clean="false"}}
872 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
873 -Example: #5P1500T2500&lt;cr&gt;<div class="wikimodel-emptyline"></div>
724 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.
874 874  
875 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div>
876 -**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div>
877 -</div></div>
878 -{{/html}}
726 +====== __A8. Current Limp (**CL**)__ ======
879 879  
880 -====== __Current Halt & Hold (**CH**) modifier__ ======
728 +This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR.
881 881  
882 -{{html wiki="true" clean="false"}}
883 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
884 -Example: #5D1423CH400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
730 +Ex: #5D1423CH400<cr>
885 885  
886 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div>
887 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
888 -</div></div>
889 -{{/html}}
732 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.
890 890  
891 -====== __Current Limp (**CL**) modifier__ ======
734 += RGB LED Patterns =
892 892  
893 -{{html wiki="true" clean="false"}}
894 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
895 -Example: #5D1423CL400&lt;cr&gt;<div class="wikimodel-emptyline"></div>
896 -
897 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div>
898 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div>
899 -</div></div>
900 -{{/html}}
901 -
902 -== Telemetry ==
903 -
904 -====== __Query Voltage (**QV**)__ ======
905 -
906 -{{html wiki="true" clean="false"}}
907 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
908 -Ex: #5QV&lt;cr&gt; might return *5QV11200&lt;cr&gt;<div class="wikimodel-emptyline"></div>
909 -The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div>
910 -</div></div>
911 -{{/html}}
912 -
913 -====== __Query Temperature (**QT**)__ ======
914 -
915 -{{html wiki="true" clean="false"}}
916 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
917 -Ex: #5QT&lt;cr&gt; might return *5QT564&lt;cr&gt;<div class="wikimodel-emptyline"></div>
918 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div>
919 -</div></div>
920 -{{/html}}
921 -
922 -====== __Query Current (**QC**)__ ======
923 -
924 -{{html wiki="true" clean="false"}}
925 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
926 -Ex: #5QC&lt;cr&gt; might return *5QC140&lt;cr&gt;<div class="wikimodel-emptyline"></div>
927 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div>
928 -</div></div>
929 -{{/html}}
930 -
931 -====== __Query Model String (**QMS**)__ ======
932 -
933 -{{html wiki="true" clean="false"}}
934 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
935 -Ex: #5QMS&lt;cr&gt; might return *5QMSLSS-HS1&lt;cr&gt;<div class="wikimodel-emptyline"></div>
936 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div>
937 -</div></div>
938 -{{/html}}
939 -
940 -====== __Query Firmware (**QF**)__ ======
941 -
942 -{{html wiki="true" clean="false"}}
943 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
944 -Ex: #5QF&lt;cr&gt; might return *5QF368&lt;cr&gt;<div class="wikimodel-emptyline"></div>
945 -The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div>
946 -The command #5QF3&lt;cr&gt; can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div>
947 -</div></div>
948 -{{/html}}
949 -
950 -====== __Query Serial Number (**QN**)__ ======
951 -
952 -{{html wiki="true" clean="false"}}
953 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
954 -Ex: #5QN&lt;cr&gt; might return *5QN12345678&lt;cr&gt;<div class="wikimodel-emptyline"></div>
955 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div>
956 -</div></div>
957 -{{/html}}
958 -
959 -== RGB LED ==
960 -
961 -====== __LED Color (**LED**)__ ======
962 -
963 -{{html wiki="true" clean="false"}}
964 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
965 -Ex: #5LED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
966 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div>
967 -0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div>
968 -Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div>
969 -Ex: #5QLED&lt;cr&gt; might return *5QLED5&lt;cr&gt;<div class="wikimodel-emptyline"></div>
970 -This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div>
971 -Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div>
972 -Ex: #5CLED3&lt;cr&gt;<div class="wikimodel-emptyline"></div>
973 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div>
974 -</div></div>
975 -{{/html}}
976 -
977 -====== __Configure LED Blinking (**CLB**)__ ======
978 -
979 -{{html wiki="true" clean="false"}}
980 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt">
981 -This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div>
982 -
983 -(% style="width:195px" %)
984 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
985 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0
986 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1
987 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2
988 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
989 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
990 -|(% style="width:134px" %)Free|(% style="width:58px" %)16
991 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32
992 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div>
993 -
994 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div>
995 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div>
996 -Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div>
997 -Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div>
998 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div>
999 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div>
1000 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div>
1001 -RESETTING the servo is needed.<div class="wikimodel-emptyline"></div>
1002 -</div></div>
1003 -{{/html}}
1004 -
1005 -== RGB LED Patterns ==
1006 -
1007 1007  The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]]
1008 1008  
1009 1009  [[image:LSS - LED Patterns.png]]
LSS-Protocol-Backup-2020-05-01.zip
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.ENantel
Size
... ... @@ -1,1 +1,0 @@
1 -47.4 KB
Content
XWiki.StyleSheetExtension[0]
Caching policy
... ... @@ -1,1 +1,0 @@
1 -long
Code
... ... @@ -1,13 +1,0 @@
1 -div.cmdcnt
2 -{
3 - display:table-row;
4 -}
5 -div.cmdpad
6 -{
7 - display:table-cell;
8 - padding:16px;
9 -}
10 -div.cmdtxt
11 -{
12 - display:table-cell;
13 -}
Content Type
... ... @@ -1,1 +1,0 @@
1 -CSS
Name
... ... @@ -1,1 +1,0 @@
1 -DivTextIndentation
Parse content
... ... @@ -1,1 +1,0 @@
1 -0
Use this extension
... ... @@ -1,1 +1,0 @@
1 -currentPage
Copyright RobotShop 2018