Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
-
Objects (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -xwiki:XWiki. ENantel1 +xwiki:XWiki.RB1 - Content
-
... ... @@ -5,1010 +5,734 @@ 5 5 6 6 = Serial Protocol = 7 7 8 -The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available. 8 +The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servo motor is available. 9 9 10 -In order to beableto controleachservo individually with commands, the first step shouldbe to assign a different ID number to each servo (seetailson the ConfigureID, or "CID" command [[here>>doc:||anchor="HIdentificationNumber28ID29"]]).Only the servo(s) which have beenconfigured toaspecificIDwillact onacommandsentto thatID. There is currently no CRCorchecksum implemented as part of10 +In order to have servos react differently when commands are sent to all servos in a serial bus, the first step a user should take is to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol. 11 11 12 12 == Session == 13 13 14 -{{html clean="false" wiki="true"}} 15 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 16 -A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.<div class="wikimodel-emptyline"></div> 14 +A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 17 17 18 -**Note 1:** For a given session, the action related to a specific command overrides the stored value in EEPROM.<div class="wikimodel-emptyline"></div> 19 -**Note 2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (~1.25 s).<div class="wikimodel-emptyline"></div> 20 -**Note 3:** You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r described below). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays. 21 -<div class="wikimodel-emptyline"></div></div></div> 22 -{{/html}} 16 +Note #1: For a given session, the action related to a specific commands overrides the stored value in EEPROM. 17 +Note #2: During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s). 18 +You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended. 23 23 24 24 == Action Commands == 25 25 26 -{{html clean="false" wiki="true"}} 27 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 28 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:<div class="wikimodel-emptyline"></div> 22 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format: 29 29 30 -1. Start with a number sign **#**(Unicode Character: U+0023)31 -1. Servo ID number as an integer (assigning an ID described below)32 -1. Action command (one o rmore letters, nowhitespace, capital or lowercasefrom the list below)24 +1. Start with a number sign # (U+0023) 25 +1. Servo ID number as an integer 26 +1. Action command (one to three letters, no spaces, capital or lower case) 33 33 1. Action value in the correct units with no decimal 34 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)28 +1. End with a control / carriage return '<cr>' 35 35 36 36 ((( 37 -Ex: #5D1 800<cr><divclass="wikimodel-emptyline"></div>31 +Ex: #5PD1443<cr> 38 38 39 -This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 40 -<div class="wikimodel-emptyline"></div></div></div> 41 -{{/html}} 33 +This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 42 42 43 -== Modifiers == 35 +== Action Modifiers == 44 44 45 -{{html clean="false" wiki="true"}} 46 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 47 -Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div> 37 +Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is: 48 48 49 -1. Start with a number sign **#**(Unicode Character: U+0023)39 +1. Start with a number sign # (U+0023) 50 50 1. Servo ID number as an integer 51 -1. Action command (one to three letters, no spaces, capital or lower casefrom a subset of action commandsbelow)41 +1. Action command (one to three letters, no spaces, capital or lower case) 52 52 1. Action value in the correct units with no decimal 53 -1. Modifier command (one or twoletters from the list of modifiers below)43 +1. Modifier command (one letter) 54 54 1. Modifier value in the correct units with no decimal 55 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)45 +1. End with a control / carriage return '<cr>' 56 56 57 -Ex: #5 D1800T1500<cr><divclass="wikimodel-emptyline"></div>47 +Ex: #5P1456T1263<cr> 58 58 59 -This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div> 60 -<div class="wikimodel-emptyline"></div></div></div> 61 -{{/html}} 49 +This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds. 50 +))) 62 62 63 63 == Query Commands == 64 64 65 -{{html clean="false" wiki="true"}} 66 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 67 -Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div> 54 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format: 68 68 69 -1. Start with a number sign **#**(Unicode Character: U+0023)56 +1. Start with a number sign # (U+0023) 70 70 1. Servo ID number as an integer 71 -1. Query command (one to four72 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<divclass="wikimodel-emptyline"></div>58 +1. Query command (one to three letters, no spaces, capital or lower case) 59 +1. End with a control / carriage return '<cr>' 73 73 74 -Ex: #5QD<cr> Query the position in (tenth of) degrees for servo with ID #5<div class="wikimodel-emptyline"></div> 61 +((( 62 +Ex: #5QD<cr>Query position in degrees for servo #5 63 +))) 75 75 65 +((( 76 76 The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format: 77 77 78 -1. Start with an asterisk * (U nicode Character: U+0023)68 +1. Start with an asterisk * (U+002A) 79 79 1. Servo ID number as an integer 80 -1. Query command (one to four70 +1. Query command (one to three letters, no spaces, capital letters) 81 81 1. The reported value in the units described, no decimals. 82 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<divclass="wikimodel-emptyline"></div>72 +1. End with a control / carriage return '<cr>' 83 83 84 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries tomultiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a newquerycommand. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>74 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be: 85 85 86 -Ex: *5QD1800<cr><div class="wikimodel-emptyline"></div> 76 +((( 77 +Ex: *5QD1443<cr> 78 +))) 87 87 88 -This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees). 89 -<div class="wikimodel-emptyline"></div></div></div> 90 -{{/html}} 80 +This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees). 91 91 92 92 == Configuration Commands == 93 93 94 -{{html clean="false" wiki="true"}} 95 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 96 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div> 84 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 97 97 98 -These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div> 99 - 100 -The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div> 101 - 102 -1. Start with a number sign **#** (Unicode Character: U+0023) 86 +1. Start with a number sign # (U+0023) 103 103 1. Servo ID number as an integer 104 -1. Configuration command (two to four88 +1. Configuration command (two to three letters, no spaces, capital or lower case) 105 105 1. Configuration value in the correct units with no decimal 106 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<divclass="wikimodel-emptyline"></div>90 +1. End with a control / carriage return '<cr>' 107 107 108 -Ex: #5CO-50 <cr><divclass="wikimodel-emptyline"></div>92 +Ex: #5CO-50<cr> 109 109 110 -This configures an absolute origin offset ("CO") with respect to factory origin ofservo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory resetthatclears all configurations(through the button menu or with DEFAULT commanddescribed below).<div class="wikimodel-emptyline"></div>94 +This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below. 111 111 112 -**Session vs Configuration Query** <div class="wikimodel-emptyline"></div>96 +**Session vs Configuration Query** 113 113 114 -By default, the query command returns the session 's<div class="wikimodel-emptyline"></div>98 +By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: 115 115 116 -Ex: #5CSR20 <cr>immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<divclass="wikimodel-emptyline"></div>100 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory. 117 117 118 -After RESET, a command of #5SR4 <cr>sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>102 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore: 119 119 120 -#5QSR <cr>or #5QSR0<cr>would return *5QSR4<cr>which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>104 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas 121 121 122 -#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 123 -<div class="wikimodel-emptyline"></div></div></div> 124 -{{/html}} 106 +#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 125 125 126 126 == Virtual Angular Position == 127 127 128 -{{html wiki="true" clean="false"}} 129 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 130 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div> 110 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset). 131 131 132 -[[image:LSS-servo-positions.jpg]] <div class="wikimodel-emptyline"></div>112 +[[image:LSS-servo-positions.jpg]] 133 133 134 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: <div class="wikimodel-emptyline"></div>114 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 135 135 136 -#1D-300 <cr>This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div>116 +#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow) 137 137 138 -#1D2100 <cr>This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div>118 +#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow) 139 139 140 -#1D-4200 <cr>This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<divclass="wikimodel-emptyline"></div>120 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees. 141 141 142 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. <divclass="wikimodel-emptyline"></div>122 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 143 143 144 -#1D4800 <cr>This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<divclass="wikimodel-emptyline"></div>124 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 145 145 146 -#1D3300 <cr>would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>126 +#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow). 147 147 148 -If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°]. 149 -<div class="wikimodel-emptyline"></div></div></div> 150 -{{/html}} 128 +If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). 129 +))) 151 151 152 152 = Command List = 153 153 154 - **Latestfirmwareversion currently: 368.29.14**133 +== Regular == 155 155 156 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Communication Setup**>>||anchor="HCommunicationSetup"]] 157 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 158 -| |[[**Reset**>>||anchor="HReset"]]|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Soft reset. See command for details. 159 -| |[[**Default** Configuration>>||anchor="HDefault26confirm"]]|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Revert to firmware default values. See command for details 160 -| |[[Firmware **Update** Mode>>||anchor="HUpdate26confirm"]]|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Update firmware. See command for details. 161 -| |[[**Confirm** Changes>>||anchor="HConfirm"]]|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 162 -| |[[**C**hange to **RC**>>||anchor="HConfigureRCMode28CRC29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CRC|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Change to RC mode 1 (position) or 2 (wheel). 163 -| |[[**ID** #>>||anchor="HIdentificationNumber28ID29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %) |(% style="text-align:center" %)✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 164 -| |[[**B**audrate>>||anchor="HBaudRate"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QB|(% style="text-align:center" %)CB|(% style="text-align:center" %) |(% style="text-align:center" %)✓|115200| |Reset required after change. 135 +|= #|=Description|=Mod|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 136 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| | L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 137 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| | H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 138 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]|T| | | | | | ✓|milliseconds|(% style="width:510px" %)Modifier only for {P, D, MD}. Time is estimated and can change based on load|(% style="text-align:center; width:113px" %) 139 +| 4|[[**S**peed>>||anchor="H4.Speed28S2CSD29modifier"]]|S/SD| |QS| | | | ✓|microseconds per second / degrees per second|(% style="width:510px" %)S modifier only for {P}. SD modifier only for {D, MD}.|(% style="text-align:center; width:113px" %) 140 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| | MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 141 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| | O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 142 +0 143 +))) 144 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| | AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 145 +1800 146 +))) 147 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| | P| QP| | | | ✓|microseconds|(% style="width:510px" %)((( 148 +Inherited from SSC-32 serial protocol 149 +)))|(% style="text-align:center; width:113px" %) 150 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| | D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 151 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| | WD| QWD| | | | ✓|degrees per second|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 152 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| | WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 153 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| | SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)((( 154 +QSD: Add modifier "2" for instantaneous speed. 165 165 166 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion**>>||anchor="HMotion"]] 167 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 168 -| |[[Position in **D**egrees>>||anchor="HPositioninDegrees28D29"]]|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 169 -| |[[**M**ove in **D**egrees (relative)>>||anchor="H28Relative29MoveinDegrees28MD29"]]|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 170 -| |[[**W**heel mode in **D**egrees>>||anchor="HWheelModeinDegrees28WD29"]]|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation" 171 -| |[[**W**heel mode in **R**PM>>||anchor="HWheelModeinRPM28WR29"]]|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation" 172 -| |[[Position in **P**WM>>||anchor="HPositioninPWM28P29"]]|(% style="text-align:center" %)P|(% style="text-align:center" %)QP|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|Inherited from SSC-32 serial protocol 173 -| |[[**M**ove in PWM (relative)>>||anchor="H28Relative29MoveinPWM28M29"]]|(% style="text-align:center" %)M|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us| 174 -| |[[**R**aw **D**uty-cycle **M**ove>>||anchor="HRawDuty-cycleMove28RDM29"]]|(% style="text-align:center" %)RDM|(% style="text-align:center" %)QMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW 175 -| |[[**Q**uery Status>>||anchor="HQueryStatus28Q29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1 to 8 integer|See command description for details 176 -| |[[**L**imp>>||anchor="HLimp28L29"]]|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 177 -| |[[**H**alt & Hold>>||anchor="HHalt26Hold28H29"]]|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 156 +SD overwrites SR / CSD overwrites CSR and vice-versa. 157 +)))|(% style="text-align:center; width:113px" %)Max per servo 158 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| | SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 159 +QSR: Add modifier "2" for instantaneous speed 178 178 179 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Motion Setup**>>||anchor="HMotionSetup"]] 180 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 181 -| |[[**E**nable **M**otion Profile>>||anchor="HEnableMotionProfile28EM29"]]|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|(% style="text-align:center" %) |(% style="text-align:center" %)✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile 182 -| |[[**F**ilter **P**osition **C**ount>>||anchor="HFilterPositionCount28FPC29"]]|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|5| |Affects motion only when motion profile is disabled (EM0) 183 -| |[[**O**rigin Offset>>||anchor="HOriginOffset28O29"]]|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|1/10°| 184 -| |[[**A**ngular **R**ange>>||anchor="HAngularRange28AR29"]]|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1800|1/10°| 185 -| |[[**A**ngular **S**tiffness>>||anchor="HAngularStiffness28AS29"]]|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|-4 to +4 integer|Suggested values are between 0 to +4 186 -| |[[**A**ngular **H**olding Stiffness>>||anchor="HAngularHoldingStiffness28AH29"]]|(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|4|-10 to +10 integer| 187 -| |[[**A**ngular **A**cceleration>>||anchor="HAngularAcceleration28AA29"]]|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 188 -| |[[**A**ngular **D**eceleration>>||anchor="HAngularDeceleration28AD29"]]|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 189 -| |[[**G**yre Direction>>||anchor="HGyreDirection28G29"]]|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 190 -| |[[**F**irst Position (**D**eg)>>||anchor="HFirstPosition"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|No value|1/10°|Reset required after change. 191 -| |[[**M**aximum **M**otor **D**uty>>||anchor="HMaximumMotorDuty28MMD29"]]|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓|1023|255 to 1023 integer| 192 -| |[[Maximum **S**peed in **D**egrees>>||anchor="HMaximumSpeedinDegrees28SD29"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 193 -| |[[Maximum **S**peed in **R**PM>>||anchor="HMaximumSpeedinRPM28SR29"]]|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 161 +SR overwrites SD / CSR overwrites CSD and vice-versa. 162 +)))|(% style="text-align:center; width:113px" %)Max per servo 163 +| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| | LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 7)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)0 (OFF) 164 +| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| | G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 165 +| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0 166 +| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)115200 167 +| 18|//{coming soon}//| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 168 + 169 +))) 170 +| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstA0Position28Degrees29"]]| | | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)No Value 171 +| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)|(% style="text-align:center; width:113px" %) 172 +| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 173 +| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 174 +| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 175 +| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 176 +| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 177 +| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 178 +| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | | |CRC|✓| | ✓|none|(% style="width:510px" %)((( 179 +Change to RC mode 1 (position) or 2 (wheel). 180 +)))|(% style="text-align:center; width:113px" %)Serial 181 +| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 182 +| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 183 +| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 194 194 195 -|(% colspan="10" style="color:orange; font-size:18px" %)[[**Modifiers**>>||anchor="HModifiers"]] 196 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 197 -| |[[**S**peed>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)S|(% style="text-align:center" %)QS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |uS/s |For P action command 198 -| |[[**S**peed in **D**egrees>>||anchor="HSpeed28S2CSD29modifier"]]|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |0.1°/s|For D and MD action commands 199 -| |[[**T**imed move>>||anchor="HTimedmove28T29modifier"]]|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |ms|Modifier only for P, D and MD. Time can change based on load 200 -| |[[**C**urrent **H**old>>||anchor="HCurrentHalt26Hold28CH29modifier"]]|(% style="text-align:center" %)CH|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 201 -| |[[**C**urrent **L**imp>>||anchor="HCurrentLimp28CL29modifier"]]|(% style="text-align:center" %)CL|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 185 +== Advanced == 202 202 203 -|(% colspan="10" style="color:orange;font-size:18px" %)[[**Telemetry**>>||anchor="HTelemetry"]]204 -|(% style="width:2 5px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center;width:100px" %)**Action**|(% style="text-align:center;width:75px" %)**Query**|(% style="text-align:center;width:75px" %)**Config**|(% style="text-align:center;width:75px" %)**RC**|(% style="text-align:center;width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**205 -| |[[** Q**uery**V**oltage>>||anchor="HQueryVoltage28QV29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QV|(% style="text-align:center" %)ext-align:center"%)|(% style="text-align:center"%)✓||mV|206 -| |[[** Q**uery**T**emperature>>||anchor="HQueryTemperature28QT29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %)ext-align:center" %) |(% style="text-align:center"%)✓||1/10°C|207 -| |[[** Q**uery**C**urrent>>||anchor="HQueryCurrent28QC29"]]|(% style="text-align:center" %)ext-align:center" %)QC|(% style="text-align:center" %) |(% style="text-align:center"%)|(% style="text-align:center"%)✓||mA|208 -| |[[** Q**uery**M**odel **S**tring>>||anchor="HQueryModelString28QMS29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓||Returnshemodel ofservo(ex: LSS-ST1,LSS-HS1,LSS-HT1)209 -| |[[** Q**uery**F**irmwareVersion>>||anchor="HQueryFirmware28QF29"]]|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center"%)✓|||210 - | |[[**Q**uery Serial **N**umber>>||anchor="HQuerySerialNumber28QN29"]]|(%style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center"%)|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returnsthe unique serialumber for the servo187 +|= #|=(% style="width: 182px;" %)Description|=(% style="width: 56px;" %)Mod|=(% style="width: 70px;" %) Action|=(% style="width: 71px;" %) Query|=(% style="width: 77px;" %) Config|=(% style="width: 77px;" %)Session|=(% style="width: 56px;" %) RC|=(% style="width: 151px;" %) Serial|= Units|=(% style="width: 510px;" %) Notes 188 +| A1|(% style="width:182px" %)[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|(% style="width:56px" %) |(% style="width:70px" %)AS|(% style="width:71px" %)QAS|(% style="width:77px" %)CAS|(% style="width:77px" %)✓|(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4 189 +| A2|(% style="width:182px" %)[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|(% style="width:56px" %) |(% style="width:70px" %)AH|(% style="width:71px" %)QAH|(% style="width:77px" %)CAH|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|none (integer -10 to +10)|(% style="width:510px" %)Effect is different between serial and RC 190 +| A3|(% style="width:182px" %)[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|(% style="width:56px" %) |(% style="width:70px" %)AA|(% style="width:71px" %)QAA|(% style="width:77px" %)CAA|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared 191 +| A4|(% style="width:182px" %)[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|(% style="width:56px" %) |(% style="width:70px" %)AD|(% style="width:71px" %)QAD|(% style="width:77px" %)CAD|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared 192 +| A5|(% style="width:182px" %)[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|(% style="width:56px" %) |(% style="width:70px" %)EM|(% style="width:71px" %)QEM|(% style="width:77px" %) |(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %) ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable 193 +| A6|(% style="width:182px" %)[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]|(% style="width:56px" %) |(% style="width:70px" %) |(% style="width:71px" %)QLB|(% style="width:77px" %) CLB|(% style="width:77px" %) |(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer from 0 to 63)|(% style="width:510px" %)((( 194 +0=No blinking, 63=Always blink; 211 211 212 - |(% colspan="10"style="color:orange;font-size:18px"%)[[**RGB LED**>>||anchor="HRGBLED"]]213 - |(% style="width:25px" %)|(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**214 -| |[[** LED**Color>>||anchor="HLEDColor28LED29"]]|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓||0to7integer|0=Off; 1=Red;2=Green;3=Blue; 4=Yellow;5=Cyan;6=Magenta;7=White215 -| |[[**C** onfigure **L**ED **B**linking>>||anchor="HConfigureLEDBlinking28CLB29"]]|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CLB|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓||0to63 integer|Resetrequiredafter change.See command fordetails.196 +Blink while: 1=Limp; 2=Holding; 4=Accel; 8=Decel; 16=Free 32=Travel; 197 +))) 198 +| A7|(% style="width:182px" %)[[**C**urrent **H**alt & **H**old>>||anchor="HA7.CurrentHalt26Hold28CH29"]]|(% style="width:56px" %)CH|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR 199 +| A8|(% style="width:182px" %)[[**C**urrent **L**imp>>||anchor="HA8.CurrentLimp28CL29"]]|(% style="width:56px" %)CL|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR 216 216 217 -= (% style="color:inherit;font-family:inherit" %)Details(%%)=201 +== Details - Basic == 218 218 219 -== (% style="color:inherit;font-family:inherit"%)Communication Setup(%%) ==203 +====== __1. Limp (**L**)__ ====== 220 220 221 - ====== __Reset__======205 +Example: #5L<cr> 222 222 223 -{{html wiki="true" clean="false"}} 224 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 225 -Ex: #5RESET<cr><div class="wikimodel-emptyline"></div> 226 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). 227 -Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div> 228 -</div></div> 229 -{{/html}} 207 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 230 230 231 -====== __ Default &confirm__ ======209 +====== __2. Halt & Hold (**H**)__ ====== 232 232 233 -{{html wiki="true" clean="false"}} 234 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 235 -Ex: #5DEFAULT<cr><div class="wikimodel-emptyline"></div> 211 +Example: #5H<cr> 236 236 237 -This command setsin motionthe resetof allvalues to thedefault valuesincludedwithhesionofthefirmware installed on that servo.TheservothenwaitsfortheCONFIRM command.Any othercommand receivedwillcause theservo to exittheDEFAULT function.<divclass="wikimodel-emptyline"></div>213 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position. 238 238 239 - EX:#5DEFAULT<cr>followedby #5CONFIRM<cr><divclass="wikimodel-emptyline"></div>215 +====== __3. Timed move (**T**) modifier__ ====== 240 240 241 - Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command otherthan CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<divclass="wikimodel-emptyline"></div>217 +Example: #5P1500T2500<cr> 242 242 243 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 244 -</div></div> 245 -{{/html}} 219 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 246 246 247 - ======__Update&confirm__======221 +Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 248 248 249 -{{html wiki="true" clean="false"}} 250 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 251 -Ex: #5UPDATE<cr><div class="wikimodel-emptyline"></div> 223 +====== __4. Speed (**S**, **SD**) modifier__ ====== 252 252 253 -This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div> 225 +Example: #5P1500S750<cr> 226 +Example: #5D0SD180<cr> 254 254 255 - EX:#5UPDATE<cr>followedby#5CONFIRM<cr><divclass="wikimodel-emptyline"></div>228 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 256 256 257 - Sinceititnot commontohavetoupdatefirmware,aconfirmation command isneededafteranUPDATEcommandissent. Shouldany commandotherthanCONFIRMbereceivedbythe servoafterthe firmwarecommandhasbeenreceived,itwillleavethe firmwareaction.<divclass="wikimodel-emptyline"></div>230 +Modifer (S) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second. 258 258 259 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 260 -</div></div> 261 -{{/html}} 232 +Query Speed (**QS**) 262 262 263 - ======__Confirm__======234 +Example: #5QS<cr> might return *5QS300<cr> 264 264 265 -{{html wiki="true" clean="false"}} 266 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 267 -Ex: #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 236 +This command queries the current speed in microseconds per second. 268 268 269 - Thiscommandis usedtoconfirm changesafter aDefault orUpdatecommand.<divclass="wikimodel-emptyline"></div>238 +====== __5. (Relative) Move in Degrees (**MD**)__ ====== 270 270 271 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 272 -</div></div> 273 -{{/html}} 240 +Example: #5MD123<cr> 274 274 275 - ======__ConfigureRCMode(**CRC**)__======242 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 276 276 277 -{{html wiki="true" clean="false"}} 278 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 279 -This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.<div class="wikimodel-emptyline"></div> 244 +====== __6. Origin Offset Action (**O**)__ ====== 280 280 281 -|**Command sent**|**Note** 282 -|ex: #5CRC1<cr>|Change to RC position mode. 283 -|ex: #5CRC2<cr>|Change to RC continuous rotation (wheel) mode. 284 -|ex: #5CRC*<cr>|Where * is any value other than 1 or 2 (or no value): stay in smart mode.<div class="wikimodel-emptyline"></div> 246 +Example: #5O2400<cr> 285 285 286 - EX:#5CRC2<cr><divclass="wikimodel-emptyline"></div>248 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 287 287 288 - This command would placethe servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, theservowill be in RC modend will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serialmode still requires a RESET command.<div class="wikimodel-emptyline"></div>250 +[[image:LSS-servo-default.jpg]] 289 289 290 -**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.<div class="wikimodel-emptyline"></div> 291 -</div></div> 292 -{{/html}} 252 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: 293 293 294 - ====== __Identification Number(**ID**)__ ======254 +[[image:LSS-servo-origin.jpg]] 295 295 296 -{{html wiki="true" clean="false"}} 297 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 298 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div> 256 +Origin Offset Query (**QO**) 299 299 300 - QueryIdentification(**QID**)<div class="wikimodel-emptyline"></div>258 +Example: #5QO<cr> Returns: *5QO-13 301 301 302 - EX:#254QID<cr>might return*QID5<cr><divclass="wikimodel-emptyline"></div>260 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero. 303 303 304 - When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to changeit. Usingthe broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively,pushing the button upon startup and temporarily settingthe servo ID to 255 will still result intheservo responding withits "real" ID.<div class="wikimodel-emptyline"></div>262 +Configure Origin Offset (**CO**) 305 305 306 - Configure ID (**CID**)<div class="wikimodel-emptyline"></div>264 +Example: #5CO-24<cr> 307 307 308 - Ex:#4CID5<cr><div class="wikimodel-emptyline"></div>266 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 309 309 310 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div> 311 -</div></div> 312 -{{/html}} 268 +====== __7. Angular Range (**AR**)__ ====== 313 313 314 - ====== __Baud Rate__======270 +Example: #5AR1800<cr> 315 315 316 -{{html clean="false" wiki="true"}} 317 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 318 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div> 272 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: 319 319 320 - Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div>274 +[[image:LSS-servo-default.jpg]] 321 321 322 - Ex: #5QB<cr>mightreturn*5QB115200<cr><divclass="wikimodel-emptyline"></div>276 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 323 323 324 - Since the command to query the baud rate must be done at the servo's existingbaud rate, it cansimply beused to confirm the CB configuration command was correctly received before the servo is power cycledand the new baudrate takes effect.<div class="wikimodel-emptyline"></div>278 +[[image:LSS-servo-ar.jpg]] 325 325 326 - ConfigureBaudRate(**CB**)<divclass="wikimodel-emptyline"></div>280 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range: 327 327 328 - **Important Note:** theservo's current session retains the given baudrate and the new baud rate willonly take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div>282 +[[image:LSS-servo-ar-o-1.jpg]] 329 329 330 - Ex:#5CB9600<cr><divclass="wikimodel-emptyline"></div>284 +Query Angular Range (**QAR**) 331 331 332 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div> 333 -</div></div> 334 -{{/html}} 286 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees. 335 335 336 - ======__AutomaticBaudRate__======288 +Configure Angular Range (**CAR**) 337 337 338 -{{html clean="false" wiki="true"}} 339 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 340 -This option allows the LSS to listen to it's serial input and select the right baudrate automatically.<div class="wikimodel-emptyline"></div> 290 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 341 341 342 - QueryAutomaticBaudRate (**QABR**)<divclass="wikimodel-emptyline"></div>292 +====== __8. Position in Pulse (**P**)__ ====== 343 343 344 -Ex: #5 QABR<cr> might return *5ABR0<cr><divclass="wikimodel-emptyline"></div>294 +Example: #5P2334<cr> 345 345 346 - EnableBaudRate(**ABR**)<divclass="wikimodel-emptyline"></div>296 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points. 347 347 348 -Ex: #5QABR1<cr><div class="wikimodel-emptyline"></div> 349 -Enable baudrate detection on first byte received after power-up.<div class="wikimodel-emptyline"></div> 298 +Query Position in Pulse (**QP**) 350 350 351 -Ex: #5QABR2,30<cr><div class="wikimodel-emptyline"></div> 352 -Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte.<div class="wikimodel-emptyline"></div> 353 -</div></div> 354 -{{/html}} 300 +Example: #5QP<cr> might return *5QP2334 355 355 356 -== Motion == 302 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 303 +Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 357 357 358 -====== __Position in Degrees (**D**)__ ====== 305 +====== __9. Position in Degrees (**D**)__ ====== 359 359 360 -{{html wiki="true" clean="false"}} 361 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 362 -Example: #5D1456<cr><div class="wikimodel-emptyline"></div> 307 +Example: #5D1456<cr> 363 363 364 -This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) couldalso be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle(absoluteposition) as-900, except the servo would move in a different direction.<div class="wikimodel-emptyline"></div>309 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction. 365 365 366 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above).<div class="wikimodel-emptyline"></div>311 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position. 367 367 368 -Query Position in Degrees (**QD**) <div class="wikimodel-emptyline"></div>313 +Query Position in Degrees (**QD**) 369 369 370 -Example: #5QD <cr>might return *5QD132<cr><divclass="wikimodel-emptyline"></div>315 +Example: #5QD<cr> might return *5QD132<cr> 371 371 372 -This means the servo is located at 13.2 <div class="wikimodel-emptyline"></div>317 +This means the servo is located at 13.2 degrees. 373 373 374 374 (% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 375 -Query Target Position <div class="wikimodel-emptyline"></div>320 +Query Target Position in Degrees (**QDT**) 376 376 377 -Ex: #5QDT <cr>might return *5QDT6783<cr><divclass="wikimodel-emptyline"></div>322 +Ex: #5QDT<cr> might return *5QDT6783<cr> 378 378 379 -The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 380 -<div class="wikimodel-emptyline"></div></div></div> 381 -{{/html}} 324 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 382 382 383 -====== __ (Relative)Move in Degrees (**MD**)__ ======326 +====== __10. Wheel Mode in Degrees (**WD**)__ ====== 384 384 385 -{{html wiki="true" clean="false"}} 386 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 387 -Example: #5MD123<cr><div class="wikimodel-emptyline"></div> 328 +Ex: #5WD90<cr> 388 388 389 -The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 390 -<div class="wikimodel-emptyline"></div></div></div> 391 -{{/html}} 330 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). 392 392 393 - ======__Wheel Mode in Degrees (**WD**)__ ======332 +Query Wheel Mode in Degrees (**QWD**) 394 394 395 -{{html wiki="true" clean="false"}} 396 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 397 -Ex: #5WD90<cr><div class="wikimodel-emptyline"></div> 334 +Ex: #5QWD<cr> might return *5QWD90<cr> 398 398 399 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div> 400 - 401 -Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div> 402 - 403 -Ex: #5QWD<cr> might return *5QWD90<cr><div class="wikimodel-emptyline"></div> 404 - 405 405 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 406 -<div class="wikimodel-emptyline"></div></div></div> 407 -{{/html}} 408 408 409 -====== __Wheel Mode in RPM (**WR**)__ ====== 338 +====== __11. Wheel Mode in RPM (**WR**)__ ====== 410 410 411 -{{html wiki="true" clean="false"}} 412 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 413 -Ex: #5WR40<cr><div class="wikimodel-emptyline"></div> 340 +Ex: #5WR40<cr> 414 414 415 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). <div class="wikimodel-emptyline"></div>342 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). 416 416 417 -Query Wheel Mode in RPM (**QWR**) <div class="wikimodel-emptyline"></div>344 +Query Wheel Mode in RPM (**QWR**) 418 418 419 -Ex: #5QWR <cr>might return *5QWR40<cr><divclass="wikimodel-emptyline"></div>346 +Ex: #5QWR<cr> might return *5QWR40<cr> 420 420 421 421 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 422 -<div class="wikimodel-emptyline"></div></div></div> 423 -{{/html}} 424 424 425 -====== __ PositioninPWM(**P**)__ ======350 +====== __12. Max Speed in Degrees (**SD**)__ ====== 426 426 427 -{{html wiki="true" clean="false"}} 428 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 429 -Example: #5P2334<cr><div class="wikimodel-emptyline"></div> 352 +Ex: #5SD1800<cr> 430 430 431 -Th epositioninPWM pulseswasretainedinordertobe backward compatiblewiththeSSC-32 / 32U protocol. This relatesthedesiredanglewithn RC standardPWMsignalandis furtherexplainedintheSSC-32and[[SSC-32Umanuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]].Withoutanymodificationsto configurationconsidered,anda±90.0 degreesstandard rangewhere1500microsecondsiscentered,aPWMsignalof2334wouldsetthe servoto 165.1 degrees.Validvaluesfor Pare[500,2500].Valuesoutside thisrange are corrected/restricted to endpoints.<divclass="wikimodel-emptyline"></div>354 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 432 432 433 -Query PositioninPulse (**QP**)<div class="wikimodel-emptyline"></div>356 +Query Speed in Degrees (**QSD**) 434 434 435 -Ex ample: #5QP<cr>might return *5QP2334<divclass="wikimodel-emptyline"></div>358 +Ex: #5QSD<cr> might return *5QSD1800<cr> 436 436 437 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 438 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 439 -<div class="wikimodel-emptyline"></div></div></div> 440 -{{/html}} 360 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. 361 +If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 441 441 442 -====== __(Relative) Move in PWM (**M**)__ ====== 363 +|**Command sent**|**Returned value (1/10 °)** 364 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 365 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 366 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 367 +|ex: #5QSD3<cr>|Target travel speed 443 443 444 -{{html wiki="true" clean="false"}} 445 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 446 -Example: #5M1500<cr><div class="wikimodel-emptyline"></div> 369 +Configure Speed in Degrees (**CSD**) 447 447 448 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 449 -<div class="wikimodel-emptyline"></div></div></div> 450 -{{/html}} 371 +Ex: #5CSD1800<cr> 451 451 452 - ======__Raw Duty-cycleMove (**RDM**)__======373 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 453 453 454 -{{html wiki="true" clean="false"}} 455 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 456 -Example: #5RDM512<cr><div class="wikimodel-emptyline"></div> 375 +====== __13. Max Speed in RPM (**SR**)__ ====== 457 457 458 - Theraw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a gearedDC motor.<divclass="wikimodel-emptyline"></div>377 +Ex: #5SD45<cr> 459 459 460 -Th edutyvalues rangefrom0to1023.Negativevalueswillrotate the servo in theoppositedirection(forfactorydefaultanegative valuewould becounter clockwise).<divclass="wikimodel-emptyline"></div>379 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 461 461 462 -Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div>381 +Query Speed in Degrees (**QSR**) 463 463 464 -Ex ample: #5QMD<cr>might return *5QMD512<divclass="wikimodel-emptyline"></div>383 +Ex: #5QSR<cr> might return *5QSR45<cr> 465 465 466 -This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 467 -<div class="wikimodel-emptyline"></div></div></div> 468 -{{/html}} 385 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. 386 +If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 469 469 470 -====== __Query Status (**Q**)__ ====== 388 +|**Command sent**|**Returned value (1/10 °)** 389 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 390 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 391 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 392 +|ex: #5QSR3<cr>|Target travel speed 471 471 472 -{{html wiki="true" clean="false"}} 473 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 474 -The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div> 394 +Configure Speed in RPM (**CSR**) 475 475 476 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div> 477 -</div></div> 478 -{{/html}} 396 +Ex: #5CSR45<cr> 479 479 480 -|(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description** 481 -| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 482 -| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 483 -| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command 484 -| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 485 -| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 486 -| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 487 -| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding) 488 -| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 489 -| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 490 -| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 491 -| |ex: *5Q10<cr>|10: Safe Mode|((( 492 -A safety limit has been exceeded (temperature, peak current or extended high current draw). 398 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 493 493 494 -Send a Q1 command to know which limit has been reached (described below). 495 -))) 400 +====== __14. LED Color (**LED**)__ ====== 496 496 497 -{{html wiki="true" clean="false"}} 498 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 499 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div> 500 -</div></div> 501 -{{/html}} 402 +Ex: #5LED3<cr> 502 502 503 -|(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description** 504 -| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 505 -| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 506 -| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 507 -| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 404 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. 508 508 509 -= =====__Limp(**L**)__======406 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White; 510 510 511 -{{html wiki="true" clean="false"}} 512 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 513 -Example: #5L<cr><div class="wikimodel-emptyline"></div> 408 +Query LED Color (**QLED**) 514 514 515 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 516 -<div class="wikimodel-emptyline"></div></div></div> 517 -{{/html}} 410 +Ex: #5QLED<cr> might return *5QLED5<cr> 518 518 519 - ======__Halt&Hold(**H**)__======412 +This simple query returns the indicated servo's LED color. 520 520 521 -{{html wiki="true" clean="false"}} 522 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 523 -Example: #5H<cr><div class="wikimodel-emptyline"></div> 414 +Configure LED Color (**CLED**) 524 524 525 -This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 526 -<div class="wikimodel-emptyline"></div></div></div> 527 -{{/html}} 416 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 528 528 529 -== MotionSetup==418 +====== __15. Gyre Rotation Direction (**G**)__ ====== 530 530 531 - ======__EnableMotionProfile(**EM**)__======420 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 532 532 533 -{{html clean="false" wiki="true"}} 534 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 535 -EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.<div class="wikimodel-emptyline"></div> 422 +Ex: #5G-1<cr> 536 536 537 - Ex:#5EM1<cr><div class="wikimodel-emptyline"></div>424 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 538 538 539 - This commandenablesa trapezoidalmotion profilefor servo #5 <divclass="wikimodel-emptyline"></div>426 +Query Gyre Direction (**QG**) 540 540 541 -Ex: #5 EM0<cr><divclass="wikimodel-emptyline"></div>428 +Ex: #5QG<cr> might return *5QG-1<cr> 542 542 543 -Th is command will disablethe built-in trapezoidalmotion profile. As such, theservo will moveatfull speed to the target positionusing theD/MD action commands.Modifiers like SD/S or T cannotbe used in EM0 mode. By default the Filter Position Counter, or "FPC" is activein EM0modeto smooth out its operation. EM0 issuggested for applications wherean external controller will be determining all incremental intermediate positions of theservo'smotion, effectively replacing a trajectory manager. To prevent having tosendpositioncommandscontinuously to reach the desired positionin EM0/FPC active(FPC >= 2), an internalposition engine (IPE) repeats the last positioncommand. Note that in EM0 mode, the servowill effectively alwaysbein status: Holding(if using the querystatus command).430 +The value returned above means the servo is in a counter-clockwise gyration. 544 544 545 - <div class="wikimodel-emptyline"></div>432 +Configure Gyre (**CG**) 546 546 547 - Query Motion Profile (**QEM**)<divclass="wikimodel-emptyline"></div>434 +Ex: #5CG-1<cr> 548 548 549 - Ex:#5QEM<cr>mightreturn*5QEM1<cr><divclass="wikimodel-emptyline"></div>436 +This changes the gyre direction as described above and also writes to EEPROM. 550 550 551 - Thiscommandwill querythe motion profile. **0:** motionprofile disabled/**1:**trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div>438 +====== __16. Identification Number (**ID**)__ ====== 552 552 553 - ConfigureMotionProfile(**CEM**)<divclass="wikimodel-emptyline"></div>440 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate). 554 554 555 - Ex: #5CEM0<cr><divclass="wikimodel-emptyline"></div>442 +Query Identification (**QID**) 556 556 557 -This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 558 -<div class="wikimodel-emptyline"></div></div></div> 559 -{{/html}} 444 +EX: #254QID<cr> might return *QID5<cr> 560 560 561 - ======__FilterPositionCount (**FPC**)__======446 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 562 562 563 -{{html clean="false" wiki="true"}} 564 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 565 -The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default. 566 -<div class="wikimodel-emptyline"></div> 567 -Ex: #5FPC10<cr><div class="wikimodel-emptyline"></div> 568 -This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div> 448 +Configure ID (**CID**) 569 569 570 - QueryFilter PositionCount (**QFPC**)<divclass="wikimodel-emptyline"></div>450 +Ex: #4CID5<cr> 571 571 572 - Ex:#5QFPC<cr>might return*5QFPC10<cr><divclass="wikimodel-emptyline"></div>452 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect. 573 573 574 - Thiscommandwill query the Filter Position Count value.<divclass="wikimodel-emptyline"></div>454 +====== __17. Baud Rate__ ====== 575 575 576 - ConfigureFilterPositionCount(**CFPC**)<div class="wikimodel-emptyline"></div>456 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200. The baud rates are currently restricted to those above. 577 577 578 - Ex: #5CFPC10<cr><divclass="wikimodel-emptyline"></div>458 +Query Baud Rate (**QB**) 579 579 580 -This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 581 -<div class="wikimodel-emptyline"></div></div></div> 582 -{{/html}} 460 +Ex: #5QB<cr> might return *5QB115200<cr> 583 583 584 - ======__OriginOffset(**O**)__======462 +Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect. 585 585 586 -{{html wiki="true" clean="false"}} 587 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 588 -Example: #5O2400<cr><div class="wikimodel-emptyline"></div> 464 +Configure Baud Rate (**CB**) 589 589 590 - This command allows youto changetheorigin ofthe servoin relation to the factory zero positionforthatsession.As withall actioncommands,thesettingwill belostuponservo reset/ powercycle.Originoffsetcommandsare not cumulativeandalwaysrelatetofactoryzero. In thefirst image, the origin at factoryoffset'0' (centered).<divclass="wikimodel-emptyline"></div>466 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET. 591 591 592 - [[image:LSS-servo-default.jpg]]<divclass="wikimodel-emptyline"></div>468 +Ex: #5CB9600<cr> 593 593 594 - In thesecond image,theorigin,and thecorrespondingangular range(explainedbelow)havebeenshiftedby +240.0degrees:<divclass="wikimodel-emptyline"></div>470 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 595 595 596 - [[image:LSS-servo-origin.jpg]]<divclass="wikimodel-emptyline"></div>472 +====== __18. {//Coming soon//}__ ====== 597 597 598 - OriginOffset Query (**QO**)<divclass="wikimodel-emptyline"></div>474 +Command coming soon.... 599 599 600 - Example:#5QO<cr>mightreturn *5QO-13<div class="wikimodel-emptyline"></div>476 +====== __19. First Position (Degrees)__ ====== 601 601 602 - Thisallowsyou toquerythe angle(intenthsof degrees)oftheorigin inrelationto the factoryzero position.Inthisexample, theneworigin is at -1.3degreesfromthefactoryzero.<divclass="wikimodel-emptyline"></div>478 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. 603 603 604 - ConfigureOriginOffset(**CO**)<div class="wikimodel-emptyline"></div>480 +Query First Position in Degrees (**QFD**) 605 605 606 -Ex ample: #5CO-24<cr><divclass="wikimodel-emptyline"></div>482 +Ex: #5QFD<cr> might return *5QFD64<cr> 607 607 608 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 609 -<div class="wikimodel-emptyline"></div></div></div> 610 -{{/html}} 484 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If there is no first position value stored, the reply will be DIS 611 611 612 - ====== __AngularRange (**AR**)__ ======486 +Configure First Position in Degrees (**CFD**) 613 613 614 -{{html wiki="true" clean="false"}} 615 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 616 -Example: #5AR1800<cr><div class="wikimodel-emptyline"></div> 488 +Ex: #5CD64<cr> 617 617 618 -This command a llowsyoutotemporarilychangethe totalangularrangeoftheservoin tenthsofdegrees.ThisappliestothePositionPulse(P)command andRCmode.Thedefaultfor (P) andRC modeis1800 (180.0 degrees total,or±90.0 degrees). The imagebelowshowsa standard-180.0to+180.0range,withno offset:<divclass="wikimodel-emptyline"></div>490 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 619 619 620 - [[image:LSS-servo-default.jpg]]<divclass="wikimodel-emptyline"></div>492 +====== __20. Query Model String (**QMS**)__ ====== 621 621 622 - Below,the angularrangeis restricted to 180.0 degrees, or -90.0 to +90.0. The centerhasremainedunchanged.<divclass="wikimodel-emptyline"></div>494 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr> 623 623 624 - [[image:LSS-servo-ar.jpg]]<divclass="wikimodel-emptyline"></div>496 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 625 625 626 - Finally,theangularrangeaction command (ex. #5AR1800<cr>) and origin offsetaction command (ex. #5O-1200<cr>)areused tomoveboth thecenterandlimit the angular range:<div class="wikimodel-emptyline"></div>498 +====== __21. Query Serial Number (**QN**)__ ====== 627 627 628 - [[image:LSS-servo-ar-o-1.jpg]]<divclass="wikimodel-emptyline"></div>500 +Ex: #5QN<cr> might return *5QN12345678<cr> 629 629 630 - QueryAngularRange (**QAR**)<divclass="wikimodel-emptyline"></div>502 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user. 631 631 632 - Example:#5QAR<cr>might return*5AR1800,indicating the total angularrange is 180.0 degrees.<divclass="wikimodel-emptyline"></div>504 +====== __22. Query Firmware (**QF**)__ ====== 633 633 634 - ConfigureAngularRange(**CAR**)<divclass="wikimodel-emptyline"></div>506 +Ex: #5QF<cr> might return *5QF411<cr> 635 635 636 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 637 -<div class="wikimodel-emptyline"></div></div></div> 638 -{{/html}} 508 +The number in the reply represents the firmware version, in this example being 411. 639 639 640 -====== __ Angular Stiffness(**AS**)__ ======510 +====== __23. Query Status (**Q**)__ ====== 641 641 642 -{{html wiki="true" clean="false"}} 643 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 644 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div> 512 +The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses. 645 645 646 - Ahighervalueof"angularstiffness":<divclass="wikimodel-emptyline"></div>514 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 647 647 648 -* The more torque will be applied to try to keep the desired position against external input / changes 649 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div> 516 +|***Value returned (Q)**|**Status**|**Detailed description** 517 +|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 518 +|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 519 +|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely 520 +|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 521 +|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 522 +|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 523 +|ex: *5Q6<cr>|6: Holding|Keeping current position 524 +|ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 525 +|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 526 +|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 527 +|ex: *5Q10<cr>|10: Safe Mode|((( 528 +A safety limit has been exceeded (temperature, peak current or extended high current draw). 650 650 651 -A lower value on the other hand:<div class="wikimodel-emptyline"></div> 530 +Send a Q1 command to know which limit has been reached (described below). 531 +))) 652 652 653 - *Causesa slower acceleration to thetravel speed, anda slower deceleration654 - *Allows the targetposition to deviate morefrom itspositionbeforeadditionaltorqueisappliedtobringitback<divclass="wikimodel-emptyline"></div>533 +(% class="wikigeneratedid" %) 534 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 655 655 656 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 536 +|***Value returned (Q1)**|**Status**|**Detailed description** 537 +|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 538 +|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 539 +|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 540 +|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 657 657 658 - Ex:#5AS-2<cr><divclass="wikimodel-emptyline"></div>542 +====== __24. Query Voltage (**QV**)__ ====== 659 659 660 - Thisreduces the angularstiffness to -2 for that session, allowing the servo to deviatemore around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effectis desired. Upon reset, the servo willuse the value stored inmemory, based on the last configuration command.<divclass="wikimodel-emptyline"></div>544 +Ex: #5QV<cr> might return *5QV11200<cr> 661 661 662 - Ex:#5QAS<cr><divclass="wikimodel-emptyline"></div>546 +The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 663 663 664 -Quer iesthevaluebeingused.<div class="wikimodel-emptyline"></div>548 +====== __25. Query Temperature (**QT**)__ ====== 665 665 666 -Ex: #5 CAS-2<cr><divclass="wikimodel-emptyline"></div>550 +Ex: #5QT<cr> might return *5QT564<cr> 667 667 668 -Writes the desired angular stiffness value to EEPROM. 669 -<div class="wikimodel-emptyline"></div></div></div> 670 -{{/html}} 552 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 671 671 672 -====== __ AngularHolding Stiffness(**AH**)__ ======554 +====== __26. Query Current (**QC**)__ ====== 673 673 674 -{{html wiki="true" clean="false"}} 675 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 676 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 556 +Ex: #5QC<cr> might return *5QC140<cr> 677 677 678 - Ex:#5AH3<cr><divclass="wikimodel-emptyline"></div>558 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 679 679 680 - Thissetsthe holding stiffness forservo#5to3 for that session.<divclass="wikimodel-emptyline"></div>560 +====== __27. Configure RC Mode (**CRC**)__ ====== 681 681 682 - QueryAngularHoldingStiffness(**QAH**)<divclass="wikimodel-emptyline"></div>562 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 683 683 684 -Ex: #5QAH<cr> might return *5QAH3<cr><div class="wikimodel-emptyline"></div> 564 +|**Command sent**|**Note** 565 +|ex: #5CRC1<cr>|Change to RC position mode. 566 +|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 567 +|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode. 685 685 686 - Thisreturns the servo's angular holding stiffness value.<divclass="wikimodel-emptyline"></div>569 +EX: #5CRC2<cr> 687 687 688 - ConfigureAngularHoldingStiffness(**CAH**)<divclass="wikimodel-emptyline"></div>571 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command. 689 689 690 - Ex:#5CAH2<cr><div class="wikimodel-emptyline"></div>573 +Important note:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe. 691 691 692 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 693 -<div class="wikimodel-emptyline"></div></div></div> 694 -{{/html}} 575 +====== __28. **RESET**__ ====== 695 695 696 - ======__Angular Acceleration(**AA**)__ ======577 +Ex: #5RESET<cr> or #5RS<cr> 697 697 698 -{{html wiki="true" clean="false"}} 699 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 700 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 579 +This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 580 +Note: after a RESET command is received the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details. 701 701 702 - Ex:#5AA30<cr><divclass="wikimodel-emptyline"></div>582 +====== __29. **DEFAULT** & CONFIRM__ ====== 703 703 704 - Thissets the angular acceleration for servo#5to 30 degrees per second squared (°/s^^2^^).<divclass="wikimodel-emptyline"></div>584 +Ex: #5DEFAULT<cr> 705 705 706 - QueryAngularAcceleration(**QAA**)<divclass="wikimodel-emptyline"></div>586 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 707 707 708 -E x: #5QAA<cr>might return *5QAA30<cr><div class="wikimodel-emptyline"></div>588 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 709 709 710 - This returnstheservo's angular accelerationingreespersecond squared(°/s^^2^^).<divclass="wikimodel-emptyline"></div>590 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command. 711 711 712 - ConfigureAngularAcceleration(**CAA**)<divclass="wikimodel-emptyline"></div>592 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 713 713 714 - Ex:#5CAA30<cr><divclass="wikimodel-emptyline"></div>594 +====== __30. **UPDATE** & CONFIRM__ ====== 715 715 716 -This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 717 -<div class="wikimodel-emptyline"></div></div></div> 718 -{{/html}} 596 +Ex: #5UPDATE<cr> 719 719 720 - ======__AngularDeceleration(**AD**)__======598 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. 721 721 722 -{{html wiki="true" clean="false"}} 723 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 724 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 600 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr> 725 725 726 - Ex:#5AD30<cr><divclass="wikimodel-emptyline"></div>602 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 727 727 728 - This setstheangular decelerationfor servo#5to 30 degreespersecond squared(°/s^^2^^).<divclass="wikimodel-emptyline"></div>604 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 729 729 730 - QueryAngularDeceleration(**QAD**)<divclass="wikimodel-emptyline"></div>606 +== Details - Advanced == 731 731 732 - Ex:#5QAD<cr>might return*5QAD30<cr><divclass="wikimodel-emptyline"></div>608 +The motion controller used in serial mode is not the same as the motion controller use in RC mode. RC mode is intended to add functionality to what would be considered "normal" RC behavior based on PWM input. 733 733 734 - Thisreturnsthe servo's angulardecelerationin degreespersecondsquared(°/s^^2^^).<divclass="wikimodel-emptyline"></div>610 +====== __A1. Angular Stiffness (**AS**)__ ====== 735 735 736 - ConfigureAngularDeceleration(**CAD**)<divclass="wikimodel-emptyline"></div>612 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units. 737 737 738 - Ex: #5CAD30<cr><divclass="wikimodel-emptyline"></div>614 +A positive value of "angular stiffness": 739 739 740 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 741 -<div class="wikimodel-emptyline"></div></div></div> 742 -{{/html}} 616 +* The more torque will be applied to try to keep the desired position against external input / changes 617 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 743 743 744 - ======__GyreDirection(**G**)__======619 +A negative value on the other hand: 745 745 746 -{{html wiki="true" clean="false"}} 747 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 748 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div> 621 +* Causes a slower acceleration to the travel speed, and a slower deceleration 622 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back 749 749 750 - Ex:#5G-1<cr><div class="wikimodel-emptyline"></div>624 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 751 751 752 - Thiscommand will cause servo#5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<divclass="wikimodel-emptyline"></div>626 +Ex: #5AS-2<cr> 753 753 754 - QueryGyreDirection(**QG**)<divclass="wikimodel-emptyline"></div>628 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 755 755 756 -Ex: #5Q G<cr> might return *5QG-1<cr><divclass="wikimodel-emptyline"></div>630 +Ex: #5QAS<cr> 757 757 758 - The valueturned above means theservo is inacounter-clockwisegyration. Sendinga #5WR30 command will rotate the servo in a counter-clockwisegyration at 30 RPM.<div class="wikimodel-emptyline"></div>632 +Queries the value being used. 759 759 760 - ConfigureGyre (**CG**)<divclass="wikimodel-emptyline"></div>634 +Ex: #5CAS<cr> 761 761 762 - Ex: #5CG-1<cr><divclass="wikimodel-emptyline"></div>636 +Writes the desired angular stiffness value to memory. 763 763 764 -This changes the gyre direction as described above and also writes to EEPROM. 765 -<div class="wikimodel-emptyline"></div></div></div> 766 -{{/html}} 638 +====== __A2. Angular Holding Stiffness (**AH**)__ ====== 767 767 768 - ======__FirstPosition__======640 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when considering altering a stiffness value, the end effect depends on the mode being tested. 769 769 770 -{{html wiki="true" clean="false"}} 771 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 772 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div> 642 +Ex: #5AH3<cr> 773 773 774 - Query FirstPosition inDegrees(**QFD**)<divclass="wikimodel-emptyline"></div>644 +This sets the holding stiffness for servo #5 to 3 for that session. 775 775 776 - Ex: #5QFD<cr>might return *5QFD900<cr><div class="wikimodel-emptyline"></div>646 +Query Angular Hold Stiffness (**QAH**) 777 777 778 - Thereply above indicates that servowithID 5 has a firstposition of 90.0 degrees. Ifthere isnofirst position value stored, the reply will be DIS.<divclass="wikimodel-emptyline"></div>648 +Ex: #5QAH<cr> might return *5QAH3<cr> 779 779 780 - ConfigureFirstPositioninDegrees(**CFD**)<divclass="wikimodel-emptyline"></div>650 +This returns the servo's angular holding stiffness value. 781 781 782 - Ex: #5CFD900<cr><divclass="wikimodel-emptyline"></div>652 +Configure Angular Hold Stiffness (**CAH**) 783 783 784 -This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 785 -<div class="wikimodel-emptyline"></div></div></div> 786 -{{/html}} 654 +Ex: #5CAH2<cr> 787 787 788 - ======__MaximumMotorDuty(**MMD**)__======656 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. Note that when considering altering a stiffness value, the end effect depends on the mode being tested. 789 789 790 -{{html wiki="true" clean="false"}} 791 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 792 -This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.<div class="wikimodel-emptyline"></div> 658 +====== __A3: Angular Acceleration (**AA**)__ ====== 793 793 794 - Ex:#5MMD512<cr><divclass="wikimodel-emptyline"></div>660 +The default value for angular acceleration is 100, which is the same as the maximum deceleration. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 795 795 796 - Thiswill set the duty-cycle to512 for servo with ID 5 for that session.<divclass="wikimodel-emptyline"></div>662 +Ex: #5AA30<cr> 797 797 798 -Query MaximumMotorDuty(**QMMD**)<div class="wikimodel-emptyline"></div>664 +Query Angular Acceleration (**QAD**) 799 799 800 -Ex: #5Q MMDD<cr>might return *5QMMD512<cr><divclass="wikimodel-emptyline"></div>666 +Ex: #5QA<cr> might return *5QA30<cr> 801 801 802 -This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023. 803 -<div class="wikimodel-emptyline"></div></div></div> 804 -{{/html}} 668 +Configure Angular Acceleration (**CAD**) 805 805 806 - ====== __MaximumSpeed in Degrees (**SD**)__ ======670 +Ex: #5CA30<cr> 807 807 808 -{{html wiki="true" clean="false"}} 809 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 810 -Ex: #5SD1800<cr><div class="wikimodel-emptyline"></div> 811 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 672 +====== __A4: Angular Deceleration (**AD**)__ ====== 812 812 813 - QuerySpeedinDegrees(**QSD**)<divclass="wikimodel-emptyline"></div>674 +The default value for angular deceleration is 100, which is the same as the maximum acceleration. Values between 1 and 15 have the greatest impact. 814 814 815 -Ex: #5 QSD<cr> might return *5QSD1800<cr><divclass="wikimodel-emptyline"></div>676 +Ex: #5AD8<cr> 816 816 817 - By defaultQSD will return thecurrentsessionvalue, which is set to the value of CSDasreset/powercycleandchanged whenevern SD/SR command is processed. If #5QSD1<cr>is sent, the configuredmaximum speed(CSDvalue)will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div>678 +Query Angular Deceleration (**QAD**) 818 818 819 -|**Command sent**|**Returned value (1/10 °)** 820 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 821 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 822 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 823 -|ex: #5QSD3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 680 +Ex: #5QD<cr> might return *5QD8<cr> 824 824 825 -Configure Speed in Degrees(**CSD**)<div class="wikimodel-emptyline"></div>682 +Configure Angular Deceleration (**CAD**) 826 826 827 -Ex: #5CSD1800<cr><div class="wikimodel-emptyline"></div> 828 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 829 -</div></div> 830 -{{/html}} 684 +Ex: #5CD8<cr> 831 831 832 -====== __M aximumSpeed inRPM(**SR**)__ ======686 +====== __A5: Motion Control (**EM**)__ ====== 833 833 834 -{{html wiki="true" clean="false"}} 835 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 836 -Ex: #5SR45<cr><div class="wikimodel-emptyline"></div> 837 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 688 +The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller. 838 838 839 - QuerySpeed inRPM(**QSR**)<divclass="wikimodel-emptyline"></div>690 +Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used. 840 840 841 - Ex:#5QSR<cr>might return*5QSR45<cr><divclass="wikimodel-emptyline"></div>692 +====== __A6. Configure LED Blinking (**CLB**)__ ====== 842 842 843 - Bydefault QSR willreturnthecurrentsessionvalue,whichissetto thevalueof CSR asreset/powercycleand changed wheneveranSD/SRcommand is processed.If#5QSR1<cr>is sent,theconfiguredmaximumspeed(CSR value)will bereturnedinstead.also querythecurrentspeedusing"2"andthe currenttarget travelspeedusing "3".See thetablebelow foran example:<divclass="wikimodel-emptyline"></div>694 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value: 844 844 845 -|**Command sent**|**Returned value (1/10 °)** 846 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 847 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 848 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 849 -|ex: #5QSR3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 696 +(% style="width:195px" %) 697 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 698 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 699 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1 700 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2 701 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 702 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 703 +|(% style="width:134px" %)Free|(% style="width:58px" %)16 704 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 705 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63 850 850 851 - ConfigureSpeedinRPM(**CSR**)<divclass="wikimodel-emptyline"></div>707 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 852 852 853 -Ex: #5CSR45<cr><div class="wikimodel-emptyline"></div> 854 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 855 -</div></div> 856 -{{/html}} 709 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 710 +Ex: #5CLB1<cr> only blink when limp (1) 711 +Ex: #5CLB2<cr> only blink when holding (2) 712 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12) 713 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48) 714 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32) 857 857 858 - ==Modifiers==716 +RESETTING the servo is needed. 859 859 860 -====== __ Speed (**S**, **SD**)modifier__ ======718 +====== __A7. Current Halt & Hold (**CH**)__ ====== 861 861 862 -{{html clean="false" wiki="true"}} 863 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 864 -Example: #5P1500S750<cr><div class="wikimodel-emptyline"></div> 865 -Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 866 -Example: #5D0SD180<cr><div class="wikimodel-emptyline"></div> 867 -Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.<div class="wikimodel-emptyline"></div> 868 -Query Speed (**QS**)<div class="wikimodel-emptyline"></div> 869 -Example: #5QS<cr> might return *5QS300<cr><div class="wikimodel-emptyline"></div> 870 -This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div> 871 -</div></div> 872 -{{/html}} 720 +This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR. 873 873 874 - ======__Timed move (**T**) modifier__ ======722 +Ex: #5D1423CH400<cr> 875 875 876 -{{html wiki="true" clean="false"}} 877 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 878 -Example: #5P1500T2500<cr><div class="wikimodel-emptyline"></div> 724 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position. 879 879 880 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 881 -**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div> 882 -</div></div> 883 -{{/html}} 726 +====== __A8. Current Limp (**CL**)__ ====== 884 884 885 - ======__CurrentHalt&Hold(**CH**)modifier__======728 +This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR. 886 886 887 -{{html wiki="true" clean="false"}} 888 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 889 -Example: #5D1423CH400<cr><div class="wikimodel-emptyline"></div> 730 +Ex: #5D1423CH400<cr> 890 890 891 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div> 892 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 893 -</div></div> 894 -{{/html}} 732 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp. 895 895 896 -= =====__CurrentLimp(**CL**) modifier__======734 += RGB LED Patterns = 897 897 898 -{{html wiki="true" clean="false"}} 899 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 900 -Example: #5D1423CL400<cr><div class="wikimodel-emptyline"></div> 901 - 902 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div> 903 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 904 -</div></div> 905 -{{/html}} 906 - 907 -== Telemetry == 908 - 909 -====== __Query Voltage (**QV**)__ ====== 910 - 911 -{{html wiki="true" clean="false"}} 912 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 913 -Ex: #5QV<cr> might return *5QV11200<cr><div class="wikimodel-emptyline"></div> 914 -The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div> 915 -</div></div> 916 -{{/html}} 917 - 918 -====== __Query Temperature (**QT**)__ ====== 919 - 920 -{{html wiki="true" clean="false"}} 921 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 922 -Ex: #5QT<cr> might return *5QT564<cr><div class="wikimodel-emptyline"></div> 923 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div> 924 -</div></div> 925 -{{/html}} 926 - 927 -====== __Query Current (**QC**)__ ====== 928 - 929 -{{html wiki="true" clean="false"}} 930 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 931 -Ex: #5QC<cr> might return *5QC140<cr><div class="wikimodel-emptyline"></div> 932 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div> 933 -</div></div> 934 -{{/html}} 935 - 936 -====== __Query Model String (**QMS**)__ ====== 937 - 938 -{{html wiki="true" clean="false"}} 939 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 940 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr><div class="wikimodel-emptyline"></div> 941 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div> 942 -</div></div> 943 -{{/html}} 944 - 945 -====== __Query Firmware (**QF**)__ ====== 946 - 947 -{{html wiki="true" clean="false"}} 948 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 949 -Ex: #5QF<cr> might return *5QF368<cr><div class="wikimodel-emptyline"></div> 950 -The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div> 951 -The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div> 952 -</div></div> 953 -{{/html}} 954 - 955 -====== __Query Serial Number (**QN**)__ ====== 956 - 957 -{{html wiki="true" clean="false"}} 958 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 959 -Ex: #5QN<cr> might return *5QN12345678<cr><div class="wikimodel-emptyline"></div> 960 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div> 961 -</div></div> 962 -{{/html}} 963 - 964 -== RGB LED == 965 - 966 -====== __LED Color (**LED**)__ ====== 967 - 968 -{{html wiki="true" clean="false"}} 969 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 970 -Ex: #5LED3<cr><div class="wikimodel-emptyline"></div> 971 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div> 972 -0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div> 973 -Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div> 974 -Ex: #5QLED<cr> might return *5QLED5<cr><div class="wikimodel-emptyline"></div> 975 -This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div> 976 -Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div> 977 -Ex: #5CLED3<cr><div class="wikimodel-emptyline"></div> 978 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div> 979 -</div></div> 980 -{{/html}} 981 - 982 -====== __Configure LED Blinking (**CLB**)__ ====== 983 - 984 -{{html wiki="true" clean="false"}} 985 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 986 -This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div> 987 - 988 -(% style="width:195px" %) 989 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 990 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 991 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1 992 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2 993 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 994 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 995 -|(% style="width:134px" %)Free|(% style="width:58px" %)16 996 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 997 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div> 998 - 999 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div> 1000 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div> 1001 -Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div> 1002 -Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div> 1003 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div> 1004 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div> 1005 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div> 1006 -RESETTING the servo is needed.<div class="wikimodel-emptyline"></div> 1007 -</div></div> 1008 -{{/html}} 1009 - 1010 -== RGB LED Patterns == 1011 - 1012 1012 The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] 1013 1013 1014 1014 [[image:LSS - LED Patterns.png]]
- LSS-Protocol-Backup-2020-05-01.zip
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -47.4 KB - Content
- XWiki.StyleSheetExtension[0]
-
- Caching policy
-
... ... @@ -1,1 +1,0 @@ 1 -long - Code
-
... ... @@ -1,13 +1,0 @@ 1 -div.cmdcnt 2 -{ 3 - display:table-row; 4 -} 5 -div.cmdpad 6 -{ 7 - display:table-cell; 8 - padding:16px; 9 -} 10 -div.cmdtxt 11 -{ 12 - display:table-cell; 13 -} - Content Type
-
... ... @@ -1,1 +1,0 @@ 1 -CSS - Name
-
... ... @@ -1,1 +1,0 @@ 1 -DivTextIndentation - Parse content
-
... ... @@ -1,1 +1,0 @@ 1 -0 - Use this extension
-
... ... @@ -1,1 +1,0 @@ 1 -currentPage