Last modified by Eric Nantel on 2025/06/06 07:47

From version < 213.1 >
edited by Eric Nantel
on 2024/11/21 09:18
To version < 171.1 >
edited by Eric Nantel
on 2020/05/01 09:24
< >
Change comment: Rollback to version 169.1

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSS Communication Protocol
1 +LSS - Communication Protocol
Parent
... ... @@ -1,1 +1,1 @@
1 -ses-v2.lynxmotion-smart-servo.WebHome
1 +lynxmotion-smart-servo.WebHome
Content
... ... @@ -5,128 +5,112 @@
5 5  
6 6  = Serial Protocol =
7 7  
8 -The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available.
8 +The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servo motor is available.
9 9  
10 -In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>path:#HIdentificationNumber28ID29]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
10 +In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol.
11 11  
12 -|(% colspan="2" %)(((
13 13  == Session ==
14 -)))
15 -|(% style="width:25px" %) |(((
13 +
16 16  A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
17 17  
18 -**Note 1:** For a given session, the action related to a specific command overrides the stored value in EEPROM.
16 +Note #1: For a given session, the action related to a specific commands overrides the stored value in EEPROM.
17 +Note #2: During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).
18 +You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended.
19 19  
20 -**Note 2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).
21 -
22 -**Note 3:** You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r described below). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays.
23 -)))
24 -
25 -|(% colspan="2" %)(((
26 26  == Action Commands ==
27 -)))
28 -|(% style="width:25px" %) |(((
29 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HVirtualAngularPosition]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
30 30  
31 -1. Start with a number sign **#** (Unicode Character: U+0023)
32 -1. Servo ID number as an integer (assigning an ID described below)
33 -1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
22 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
23 +
24 +1. Start with a number sign # (U+0023)
25 +1. Servo ID number as an integer
26 +1. Action command (one to three letters, no spaces, capital or lower case)
34 34  1. Action value in the correct units with no decimal
35 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
28 +1. End with a control / carriage return '<cr>'
36 36  
37 -Ex: #5D1800<cr>
30 +(((
31 +Ex: #5PD1443<cr>
38 38  
39 -This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
40 -)))
33 +This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
41 41  
42 -|(% colspan="2" %)(((
43 -== Modifiers ==
44 -)))
45 -|(% style="width:25px" %) |(((
46 -Modifiers can only be used with certain **action commands**. The format to include a modifier is:
35 +== Action Modifiers ==
47 47  
48 -1. Start with a number sign **#** (Unicode Character: U+0023)
37 +Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is:
38 +
39 +1. Start with a number sign # (U+0023)
49 49  1. Servo ID number as an integer
50 -1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
41 +1. Action command (one to three letters, no spaces, capital or lower case)
51 51  1. Action value in the correct units with no decimal
52 -1. Modifier command (one or two letters from the list of modifiers below)
43 +1. Modifier command (one letter)
53 53  1. Modifier value in the correct units with no decimal
54 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
45 +1. End with a control / carriage return '<cr>'
55 55  
56 -Ex: #5D1800T1500<cr>
47 +Ex: #5P1456T1263<cr>
57 57  
58 -This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).
49 +This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds.
59 59  )))
60 60  
61 -|(% colspan="2" %)(((
62 62  == Query Commands ==
63 -)))
64 -|(% style="width:25px" %) |(((
53 +
65 65  Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
66 66  
67 -1. Start with a number sign **#** (Unicode Character: U+0023)
56 +1. Start with a number sign # (U+0023)
68 68  1. Servo ID number as an integer
69 -1. Query command (one to four letters, no spaces, capital or lower case)
70 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
58 +1. Query command (one to three letters, no spaces, capital or lower case)
59 +1. End with a control / carriage return '<cr>'
71 71  
72 -Ex: #5QD<cr> Query the position in (tenth of) degrees for servo with ID #5
61 +(((
62 +Ex: #5QD<cr>Query position in degrees for servo #5
63 +)))
73 73  
65 +(((
74 74  The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
75 75  
76 -1. Start with an asterisk * (Unicode Character: U+0023)
68 +1. Start with an asterisk * (U+002A)
77 77  1. Servo ID number as an integer
78 -1. Query command (one to four letters, no spaces, capital letters)
70 +1. Query command (one to three letters, no spaces, capital letters)
79 79  1. The reported value in the units described, no decimals.
80 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
72 +1. End with a control / carriage return '<cr>'
81 81  
82 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:
74 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be:
83 83  
84 -Ex: *5QD1800<cr>
85 -
86 -This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees).
76 +(((
77 +Ex: *5QD1443<cr>
87 87  )))
88 88  
89 -|(% colspan="2" %)(((
80 +This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees).
81 +
90 90  == Configuration Commands ==
91 -)))
92 -|(% style="width:25px" %) |(((
93 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.
94 94  
95 -These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-radio-control-pwm/]]. Configuration commands are not cumulative. This meanthat if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.
84 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
96 96  
97 -The format to send a configuration command is identical to that of an action command:
98 -
99 -1. Start with a number sign **#** (Unicode Character: U+0023)
86 +1. Start with a number sign # (U+0023)
100 100  1. Servo ID number as an integer
101 -1. Configuration command (two to four letters, no spaces, capital or lower case)
88 +1. Configuration command (two to three letters, no spaces, capital or lower case)
102 102  1. Configuration value in the correct units with no decimal
103 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
90 +1. End with a control / carriage return '<cr>'
104 104  
105 105  Ex: #5CO-50<cr>
106 106  
107 -This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).
94 +This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.
108 108  
109 109  **Session vs Configuration Query**
110 110  
111 -By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
98 +By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
112 112  
113 -Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
100 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
114 114  
115 115  After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
116 116  
117 -#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas
104 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas
118 118  
119 119  #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
120 -)))
121 121  
122 -|(% colspan="2" %)(((
123 123  == Virtual Angular Position ==
124 -)))
125 -|(% style="width:25px" %) |(((
126 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
127 127  
128 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
110 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
129 129  
112 +[[image:LSS-servo-positions.jpg]]
113 +
130 130  In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
131 131  
132 132  #1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
... ... @@ -133,257 +133,214 @@
133 133  
134 134  #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
135 135  
136 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
120 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
137 137  
138 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
122 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
139 139  
140 -#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
124 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
141 141  
142 142  #1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).
143 143  
144 -If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°].
128 +If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified).
145 145  )))
146 146  
147 147  = Command List =
148 148  
149 -**Latest firmware version currently : 370**
133 +== Regular ==
150 150  
151 -|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Communication Setup**>>path:#HCommunicationSetup]]
152 -| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
153 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Reset**>>path:#HReset]]|RESET| | | |✓| | |Soft reset. See command for details.
154 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Default** Configuration>>path:#HDefault26confirm]]|DEFAULT| | | |✓| | |Revert to firmware default values. See command for details
155 -| |[[Firmware (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Update** Mode>>path:#HUpdate26confirm]]|UPDATE| | | |✓| | |Update firmware. See command for details.
156 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Confirm** Changes>>path:#HConfirm]]|CONFIRM| | | |✓| | |
157 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**hange to **RC**>>path:#HConfigureRCMode28CRC29]]| | |CRC| |✓| | |Change to RC mode 1 (position) or 2 (wheel).
158 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**ID** #>>path:#HIdentificationNumber28ID29]]| |QID|CID| |✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
159 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**B**audrate>>path:#HBaudRate]]| |QB|CB| |✓|115200| |Reset required after change.
135 +|= #|=Description|=Mod|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
136 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| | L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
137 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| | H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
138 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]|T| | | | | | ✓|milliseconds|(% style="width:510px" %)Modifier only for {P, D, MD}. Time is estimated and can change based on load|(% style="text-align:center; width:113px" %)
139 +| 4|[[**S**peed>>||anchor="H4.Speed28S2CSD29modifier"]]|S/SD| |QS| | | | ✓|microseconds per second / degrees per second|(% style="width:510px" %)S modifier only for {P}. SD modifier only for {D, MD}.|(% style="text-align:center; width:113px" %)
140 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| | MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
141 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| | O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
142 +0
143 +)))
144 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| | AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
145 +1800
146 +)))
147 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| | P| QP| | | | ✓|microseconds|(% style="width:510px" %)(((
148 +Inherited from SSC-32 serial protocol
149 +)))|(% style="text-align:center; width:113px" %)
150 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| | D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
151 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| | WD| QWD| | | | ✓|degrees per second|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
152 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| | WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
153 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| | SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)(((
154 +QSD: Add modifier "2" for instantaneous speed.
160 160  
161 -|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion**>>path:#HMotion]]
162 -| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
163 -| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**D**egrees>>path:#HPositioninDegrees28D29]]|D|QD/QDT| | |✓| |1/10°|
164 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in **D**egrees (relative)>>path:#H28Relative29MoveinDegrees28MD29]]|MD| | | |✓| |1/10°|
165 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **D**egrees>>path:#HWheelModeinDegrees28WD29]]|WD|QWD/QVT| | |✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation"
166 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **R**PM>>path:#HWheelModeinRPM28WR29]]|WR|QWR| | |✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation"
167 -| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**P**WM>>path:#HPositioninPWM28P29]]|P|QP| | |✓| |us|Inherited from SSC-32 serial protocol
168 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in PWM (relative)>>path:#H28Relative29MoveinPWM28M29]]|M| | | |✓| |us|
169 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**R**aw **D**uty-cycle **M**ove>>path:#HRawDuty-cycleMove28RDM29]]|RDM|QMD| | |✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW
170 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery Status>>path:#HQueryStatus28Q29]]| |Q| | |✓| |1 to 8 integer|See command description for details
171 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**L**imp>>path:#HLimp28L29]]|L| | | |✓| | |
172 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**H**alt & Hold>>path:#HHalt26Hold28H29]]|H| | | |✓| | |
156 +SD overwrites SR / CSD overwrites CSR and vice-versa.
157 +)))|(% style="text-align:center; width:113px" %)Max per servo
158 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| | SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
159 +QSR: Add modifier "2" for instantaneous speed
173 173  
174 -|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion Setup**>>path:#HMotionSetup]]
175 -| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
176 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**E**nable **M**otion Profile>>path:#HEnableMotionProfile28EM29]]|EM|QEM|CEM| |✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile
177 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**ilter **P**osition **C**ount>>path:#HFilterPositionCount28FPC29]]|FPC|QFPC|CFPC|✓|✓|5| |Affects motion only when motion profile is disabled (EM0)
178 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**O**rigin Offset>>path:#HOriginOffset28O29]]|O|QO|CO|✓|✓|0|1/10°|
179 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **R**ange>>path:#HAngularRange28AR29]]|AR|QAR|CAR|✓|✓|1800|1/10°|
180 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **S**tiffness>>path:#HAngularStiffness28AS29]]|AS|QAS|CAS|✓|✓|0|-4 to +4 integer|Suggested values are between 0 to +4
181 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **H**olding Stiffness>>path:#HAngularHoldingStiffness28AH29]]|AH|QAH|CAH|✓|✓|4|-10 to +10 integer|
182 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **A**cceleration>>path:#HAngularAcceleration28AA29]]|AA|QAA|CAA| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
183 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **D**eceleration>>path:#HAngularDeceleration28AD29]]|AD|QAD|CAD| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
184 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**G**yre Direction>>path:#HGyreDirection28G29]]|G|QG|CG|✓|✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
185 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**irst Position (**D**eg)>>path:#HFirstPosition]]| |QFD|CFD|✓|✓|No value|1/10°|Reset required after change.
186 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**aximum **M**otor **D**uty>>path:#HMaximumMotorDuty28MMD29]]|MMD|QMMD| | |✓|1023|255 to 1023 integer|
187 -| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HMaximumSpeedinDegrees28SD29]]|SD|QSD|CSD|✓|✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
188 -| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **R**PM>>path:#HMaximumSpeedinRPM28SR29]]|SR|QSR|CSR|✓|✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
161 +SR overwrites SD / CSR overwrites CSD and vice-versa.
162 +)))|(% style="text-align:center; width:113px" %)Max per servo
163 +| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| | LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 7)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)0 (OFF)
164 +| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| | G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
165 +| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0
166 +| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)115200
167 +| 18|//{coming soon}//| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
168 +
169 +)))
170 +| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstA0Position28Degrees29"]]| | | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)No Value
171 +| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)|(% style="text-align:center; width:113px" %)
172 +| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
173 +| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
174 +| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
175 +| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
176 +| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
177 +| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
178 +| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | | |CRC|✓| | ✓|none|(% style="width:510px" %)(((
179 +Change to RC mode 1 (position) or 2 (wheel).
180 +)))|(% style="text-align:center; width:113px" %)Serial
181 +| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
182 +| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
183 +| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
189 189  
190 -|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Modifiers**>>path:#HModifiers]]
191 -| |**Description**|**Modifier**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
192 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed>>path:#HSpeed28S2CSD29modifier]]|S|QS| | |✓| |uS/s |For P action command
193 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HSpeed28S2CSD29modifier]]|SD| | | |✓| |0.1°/s|For D and MD action commands
194 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**T**imed move>>path:#HTimedmove28T29modifier]]|T| | | |✓| |ms|Modifier only for P, D and MD. Time can change based on load
195 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **H**old>>path:#HCurrentHalt26Hold28CH29modifier]]|CH| | | |✓| |mA|Modifier for D, MD, WD and WR
196 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **L**imp>>path:#HCurrentLimp28CL29modifier]]|CL| | | |✓| |mA|Modifier for D, MD, WD and WR
185 +== Advanced ==
197 197  
198 -|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Telemetry**>>path:#HTelemetry]]
199 -| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
200 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **V**oltage>>path:#HQueryVoltage28QV29]]| |QV| | |✓| |mV|
201 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **T**emperature>>path:#HQueryTemperature28QT29]]| |QT| | |✓| |1/10°C|
202 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **C**urrent>>path:#HQueryCurrent28QC29]]| |QC| | |✓| |mA|
203 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **M**odel **S**tring>>path:#HQueryModelString28QMS29]]| |QMS| | |✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
204 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **F**irmware Version>>path:#HQueryFirmware28QF29]]| |QF| | |✓| | |
187 +|= #|=(% style="width: 182px;" %)Description|=(% style="width: 56px;" %)Mod|=(% style="width: 70px;" %) Action|=(% style="width: 71px;" %) Query|=(% style="width: 77px;" %) Config|=(% style="width: 77px;" %)Session|=(% style="width: 56px;" %) RC|=(% style="width: 151px;" %) Serial|= Units|=(% style="width: 510px;" %) Notes
188 +| A1|(% style="width:182px" %)[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|(% style="width:56px" %) |(% style="width:70px" %)AS|(% style="width:71px" %)QAS|(% style="width:77px" %)CAS|(% style="width:77px" %)✓|(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4
189 +| A2|(% style="width:182px" %)[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|(% style="width:56px" %) |(% style="width:70px" %)AH|(% style="width:71px" %)QAH|(% style="width:77px" %)CAH|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|none (integer -10 to +10)|(% style="width:510px" %)Effect is different between serial and RC
190 +| A3|(% style="width:182px" %)[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|(% style="width:56px" %) |(% style="width:70px" %)AA|(% style="width:71px" %)QAA|(% style="width:77px" %)CAA|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
191 +| A4|(% style="width:182px" %)[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|(% style="width:56px" %) |(% style="width:70px" %)AD|(% style="width:71px" %)QAD|(% style="width:77px" %)CAD|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
192 +| A5|(% style="width:182px" %)[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|(% style="width:56px" %) |(% style="width:70px" %)EM|(% style="width:71px" %)QEM|(% style="width:77px" %) |(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %) ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable
193 +| A6|(% style="width:182px" %)[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]|(% style="width:56px" %) |(% style="width:70px" %) |(% style="width:71px" %)QLB|(% style="width:77px" %) CLB|(% style="width:77px" %) |(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer from 0 to 63)|(% style="width:510px" %)(((
194 +0=No blinking, 63=Always blink;
205 205  
206 -|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**RGB LED**>>path:#HRGBLED]]
207 -| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
208 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**LED** Color>>path:#HLEDColor28LED29]]|LED|QLED|CLED|✓|✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
209 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**onfigure **L**ED **B**linking>>path:#HConfigureLEDBlinking28CLB29]]| | |CLB|✓|✓| |0 to 63 integer|Reset required after change. See command for details.
196 +Blink while: 1=Limp; 2=Holding; 4=Accel; 8=Decel; 16=Free 32=Travel;
197 +)))
198 +| A7|(% style="width:182px" %)[[**C**urrent **H**alt & **H**old>>||anchor="HA7.CurrentHalt26Hold28CH29"]]|(% style="width:56px" %)CH|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR
199 +| A8|(% style="width:182px" %)[[**C**urrent **L**imp>>||anchor="HA8.CurrentLimp28CL29"]]|(% style="width:56px" %)CL|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR
210 210  
211 -= Details =
201 +== Details - Basic ==
212 212  
213 -== Communication Setup ==
203 +====== __1. Limp (**L**)__ ======
214 214  
215 -|(% colspan="2" %)(((
216 -====== Reset ======
217 -)))
218 -|(% style="width:30px" %) |(((
219 -Ex: #5RESET<cr>
205 +Example: #5L<cr>
220 220  
221 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HSession]], note #2 for more details.
222 -)))
207 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
223 223  
224 -|(% colspan="2" %)(((
225 -====== Default & confirm ======
226 -)))
227 -|(% style="width:30px" %) |(((
228 -Ex: #5DEFAULT<cr>
209 +====== __2. Halt & Hold (**H**)__ ======
229 229  
230 -This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
211 +Example: #5H<cr>
231 231  
232 -Ex: #5DEFAULT<cr> followed by #5CONFIRM<cr>
213 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position.
233 233  
234 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
215 +====== __3. Timed move (**T**) modifier__ ======
235 235  
236 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
237 -)))
217 +Example: #5P1500T2500<cr>
238 238  
239 -|(% colspan="2" %)(((
240 -====== Update & confirm ======
241 -)))
242 -|(% style="width:30px" %) |(((
243 -Ex: #5UPDATE<cr>
219 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
244 244  
245 -This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
221 +Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
246 246  
247 -Ex: #5UPDATE<cr> followed by #5CONFIRM<cr>
223 +====== __4. Speed (**S**, **SD**) modifier__ ======
248 248  
249 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
225 +Example: #5P1500S750<cr>
226 +Example: #5D0SD180<cr>
250 250  
251 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
252 -)))
228 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
253 253  
254 -|(% colspan="2" %)(((
255 -====== Confirm ======
256 -)))
257 -|(% style="width:30px" %) |(((
258 -Ex: #5CONFIRM<cr>
230 +Modifer (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second.
259 259  
260 -This command is used to confirm changes after a Default or Update command.
232 +Query Speed (**QS**)
261 261  
262 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
263 -)))
234 +Example: #5QS<cr> might return *5QS300<cr>
264 264  
265 -|(% colspan="2" %)(((
266 -====== Configure RC Mode (**CRC**) ======
267 -)))
268 -|(% style="width:30px" %) |(((
269 -This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
236 +This command queries the current speed in microseconds per second.
270 270  
271 -Ex: #5CRC1<cr>
238 +====== __5. (Relative) Move in Degrees (**MD**)__ ======
272 272  
273 -Change to RC position mode.
240 +Example: #5MD123<cr>
274 274  
275 -Ex: #5CRC2<cr>
242 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
276 276  
277 -Change to RC continuous rotation (wheel) mode.
244 +====== __6. Origin Offset Action (**O**)__ ======
278 278  
279 -Ex: #5CRC*<cr>
246 +Example: #5O2400<cr>
280 280  
281 -Where * is any value other than 1 or 2 (or no value): stay in smart mode
248 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
282 282  
283 -Ex: #5CRC2<cr>
250 +[[image:LSS-servo-default.jpg]]
284 284  
285 -This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.
252 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
286 286  
287 -**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-button-menu/]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.
288 -)))
254 +[[image:LSS-servo-origin.jpg]]
289 289  
290 -|(% colspan="2" %)(((
291 -====== Identification Number (**ID**) ======
292 -)))
293 -|(% style="width:30px" %) |(((
294 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
256 +Origin Offset Query (**QO**)
295 295  
296 -Query Identification (**QID**)
258 +Example: #5QO<cr> Returns: *5QO-13
297 297  
298 -EX: #254QID<cr> might return *QID5<cr>
260 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
299 299  
300 -When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
262 +Configure Origin Offset (**CO**)
301 301  
302 -Configure ID (**CID**)
264 +Example: #5CO-24<cr>
303 303  
304 -Ex: #4CID5<cr>
266 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
305 305  
306 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.
307 -)))
268 +====== __7. Angular Range (**AR**)__ ======
308 308  
309 -|(% colspan="2" %)(((
310 -====== Baud Rate ======
311 -)))
312 -|(% style="width:30px" %) |(((
313 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.
270 +Example: #5AR1800<cr>
314 314  
315 -Query Baud Rate (**QB**)
272 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
316 316  
317 -Ex: #5QB<cr> might return *5QB115200<cr>Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.
274 +[[image:LSS-servo-default.jpg]]
318 318  
319 -Configure Baud Rate (**CB**)
276 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
320 320  
321 -**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.
278 +[[image:LSS-servo-ar.jpg]]
322 322  
323 -Ex: #5CB9600<cr>
280 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
324 324  
325 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
326 -)))
282 +[[image:LSS-servo-ar-o-1.jpg]]
327 327  
328 -|(% colspan="2" %)(((
329 -====== __Automatic Baud Rate__ ======
330 -)))
331 -|(% style="width:30px" %) |(((
332 -This option allows the LSS to listen to it's serial input and select the right baudrate automatically.
284 +Query Angular Range (**QAR**)
333 333  
334 -Query Automatic Baud Rate (**QABR**)
286 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
335 335  
336 -Ex: #5QABR<cr> might return *5ABR0<cr>
288 +Configure Angular Range (**CAR**)
337 337  
338 -Enable Baud Rate (**ABR**)
290 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
339 339  
340 -Ex: #5QABR1<cr>
292 +====== __8. Position in Pulse (**P**)__ ======
341 341  
342 -Enable baudrate detection on first byte received after power-up.
294 +Example: #5P2334<cr>
343 343  
344 -Ex: #5QABR2,30<cr>Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte.
296 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.
345 345  
346 -Warning: ABR doesnt work well with LSS Config at the moment.
347 -)))
298 +Query Position in Pulse (**QP**)
348 348  
349 -== Motion ==
300 +Example: #5QP<cr> might return *5QP2334
350 350  
351 -|(% colspan="2" %)(((
352 -====== __Position in Degrees (**D**)__ ======
353 -)))
354 -|(% style="width:30px" %) |(((
355 -Ex: #5D1456<cr>
302 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 
303 +Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
356 356  
357 -This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.
305 +====== __9. Position in Degrees (**D**)__ ======
358 358  
359 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above).
307 +Example: #5D1456<cr>
360 360  
309 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction.
310 +
311 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position.
312 +
361 361  Query Position in Degrees (**QD**)
362 362  
363 -Ex: #5QD<cr> might return *5QD132<cr>
315 +Example: #5QD<cr> might return *5QD132<cr>
364 364  
365 -This means the servo is located at 13.2 degrees.
317 +This means the servo is located at 13.2 degrees.
366 366  
367 -Query Target Position in Degrees (**QDT**)
319 +(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
320 +Query Target Position in Degrees (**QDT**)
368 368  
369 369  Ex: #5QDT<cr> might return *5QDT6783<cr>
370 370  
371 -The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
372 -)))
324 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
373 373  
374 -|(% colspan="2" %)(((
375 -====== (Relative) Move in Degrees (**MD**) ======
376 -)))
377 -|(% style="width:30px" %) |(((
378 -Ex: #5MD123<cr>
326 +====== __10. Wheel Mode in Degrees (**WD**)__ ======
379 379  
380 -The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
381 -)))
382 -
383 -|(% colspan="2" %)(((
384 -====== Wheel Mode in Degrees (**WD**) ======
385 -)))
386 -|(% style="width:30px" %) |(((
387 387  Ex: #5WD90<cr>
388 388  
389 389  This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
... ... @@ -393,15 +393,12 @@
393 393  Ex: #5QWD<cr> might return *5QWD90<cr>
394 394  
395 395  The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
396 -)))
397 397  
398 -|(% colspan="2" %)(((
399 -====== Wheel Mode in RPM (**WR**) ======
400 -)))
401 -|(% style="width:30px" %) |(((
338 +====== __11. Wheel Mode in RPM (**WR**)__ ======
339 +
402 402  Ex: #5WR40<cr>
403 403  
404 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
342 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
405 405  
406 406  Query Wheel Mode in RPM (**QWR**)
407 407  
... ... @@ -408,593 +408,393 @@
408 408  Ex: #5QWR<cr> might return *5QWR40<cr>
409 409  
410 410  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
411 -)))
412 412  
413 -|(% colspan="2" %)(((
414 -====== Position in PWM (**P**) ======
415 -)))
416 -|(% style="width:30px" %) |(((
417 -Ex: #5P2334<cr>
350 +====== __12. Max Speed in Degrees (**SD**)__ ======
418 418  
419 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>url:https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.
352 +Ex: #5SD1800<cr>
420 420  
421 -Query Position in Pulse (**QP**)
354 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
422 422  
423 -Ex: #5QP<cr> might return *5QP2334
356 +Query Speed in Degrees (**QSD**)
424 424  
425 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
426 -)))
358 +Ex: #5QSD<cr> might return *5QSD1800<cr>
427 427  
428 -|(% colspan="2" %)(((
429 -====== __(Relative) Move in PWM (**M**)__ ======
430 -)))
431 -|(% style="width:30px" %) |(((
432 -Ex: #5M1500<cr>
360 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed.
361 +If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
433 433  
434 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
435 -)))
363 +|**Command sent**|**Returned value (1/10 °)**
364 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
365 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
366 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
367 +|ex: #5QSD3<cr>|Target travel speed
436 436  
437 -|(% colspan="2" %)(((
438 -====== Raw Duty-cycle Move (**RDM**) ======
439 -)))
440 -|(% style="width:30px" %) |(((
441 -Ex: #5RDM512<cr>
369 +Configure Speed in Degrees (**CSD**)
442 442  
443 -The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.
371 +Ex: #5CSD1800<cr>
444 444  
445 -The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).
373 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
446 446  
447 -Query Move in Duty-cycle (**QMD**)
375 +====== __13. Max Speed in RPM (**SR**)__ ======
448 448  
449 -Ex: #5QMD<cr> might return *5QMD512
377 +Ex: #5SD45<cr>
450 450  
451 -This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
452 -)))
379 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
453 453  
454 -|(% colspan="2" %)(((
455 -====== Query Status (**Q**) ======
456 -)))
457 -|(% style="width:30px" %) |(((
458 -The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
381 +Query Speed in Degrees (**QSR**)
459 459  
460 -Ex: #5Q<cr> might return *5Q6<cr>
383 +Ex: #5QSR<cr> might return *5QSR45<cr>
461 461  
462 -which indicates the motor is holding a position.
463 -)))
385 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed.
386 +If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
464 464  
465 -|(% style="width:30px" %) |***Value returned (Q)**|**Status**|**Detailed description**
466 -| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
467 -| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
468 -| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
469 -| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
470 -| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
471 -| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
472 -| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding)
473 -| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
474 -| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
475 -| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
476 -| |ex: *5Q10<cr>|10: Safe Mode|(((
477 -A safety limit has been exceeded (temperature, peak current or extended high current draw).
388 +|**Command sent**|**Returned value (1/10 °)**
389 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
390 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
391 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWR)
392 +|ex: #5QSR3<cr>|Target travel speed
478 478  
479 -Send a Q1 command to know which limit has been reached (described below).
480 -)))
394 +Configure Speed in RPM (**CSR**)
481 481  
482 -|(% style="width:30px" %) |(% colspan="3" rowspan="1" %)If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
483 -| |***Value returned (Q1)**|**Status**|**Detailed description**
484 -| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
485 -| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
486 -| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
487 -| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
396 +Ex: #5CSR45<cr>
488 488  
489 -|(% colspan="2" %)(((
490 -====== Limp (**L**) ======
491 -)))
492 -|(% style="width:30px" %) |(((
493 -Ex: #5L<cr>
398 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
494 494  
495 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
496 -)))
400 +====== __14. LED Color (**LED**)__ ======
497 497  
498 -|(% colspan="2" %)(((
499 -====== Halt & Hold (**H**) ======
500 -)))
501 -|(% style="width:30px" %) |(((
502 -Example: #5H<cr>
402 +Ex: #5LED3<cr>
503 503  
504 -This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
505 -)))
404 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
506 506  
507 -== Motion Setup ==
406 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;
508 508  
509 -|(% colspan="2" %)(((
510 -====== Enable Motion Profile (**EM**) ======
511 -)))
512 -|(% style="width:30px" %) |(((
513 -EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.
408 +Query LED Color (**QLED**)
514 514  
515 -Ex: #5EM1<cr>
410 +Ex: #5QLED<cr> might return *5QLED5<cr>
516 516  
517 -This command enables a trapezoidal motion profile for servo #5
412 +This simple query returns the indicated servo's LED color.
518 518  
519 -Ex: #5EM0<cr>
414 +Configure LED Color (**CLED**)
520 520  
521 -This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
416 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
522 522  
523 -Query Motion Profile (**QEM**)
418 +====== __15. Gyre Rotation Direction (**G**)__ ======
524 524  
525 -Ex: #5QEM<cr> might return *5QEM1<cr>
420 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
526 526  
527 -This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.
422 +Ex: #5G-1<cr>
528 528  
529 -Configure Motion Profile (**CEM**)
424 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
530 530  
531 -Ex: #5CEM0<cr>
426 +Query Gyre Direction (**QG**)
532 532  
533 -This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
534 -)))
428 +Ex: #5QG<cr> might return *5QG-1<cr>
535 535  
536 -|(% colspan="2" %)(((
537 -====== Filter Position Count (**FPC**) ======
538 -)))
539 -|(% style="width:30px" %) |(((
540 -The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
430 +The value returned above means the servo is in a counter-clockwise gyration.
541 541  
542 -Ex: #5FPC10<cr>
432 +Configure Gyre (**CG**)
543 543  
544 -This command allows the user to change the Filter Position Count value for that session.
434 +Ex: #5CG-1<cr>
545 545  
546 -Query Filter Position Count (**QFPC**)
436 +This changes the gyre direction as described above and also writes to EEPROM.
547 547  
548 -Ex: #5QFPC<cr> might return *5QFPC10<cr>
438 +====== __16. Identification Number (**ID**)__ ======
549 549  
550 -This command will query the Filter Position Count value.
440 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate).
551 551  
552 -Configure Filter Position Count (**CFPC**)
442 +Query Identification (**QID**)
553 553  
554 -Ex: #5CFPC10<cr>
444 +EX: #254QID<cr> might return *QID5<cr>
555 555  
556 -This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
557 -)))
446 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
558 558  
559 -|(% colspan="2" %)(((
560 -====== Origin Offset (**O**) ======
561 -)))
562 -|(% style="width:30px" %) |(((
563 -Ex: #5O2400<cr>
448 +Configure ID (**CID**)
564 564  
565 -This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
450 +Ex: #4CID5<cr>
566 566  
567 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
452 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.
568 568  
569 -In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
454 +====== __17. Baud Rate__ ======
570 570  
571 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
456 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200. The baud rates are currently restricted to those above.
572 572  
573 -Origin Offset Query (**QO**)
458 +Query Baud Rate (**QB**)
574 574  
575 -Ex: #5QO<cr> might return *5QO-13
460 +Ex: #5QB<cr> might return *5QB115200<cr>
576 576  
577 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
462 +Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.
578 578  
579 -Configure Origin Offset (**CO**)
464 +Configure Baud Rate (**CB**)
580 580  
581 -Ex: #5CO-24<cr>
466 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.
582 582  
583 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
584 -)))
468 +Ex: #5CB9600<cr>
585 585  
586 -|(% colspan="2" %)Angular Range (**AR**)(((
587 -====== ======
588 -)))
589 -|(% style="width:30px" %) |(((
590 -Ex: #5AR1800<cr>
470 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
591 591  
592 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
472 +====== __18. {//Coming soon//}__ ======
593 593  
594 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
474 +Command coming soon....
595 595  
596 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
476 +====== __19. First Position (Degrees)__ ======
597 597  
598 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
478 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.
599 599  
600 -Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
480 +Query First Position in Degrees (**QFD**)
601 601  
602 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
482 +Ex: #5QFD<cr> might return *5QFD64<cr>
603 603  
604 -Query Angular Range (**QAR**)
484 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If there is no first position value stored, the reply will be DIS
605 605  
606 -Ex: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
486 +Configure First Position in Degrees (**CFD**)
607 607  
608 -Configure Angular Range (**CAR**)
488 +Ex: #5CD64<cr>
609 609  
610 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
611 -)))
490 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
612 612  
613 -|(% colspan="2" %)(((
614 -====== Angular Stiffness (**AS**) ======
615 -)))
616 -|(% style="width:30px" %) |(((
617 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.
492 +====== __20. Query Model String (**QMS**)__ ======
618 618  
619 -A higher value of "angular stiffness":
494 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
620 620  
621 -* The more torque will be applied to try to keep the desired position against external input / changes
622 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
496 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
623 623  
624 -A lower value on the other hand:
498 +====== __21. Query Serial Number (**QN**)__ ======
625 625  
626 -* Causes a slower acceleration to the travel speed, and a slower deceleration
627 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back
500 +Ex: #5QN<cr> might return *5QN12345678<cr>
628 628  
629 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
502 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
630 630  
631 -Ex: #5AS-2<cr>
504 +====== __22. Query Firmware (**QF**)__ ======
632 632  
633 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
506 +Ex: #5QF<cr> might return *5QF411<cr>
634 634  
635 -Ex: #5QAS<cr>
508 +The number in the reply represents the firmware version, in this example being 411.
636 636  
637 -Queries the value being used.
510 +====== __23. Query Status (**Q**)__ ======
638 638  
639 -Ex: #5CAS-2<cr>Writes the desired angular stiffness value to EEPROM.
640 -)))
512 +The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses.
641 641  
642 -|(% colspan="2" %)(((
643 -====== Angular Holding Stiffness (**AH**) ======
644 -)))
645 -|(% style="width:30px" %) |(((
646 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
514 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
647 647  
648 -Ex: #5AH3<cr>
516 +|***Value returned (Q)**|**Status**|**Detailed description**
517 +|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
518 +|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
519 +|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely
520 +|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
521 +|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
522 +|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
523 +|ex: *5Q6<cr>|6: Holding|Keeping current position
524 +|ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
525 +|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
526 +|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
527 +|ex: *5Q10<cr>|10: Safe Mode|(((
528 +A safety limit has been exceeded (temperature, peak current or extended high current draw).
649 649  
650 -This sets the holding stiffness for servo #5 to 3 for that session.
651 -
652 -Query Angular Holding Stiffness (**QAH**)
653 -
654 -Ex: #5QAH<cr> might return *5QAH3<cr>
655 -
656 -This returns the servo's angular holding stiffness value.
657 -
658 -Configure Angular Holding Stiffness (**CAH**)
659 -
660 -Ex: #5CAH2<cr>
661 -
662 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
530 +Send a Q1 command to know which limit has been reached (described below).
663 663  )))
664 664  
665 -|(% colspan="2" %)(((
666 -====== Angular Acceleration (**AA**) ======
667 -)))
668 -|(% style="width:30px" %) |(((
669 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
533 +(% class="wikigeneratedid" %)
534 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
670 670  
671 -Ex: #5AA30<cr>
536 +|***Value returned (Q1)**|**Status**|**Detailed description**
537 +|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
538 +|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
539 +|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
540 +|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
672 672  
673 -This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
542 +====== __24. Query Voltage (**QV**)__ ======
674 674  
675 -Query Angular Acceleration (**QAA**)
544 +Ex: #5QV<cr> might return *5QV11200<cr>
676 676  
677 -Ex: #5QAA<cr> might return *5QAA30<cr>
546 +The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
678 678  
679 -This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).
548 +====== __25. Query Temperature (**QT**)__ ======
680 680  
681 -Configure Angular Acceleration (**CAA**)
550 +Ex: #5QT<cr> might return *5QT564<cr>
682 682  
683 -Ex: #5CAA30<cr>
552 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
684 684  
685 -This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
686 -)))
554 +====== __26. Query Current (**QC**)__ ======
687 687  
688 -|(% colspan="2" %)(((
689 -====== Angular Deceleration (**AD**) ======
690 -)))
691 -|(% style="width:30px" %) |(((
692 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
556 +Ex: #5QC<cr> might return *5QC140<cr>
693 693  
694 -Ex: #5AD30<cr>
558 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
695 695  
696 -This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
560 +====== __27. Configure RC Mode (**CRC**)__ ======
697 697  
698 -Query Angular Deceleration (**QAD**)
562 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
699 699  
700 -Ex: #5QAD<cr> might return *5QAD30<cr>
564 +|**Command sent**|**Note**
565 +|ex: #5CRC1<cr>|Change to RC position mode.
566 +|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode.
567 +|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode.
701 701  
702 -This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).
569 +EX: #5CRC2<cr>
703 703  
704 -Configure Angular Deceleration (**CAD**)
571 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.
705 705  
706 -Ex: #5CAD30<cr>
573 +Important note:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.
707 707  
708 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
709 -)))
575 +====== __28. **RESET**__ ======
710 710  
711 -|(% colspan="2" %)(((
712 -====== Gyre Direction (**G**) ======
713 -)))
714 -|(% style="width:30px" %) |(((
715 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.
577 +Ex: #5RESET<cr> or #5RS<cr>
716 716  
717 -Ex: #5G-1<cr>
579 +This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
580 +Note: after a RESET command is received the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.
718 718  
719 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
582 +====== __29. **DEFAULT** & CONFIRM__ ======
720 720  
721 -Query Gyre Direction (**QG**)
584 +Ex: #5DEFAULT<cr>
722 722  
723 -Ex: #5QG<cr> might return *5QG-1<cr>
586 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
724 724  
725 -The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
588 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
726 726  
727 -Configure Gyre (**CG**)
590 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
728 728  
729 -Ex: #5CG-1<cr>
592 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
730 730  
731 -This changes the gyre direction as described above and also writes to EEPROM.
732 -)))
594 +====== __30. **UPDATE** & CONFIRM__ ======
733 733  
734 -|(% colspan="2" %)(((
735 -====== First Position ======
736 -)))
737 -|(% style="width:30px" %) |(((
738 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.
596 +Ex: #5UPDATE<cr>
739 739  
740 -Query First Position in Degrees (**QFD**)
598 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
741 741  
742 -Ex: #5QFD<cr> might return *5QFD900<cr>
600 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
743 743  
744 -The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.
602 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
745 745  
746 -Configure First Position in Degrees (**CFD**)
604 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
747 747  
748 -Ex: #5CFD900<cr>
606 +== Details - Advanced ==
749 749  
750 -This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
751 -)))
608 +The motion controller used in serial mode is not the same as the motion controller use in RC mode. RC mode is intended to add functionality to what would be considered "normal" RC behavior based on PWM input.
752 752  
753 -|(% colspan="2" %)(((
754 -====== Maximum Motor Duty (**MMD**) ======
755 -)))
756 -|(% style="width:30px" %) |(((
757 -This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.
610 +====== __A1. Angular Stiffness (**AS**)__ ======
758 758  
759 -Ex: #5MMD512<cr>
612 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.
760 760  
761 -This will set the duty-cycle to 512 for servo with ID 5 for that session.
614 +A positive value of "angular stiffness":
762 762  
763 -Query Maximum Motor Duty (**QMMD**)
616 +* The more torque will be applied to try to keep the desired position against external input / changes
617 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
764 764  
765 -Ex: #5QMMDD<cr> might return *5QMMD512<cr>
619 +A negative value on the other hand:
766 766  
767 -This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
768 -)))
621 +* Causes a slower acceleration to the travel speed, and a slower deceleration
622 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back
769 769  
770 -|(% colspan="2" %)(((
771 -====== Maximum Speed in Degrees (**SD**) ======
772 -)))
773 -|(% style="width:30px" %) |(((
774 -Ex: #5SD1800<cr>
624 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
775 775  
776 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
626 +Ex: #5AS-2<cr>
777 777  
778 -Query Speed in Degrees (**QSD**)
628 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
779 779  
780 -Ex: #5QSD<cr> might return *5QSD1800<cr>
630 +Ex: #5QAS<cr>
781 781  
782 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
783 -)))
632 +Queries the value being used.
784 784  
785 -|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)**
786 -| |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
787 -| |ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
788 -| |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
789 -| |ex: #5QSD3<cr>|Target travel speed
634 +Ex: #5CAS<cr>
790 790  
791 -|(% style="width:30px" %) |(((
792 -Configure Speed in Degrees (**CSD**)
636 +Writes the desired angular stiffness value to memory.
793 793  
794 -Ex: #5CSD1800<cr>
638 +====== __A2. Angular Holding Stiffness (**AH**)__ ======
795 795  
796 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
797 -)))
640 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
798 798  
799 -|(% colspan="2" %)(((
800 -====== Maximum Speed in RPM (**SR**) ======
801 -)))
802 -|(% style="width:30px" %) |(((
803 -Ex: #5SR45<cr>
642 +Ex: #5AH3<cr>
804 804  
805 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
644 +This sets the holding stiffness for servo #5 to 3 for that session.
806 806  
807 -Query Speed in RPM (**QSR**)
646 +Query Angular Hold Stiffness (**QAH**)
808 808  
809 -Ex: #5QSR<cr> might return *5QSR45<cr>
648 +Ex: #5QAH<cr> might return *5QAH3<cr>
810 810  
811 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
812 -)))
650 +This returns the servo's angular holding stiffness value.
813 813  
814 -|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)**
815 -| |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
816 -| |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
817 -| |ex: #5QSR2<cr>|Instantaneous speed (same as QWD)
818 -| |ex: #5QSR3<cr>|Target travel speed
652 +Configure Angular Hold Stiffness (**CAH**)
819 819  
820 -|(((
821 -Configure Speed in RPM (**CSR**)
654 +Ex: #5CAH2<cr>
822 822  
823 -Ex: #5CSR45<cr>
656 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
824 824  
825 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
826 -)))|
658 +====== __A3: Angular Acceleration (**AA**)__ ======
827 827  
828 -== Modifiers ==
660 +The default value for angular acceleration is 100, which is the same as the maximum deceleration. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
829 829  
830 -|(% colspan="2" %)(((
831 -====== Speed (**S**, **SD**) modifier ======
832 -)))
833 -|(% style="width:30px" %) |(((
834 -Ex: #5P1500S750<cr>
662 +Ex: #5AA30<cr>
835 835  
836 -Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
664 +Query Angular Acceleration (**QAD**)
837 837  
838 -Ex: #5D0SD180<cr>
666 +Ex: #5QA<cr> might return *5QA30<cr>
839 839  
840 -Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.
668 +Configure Angular Acceleration (**CAD**)
841 841  
842 -Query Speed (**QS**)
670 +Ex: #5CA30<cr>
843 843  
844 -Ex: #5QS<cr> might return *5QS300<cr>
672 +====== __A4: Angular Deceleration (**AD**)__ ======
845 845  
846 -This command queries the current speed in microseconds per second.
847 -)))
674 +The default value for angular deceleration is 100, which is the same as the maximum acceleration. Values between 1 and 15 have the greatest impact.
848 848  
849 -|(% colspan="2" %)(((
850 -====== Timed move (**T**) modifier ======
851 -)))
852 -|(% style="width:30px" %) |(((
853 -
676 +Ex: #5AD8<cr>
854 854  
855 -Example: #5P1500T2500<cr>
678 +Query Angular Deceleration (**QAD**)
856 856  
857 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
680 +Ex: #5QD<cr> might return *5QD8<cr>
858 858  
859 -**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
860 -)))
682 +Configure Angular Deceleration (**CAD**)
861 861  
862 -|(% colspan="2" %)(((
863 -====== Current Halt & Hold (**CH**) modifier ======
864 -)))
865 -|(% style="width:30px" %) |(((
866 -Example: #5D1423CH400<cr>
684 +Ex: #5CD8<cr>
867 867  
868 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.
686 +====== __A5: Motion Control (**EM**)__ ======
869 869  
870 -This modifier can be added to the following actions: D; MD; WD; WR.
871 -)))
688 +The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller.
872 872  
873 -|(% colspan="2" %)(((
874 -====== Current Limp (**CL**) modifier ======
875 -)))
876 -|(% style="width:30px" %) |(((
877 -Example: #5D1423CL400<cr>
690 +Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used.
878 878  
879 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.
692 +====== __A6. Configure LED Blinking (**CLB**)__ ======
880 880  
881 -This modifier can be added to the following actions: D; MD; WD; WR.
882 -)))
694 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:
883 883  
884 -== Telemetry ==
696 +(% style="width:195px" %)
697 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
698 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0
699 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1
700 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2
701 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
702 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
703 +|(% style="width:134px" %)Free|(% style="width:58px" %)16
704 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32
705 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63
885 885  
886 -|(% colspan="2" %)(((
887 -====== Query Voltage (**QV**) ======
888 -)))
889 -|(% style="width:30px" %) |(((
890 -Ex: #5QV<cr> might return *5QV11200<cr>
707 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
891 891  
892 -The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.
893 -)))
709 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
710 +Ex: #5CLB1<cr> only blink when limp (1)
711 +Ex: #5CLB2<cr> only blink when holding (2)
712 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)
713 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)
714 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)
894 894  
895 -|(% colspan="2" %)(((
896 -====== Query Current (**QC**) ======
897 -)))
898 -|(% style="width:30px" %) |(((
899 -
716 +RESETTING the servo is needed.
900 900  
901 -Ex: #5QC<cr> might return *5QC140<cr>
718 +====== __A7. Current Halt & Hold (**CH**)__ ======
902 902  
903 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
904 -)))
720 +This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR.
905 905  
906 -|(% colspan="2" %)(((
907 -====== Query Model String (**QMS**) ======
908 -)))
909 -|(% style="width:30px" %) |(((
910 -
722 +Ex: #5D1423CH400<cr>
911 911  
912 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
724 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.
913 913  
914 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
915 -)))
726 +====== __A8. Current Limp (**CL**)__ ======
916 916  
917 -|(% colspan="2" %)(((
918 -====== Query Firmware (**QF**) ======
919 -)))
920 -|(% style="width:30px" %) |(((
921 -Ex: #5QF<cr> might return *5QF368<cr>
728 +This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR.
922 922  
923 -The number in the reply represents the firmware version, in this example being 368.
730 +Ex: #5D1423CH400<cr>
924 924  
925 -The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
926 -)))
732 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.
927 927  
928 -== RGB LED ==
734 += RGB LED Patterns =
929 929  
930 -|(% colspan="2" %)(((
931 -====== LED Color (**LED**) ======
932 -)))
933 -|(% style="width:30px" %) |(((
934 -
736 +The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]]
935 935  
936 -Ex: #5LED3<cr>
937 -
938 -This action sets the servo's RGB LED color for that session.
939 -
940 -The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
941 -
942 -0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;
943 -
944 -Query LED Color (**QLED**)
945 -
946 -Ex: #5QLED<cr> might return *5QLED5<cr>
947 -
948 -This simple query returns the indicated servo's LED color.
949 -
950 -Configure LED Color (**CLED**)
951 -
952 -Ex: #5CLED3<cr>
953 -
954 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.
955 -)))
956 -
957 -|(% colspan="2" %)(((
958 -====== Configure LED Blinking (**CLB**) ======
959 -)))
960 -|(% style="width:30px" %) |(((
961 -
962 -
963 -This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:
964 -)))
965 -
966 -|(% style="width:30px" %) |(% style="width:200px" %)**Blink While:**|(% style="width:50px" %)**#**|
967 -| |No blinking|0|
968 -| |Limp|1|
969 -| |Holding|2|
970 -| |Accelerating|4|
971 -| |Decelerating|8|
972 -| |Free|16|
973 -| |Travelling|32|
974 -| |Always blink|63|
975 -
976 -|(% style="width:30px" %) |(((
977 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
978 -
979 -Ex: #5CLB0 to turn off all blinking (LED always solid)
980 -
981 -Ex: #5CLB1 only blink when limp (1)
982 -
983 -Ex: #5CLB2 only blink when holding (2)
984 -
985 -Ex: #5CLB12 only blink when accel or decel (accel 4 + decel 8 = 12)
986 -
987 -Ex: #5CLB48 only blink when free or travel (free 16 + travel 32 = 48)
988 -
989 -Ex: #5CLB63 blink in all status (1 + 2 + 4 + 8 + 16 + 32)
990 -
991 -RESETTING the servo is needed.
992 -)))
993 -
994 -|(% colspan="2" style="width:30px" %)(((
995 -====== RGB LED Patterns ======
996 -)))
997 -|(% style="width:30px" %) |(((
998 -The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-button-menu/]]
999 -)))
1000 -|(% style="width:30px" %) |[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS%20-%20LED%20Patterns.png||alt="LSS - LED Patterns.png"]]
738 +[[image:LSS - LED Patterns.png]]
LSS-Protocol-Backup-2020-05-01.zip
Author
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.ENantel
Size
... ... @@ -1,1 +1,0 @@
1 -47.4 KB
Content
XWiki.StyleSheetExtension[0]
Caching policy
... ... @@ -1,1 +1,0 @@
1 -long
Code
... ... @@ -1,13 +1,0 @@
1 -div.cmdcnt
2 -{
3 - display:table-row;
4 -}
5 -div.cmdpad
6 -{
7 - display:table-cell;
8 - padding:16px;
9 -}
10 -div.cmdtxt
11 -{
12 - display:table-cell;
13 -}
Content Type
... ... @@ -1,1 +1,0 @@
1 -CSS
Name
... ... @@ -1,1 +1,0 @@
1 -DivTextIndentation
Parse content
... ... @@ -1,1 +1,0 @@
1 -0
Use this extension
... ... @@ -1,1 +1,0 @@
1 -currentPage
Copyright RobotShop 2018