Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: allow view right for XWiki.XWikiAdminGroup
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 2 removed)
-
Objects (0 modified, 2 added, 1 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LSS Communication Protocol 1 +LSS - Communication Protocol - Parent
-
... ... @@ -1,1 +1,1 @@ 1 - ses-v2.lynxmotion-smart-servo.WebHome1 +Lynxmotion Smart Servo (LSS).WebHome - Content
-
... ... @@ -1,728 +1,517 @@ 1 1 (% class="wikigeneratedid" id="HTableofContents" %) 2 -** Page Contents**2 +**Table of Contents** 3 3 4 4 {{toc depth="3"/}} 5 5 6 -= SerialProtocol =6 += Protocol Concepts = 7 7 8 -The Lynxmotion Smart Servo (LSS) serialprotocol was created in order to be as simple and straightforward as possible from a user perspective("human readable format"), while at the same timestaying compact and robust yet highly versatile.The protocolwas based on Lynxmotion'sSSC-32 & SSC-32U RC servo controllersand almosteverything one might expect to be able to configure for a smart servomotor is available.8 +The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available. 9 9 10 -In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>path:#HIdentificationNumber28ID29]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol. 11 - 12 -|(% colspan="2" %)((( 13 13 == Session == 14 -))) 15 -|(% style="width:25px" %) |((( 11 + 16 16 A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 17 17 18 -**Note 1:** For a given session, the action related to a specific command overrides the stored value in EEPROM. 19 - 20 -**Note 2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s). 21 - 22 -**Note 3:** You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r described below). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays. 23 -))) 24 - 25 -|(% colspan="2" %)((( 26 26 == Action Commands == 27 -))) 28 -|(% style="width:25px" %) |((( 29 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HVirtualAngularPosition]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format: 30 30 31 -1. Start with a number sign **#** (Unicode Character: U+0023) 32 -1. Servo ID number as an integer (assigning an ID described below) 33 -1. Action command (one or more letters, no whitespace, capital or lowercase from the list below) 34 -1. Action value in the correct units with no decimal 35 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 16 +Action commands are sent serially to the servo's Rx pin and must be set in the following format: 36 36 37 -Ex: #5D1800<cr> 38 - 39 -This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 40 -))) 41 - 42 -|(% colspan="2" %)((( 43 -== Modifiers == 44 -))) 45 -|(% style="width:25px" %) |((( 46 -Modifiers can only be used with certain **action commands**. The format to include a modifier is: 47 - 48 -1. Start with a number sign **#** (Unicode Character: U+0023) 18 +1. Start with a number sign # (U+0023) 49 49 1. Servo ID number as an integer 50 -1. Action command (one to three letters, no spaces, capital or lower casefrom a subset of action commandsbelow)20 +1. Action command (one to three letters, no spaces, capital or lower case) 51 51 1. Action value in the correct units with no decimal 52 -1. Modifier command (one or two letters from the list of modifiers below) 53 -1. Modifier value in the correct units with no decimal 54 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 22 +1. End with a control / carriage return '<cr>' 55 55 56 -Ex: #5D1800T1500<cr> 24 +((( 25 +Ex: #5PD1443<cr> 57 57 58 -This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds). 59 -))) 27 +Move servo with ID #5 to a position of 144.3 degrees. 60 60 61 -|(% colspan="2" %)((( 62 -== Query Commands == 63 -))) 64 -|(% style="width:25px" %) |((( 65 -Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format: 29 +Action commands cannot be combined with query commands, and only one action command can be sent at a time. 66 66 67 -1. Start with a number sign **#** (Unicode Character: U+0023) 68 -1. Servo ID number as an integer 69 -1. Query command (one to four letters, no spaces, capital or lower case) 70 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 31 +Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page). 71 71 72 - Ex:#5QD<cr> Querythe positionin (tenthof)degreesfor servo with ID #533 +== Action Modifiers == 73 73 74 -T he querywillreturn a serialstring(almostinstantaneously)via theservo'sTxpinwiththe following format:35 +Two commands can be used as action modifiers only: Timed Move and Speed. The format is: 75 75 76 -1. Start with a nasterisk*(Unicode Character: U+0023)37 +1. Start with a number sign # (U+0023) 77 77 1. Servo ID number as an integer 78 -1. Query command (one to four letters, no spaces, capital letters) 79 -1. The reported value in the units described, no decimals. 80 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 39 +1. Action command (one to three letters, no spaces, capital or lower case) 40 +1. Action value in the correct units with no decimal 41 +1. Modifier command (one letter) 42 +1. Modifier value in the correct units with no decimal 43 +1. End with a control / carriage return '<cr>' 81 81 82 - Thereiscurrently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:45 +Ex: #5P1456T1263<cr> 83 83 84 - Ex:*5QD1800<cr>47 +Results in the servo rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds. 85 85 86 - This indicatesthatservo#5is currentlyat180.0 degrees (1800tenthsofdegrees).49 +Action modifiers can only be used with certain commands. 87 87 ))) 88 88 89 -|(% colspan="2" %)((( 90 90 == Configuration Commands == 91 -))) 92 -|(% style="width:25px" %) |((( 93 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. 94 94 95 - These configurationsare retainedin memoryafterthe servois resetor power iscut/lost.Someconfiguration commands affectthe session,while others donot.Inthe Commandtablebelow,the column "Session"denotesif theconfigurationcommand affects the session. Not all action commands have a corresponding configurationcommandandvice versa.Moreinformationabout which configurationcommands are retained when inurl:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-radio-control-pwm/]].Configurationcommandsarenot cumulative.This means that if twoof the sameconfiguration commands are sent, one after the next, only the last configuration is used and stored.54 +Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. 96 96 97 -The format to send a configuration command is identical to that of an action command: 98 - 99 -1. Start with a number sign **#** (Unicode Character: U+0023) 56 +1. Start with a number sign # (U+0023) 100 100 1. Servo ID number as an integer 101 -1. Configuration command (two to four58 +1. Configuration command (two to three letters, no spaces, capital or lower case) 102 102 1. Configuration value in the correct units with no decimal 103 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)60 +1. End with a control / carriage return '<cr>' 104 104 105 105 Ex: #5CO-50<cr> 106 106 107 - Thisconfigures an absolute origin offset("CO") with respect toactoryorigin of servo with ID #5 and changes the offset for that session to-5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroingtheservo will causeit to move to -5.0 degreeswith respect tothefactory originand reportits positionas0 degrees. Configurationcommandscanbeundone / reseteitherby sending the servo'sdefaultvaluefor thatconfiguration, or by doing a factory reset that clearsall configurations(throughthebutton menu or with DEFAULT commanddescribed below).64 +Assigns an absolute origin offset of -5.0 degrees (with respect to factory origin) to servo #5 and changes the offset for that session to -5.0 degrees. 108 108 109 - **SessionvsConfigurationQuery**66 +Configuration commands are not cumulative, in that if two configurations are sent at any time, only the last configuration is used and stored. 110 110 111 - By default,thequerycommandreturns thesession's value. Shouldnoactioncommandshavebeensent to changehesessionvalue, it willreturn the valuesavedin EEPROM which will eitherbe theservo'sdefault,ormodifiedwitha configurationcommand. In orderto querythevaluestored in EEPROM (configuration),adda '1' tothequerycommand:68 +*Important Note: the one exception is the baud rate - the servo's current session retains the given baud rate. The new baud rate will only be in place when the servo is power cycled. 112 112 113 - Ex:#5CSR20<cr> immediately sets the maximum speed forservo#5 to 20rpm(explainedbelow) and changesthe value in memory.70 +== Query Commands == 114 114 115 - AfterRESET, acommandof #5SR4<cr>sets the session'sspeedto 4rpm, butdoesnotchangetheconfiguration valueinmemory. Therefore:72 +Query commands are sent serially to the servo's Rx pin and must be set in the following format: 116 116 117 -#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas 74 +1. Start with a number sign # (U+0023) 75 +1. Servo ID number as an integer 76 +1. Query command (one to three letters, no spaces, capital or lower case) 77 +1. End with a control / carriage return '<cr>' 118 118 119 -#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 79 +((( 80 +Ex: #5QD<cr>Query position in degrees for servo #5 120 120 ))) 121 121 122 -|(% colspan="2" %)((( 123 -== Virtual Angular Position == 124 -))) 125 -|(% style="width:25px" %) |((( 126 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset). 83 +((( 84 +The query will return a value via the Tx pin with the following format: 127 127 128 -[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]] 86 +1. Start with an asterisk (U+002A) 87 +1. Servo ID number as an integer 88 +1. Query command (one to three letters, no spaces, capital letters) 89 +1. The reported value in the units described, no decimals. 90 +1. End with a control / carriage return '<cr>' 129 129 130 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 131 - 132 -#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow) 133 - 134 -#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow) 135 - 136 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees. 137 - 138 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 139 - 140 -#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 141 - 142 -#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow). 143 - 144 -If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°]. 92 +((( 93 +Ex: *5QD1443<cr> 145 145 ))) 146 146 147 - = CommandList=96 +Indicates that servo #5 is currently at 144.3 degrees. 148 148 149 -** Latestfirmware versioncurrently: 370**98 +**Session vs Configuration Query** 150 150 151 -|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Communication Setup**>>path:#HCommunicationSetup]] 152 -| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 153 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Reset**>>path:#HReset]]|RESET| | | |✓| | |Soft reset. See command for details. 154 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Default** Configuration>>path:#HDefault26confirm]]|DEFAULT| | | |✓| | |Revert to firmware default values. See command for details 155 -| |[[Firmware (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Update** Mode>>path:#HUpdate26confirm]]|UPDATE| | | |✓| | |Update firmware. See command for details. 156 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Confirm** Changes>>path:#HConfirm]]|CONFIRM| | | |✓| | | 157 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**hange to **RC**>>path:#HConfigureRCMode28CRC29]]| | |CRC| |✓| | |Change to RC mode 1 (position) or 2 (wheel). 158 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**ID** #>>path:#HIdentificationNumber28ID29]]| |QID|CID| |✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 159 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**B**audrate>>path:#HBaudRate]]| |QB|CB| |✓|115200| |Reset required after change. 100 +By default, the query command returns the sessions' value; should no action commands have been sent to change, it will return the value saved in EEPROM from the last configuration command. 160 160 161 -|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion**>>path:#HMotion]] 162 -| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 163 -| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**D**egrees>>path:#HPositioninDegrees28D29]]|D|QD/QDT| | |✓| |1/10°| 164 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in **D**egrees (relative)>>path:#H28Relative29MoveinDegrees28MD29]]|MD| | | |✓| |1/10°| 165 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **D**egrees>>path:#HWheelModeinDegrees28WD29]]|WD|QWD/QVT| | |✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation" 166 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **R**PM>>path:#HWheelModeinRPM28WR29]]|WR|QWR| | |✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation" 167 -| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**P**WM>>path:#HPositioninPWM28P29]]|P|QP| | |✓| |us|Inherited from SSC-32 serial protocol 168 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in PWM (relative)>>path:#H28Relative29MoveinPWM28M29]]|M| | | |✓| |us| 169 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**R**aw **D**uty-cycle **M**ove>>path:#HRawDuty-cycleMove28RDM29]]|RDM|QMD| | |✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW 170 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery Status>>path:#HQueryStatus28Q29]]| |Q| | |✓| |1 to 8 integer|See command description for details 171 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**L**imp>>path:#HLimp28L29]]|L| | | |✓| | | 172 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**H**alt & Hold>>path:#HHalt26Hold28H29]]|H| | | |✓| | | 102 +In order to query the value in EEPROM, add a '1' to the query command. 173 173 174 -|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion Setup**>>path:#HMotionSetup]] 175 -| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 176 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**E**nable **M**otion Profile>>path:#HEnableMotionProfile28EM29]]|EM|QEM|CEM| |✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile 177 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**ilter **P**osition **C**ount>>path:#HFilterPositionCount28FPC29]]|FPC|QFPC|CFPC|✓|✓|5| |Affects motion only when motion profile is disabled (EM0) 178 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**O**rigin Offset>>path:#HOriginOffset28O29]]|O|QO|CO|✓|✓|0|1/10°| 179 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **R**ange>>path:#HAngularRange28AR29]]|AR|QAR|CAR|✓|✓|1800|1/10°| 180 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **S**tiffness>>path:#HAngularStiffness28AS29]]|AS|QAS|CAS|✓|✓|0|-4 to +4 integer|Suggested values are between 0 to +4 181 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **H**olding Stiffness>>path:#HAngularHoldingStiffness28AH29]]|AH|QAH|CAH|✓|✓|4|-10 to +10 integer| 182 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **A**cceleration>>path:#HAngularAcceleration28AA29]]|AA|QAA|CAA| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 183 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **D**eceleration>>path:#HAngularDeceleration28AD29]]|AD|QAD|CAD| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 184 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**G**yre Direction>>path:#HGyreDirection28G29]]|G|QG|CG|✓|✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 185 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**irst Position (**D**eg)>>path:#HFirstPosition]]| |QFD|CFD|✓|✓|No value|1/10°|Reset required after change. 186 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**aximum **M**otor **D**uty>>path:#HMaximumMotorDuty28MMD29]]|MMD|QMMD| | |✓|1023|255 to 1023 integer| 187 -| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HMaximumSpeedinDegrees28SD29]]|SD|QSD|CSD|✓|✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 188 -| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **R**PM>>path:#HMaximumSpeedinRPM28SR29]]|SR|QSR|CSR|✓|✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 104 +Ex: #5CSR20<cr> sets the maximum speed for servo #5 to 20rpm upon RESET (explained below). 189 189 190 -|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Modifiers**>>path:#HModifiers]] 191 -| |**Description**|**Modifier**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 192 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed>>path:#HSpeed28S2CSD29modifier]]|S|QS| | |✓| |uS/s |For P action command 193 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HSpeed28S2CSD29modifier]]|SD| | | |✓| |0.1°/s|For D and MD action commands 194 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**T**imed move>>path:#HTimedmove28T29modifier]]|T| | | |✓| |ms|Modifier only for P, D and MD. Time can change based on load 195 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **H**old>>path:#HCurrentHalt26Hold28CH29modifier]]|CH| | | |✓| |mA|Modifier for D, MD, WD and WR 196 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **L**imp>>path:#HCurrentLimp28CL29modifier]]|CL| | | |✓| |mA|Modifier for D, MD, WD and WR 106 +After RESET: #5SR4<cr> sets the session's speed to 4rpm. 197 197 198 -|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Telemetry**>>path:#HTelemetry]] 199 -| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 200 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **V**oltage>>path:#HQueryVoltage28QV29]]| |QV| | |✓| |mV| 201 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **T**emperature>>path:#HQueryTemperature28QT29]]| |QT| | |✓| |1/10°C| 202 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **C**urrent>>path:#HQueryCurrent28QC29]]| |QC| | |✓| |mA| 203 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **M**odel **S**tring>>path:#HQueryModelString28QMS29]]| |QMS| | |✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1) 204 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **F**irmware Version>>path:#HQueryFirmware28QF29]]| |QF| | |✓| | | 108 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session. 205 205 206 -|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**RGB LED**>>path:#HRGBLED]] 207 -| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 208 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**LED** Color>>path:#HLEDColor28LED29]]|LED|QLED|CLED|✓|✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White 209 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**onfigure **L**ED **B**linking>>path:#HConfigureLEDBlinking28CLB29]]| | |CLB|✓|✓| |0 to 63 integer|Reset required after change. See command for details. 110 +#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 210 210 211 -= Details =112 +== Virtual Angular Position == 212 212 213 - == CommunicationSetup==114 +{In progress} 214 214 215 -|(% colspan="2" %)((( 216 -====== Reset ====== 217 -))) 218 -|(% style="width:30px" %) |((( 219 -Ex: #5RESET<cr> 116 +A "virtual position" is one which allows for multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to 360.0 degrees. 220 220 221 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HSession]], note #2 for more details. 222 -))) 118 +[[image:LSS-servo-positions.jpg]] 223 223 224 -|(% colspan="2" %)((( 225 -====== Default & confirm ====== 226 -))) 227 -|(% style="width:30px" %) |((( 228 -Ex: #5DEFAULT<cr> 120 +Example: Gyre direction / rotation is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. 229 229 230 - Thiscommandsets in motion theresetofall valuesto thedefaultvaluesincluded with the version of the firmware installedonthat servo.The servothenwaits forthe CONFIRM command.Any othercommand received will causethe servo toexit theDEFAULT function.122 +#1D-300<cr> The servo is sent a command to move to -30.0 degrees (green arrow) 231 231 232 - Ex:#5DEFAULT<cr>followedby#5CONFIRM<cr>124 +#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow) 233 233 234 - Sinceititnot commontohaveto restoreallconfigurations,aconfirmationcommandisneededafter afirmwarecommand issent.Shouldany commandotherthanCONFIRM beceivedby theservo afterthefirmwarecommandhasbeenreceived, itwillexitthe command.126 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees, stopping at an absolute position of 60.0 degrees (420.0-360.0), with a virtual position of -420.0 degrees. 235 235 236 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET. 237 -))) 128 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 238 238 239 -|(% colspan="2" %)((( 240 -====== Update & confirm ====== 241 -))) 242 -|(% style="width:30px" %) |((( 243 -Ex: #5UPDATE<cr> 130 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 244 244 245 - Thiscommandsets in motion the equivalentofalong button press whenthe servois notpoweredin order toenterfirmwareupdate mode.This is useful shouldthebutton be broken or inaccessible.The servothen waits forthe CONFIRM command.Any othercommand receivedwillcause the servoto exit the UPDATE function.132 +#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow). 246 246 247 -Ex: #5UPDATE<cr> followed by #5CONFIRM<cr> 248 - 249 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 250 - 251 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET. 134 +If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). 252 252 ))) 253 253 254 -|(% colspan="2" %)((( 255 -====== Confirm ====== 256 -))) 257 -|(% style="width:30px" %) |((( 258 -Ex: #5CONFIRM<cr> 137 += Command List = 259 259 260 -This command is used to confirm changes after a Default or Update command. 139 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes|=(% style="width: 50px;" %)Default 140 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none| |(% style="text-align:center" %) 141 +| 2|[[**H**alt & Hold>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none| |(% style="text-align:center" %) 142 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds| Modifier only (P, D, MD)|(% style="text-align:center" %) 143 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds / second| Modifier only (P)|(% style="text-align:center" %) 144 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %) 145 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %)((( 146 +00 261 261 262 - **Note:** Afterthe CONFIRM commandis sent, the servo will automatically perform a RESET.148 +0.0 degrees 263 263 ))) 150 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %)((( 151 +1800 264 264 265 -|(% colspan="2" %)((( 266 -====== Configure RC Mode (**CRC**) ====== 153 +180.0 degrees 267 267 ))) 268 -| (%style="width:30px"%)|(((269 - This command puts theservointo RC mode(position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer acceptserialcommands. The servo canbeplaced back intosmart mode by using the button menu.270 - 271 - Ex:#5CRC1<cr>272 - 273 - Changeto RCpositionmode.274 - 275 - Ex:#5CRC2<cr>276 - 277 - ChangetoRC continuousrotation(wheel)mode.278 - 279 - Ex: #5CRC*<cr>280 - 281 - Where*isanyvalueother than1or2(ornovalue): stayinsmartmode282 - 283 - Ex:#5CRC2<cr>284 - 285 - Thiscommandwouldplacehe servoinRC wheel modeafteraRESETorpowercycle. NotethatafteraRESETor powercycle,theservowill be in RC mode andwill notreplytoserialcommands. Using thecommand#5CRC<cr>or#5CRC3<cr>which requests that the servo remaininserialmodestill requiresa RESET command.286 - 287 - **Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-button-menu/]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rxpin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.155 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|((( 156 +See details below 157 +)))|(% style="text-align:center" %) 158 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %) 159 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center" %) 160 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center" %) 161 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD| CSD| ✓| ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed|(% style="text-align:center" %) 162 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR| CSR| ✓| ✓|rpm|QSR: Add modifier "2" for instantaneous speed|(% style="text-align:center" %) 163 +| 14|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4|(% style="text-align:center" %)0 164 +| 15|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0. |(% style="text-align:center" %) 165 +|15b|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared|(% style="text-align:center" %) 166 +|15c|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared|(% style="text-align:center" %) 167 +|15d|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles|(% style="text-align:center" %) 168 +| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center" %)7 169 +| 16b|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center" %) 170 +| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center" %)0 171 +| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)| |(% style="text-align:center" %)9600 172 +| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center" %)1 Clowckwise 173 +| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none | |(% style="text-align:center" %)((( 174 +Limp 288 288 ))) 176 +| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none | |(% style="text-align:center" %)Limp 177 +| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %) 178 +| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)| Recommended to determine the model|(% style="text-align:center" %) | 179 +| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)| Returns a raw value representing the three model inputs (36 bit)|(% style="text-align:center" %) | 180 +| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)| |(% style="text-align:center" %) 181 +| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)| |(% style="text-align:center" %) 182 +| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)| See command description for details|(% style="text-align:center" %) 183 +| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)| |(% style="text-align:center" %) 184 +| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)|(% style="text-align:center" %) 185 +| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)| |(% style="text-align:center" %) 186 +| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|((( 187 +CRC: Add modifier "1" for RC-position mode. 188 +CRC: Add modifier "2" for RC-wheel mode. 189 +Any other value for the modifier results in staying in smart mode. 190 +Puts the servo into RC mode. To revert to smart mode, use the button menu. 191 +)))|(% style="text-align:center" %)Serial 192 +|31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|Soft reset. See command for details.|(% style="text-align:center" %) 193 +|32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|Revert to firmware default values. See command for details|(% style="text-align:center" %) 194 +|33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|Update firmware. See command for details.|(% style="text-align:center" %) 289 289 290 -|(% colspan="2" %)((( 291 -====== Identification Number (**ID**) ====== 292 -))) 293 -|(% style="width:30px" %) |((( 294 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 196 +== Details == 295 295 296 - QueryIdentification(**QID**)198 +====== __1. Limp (**L**)__ ====== 297 297 298 -E X: #254QID<cr>might return *QID5<cr>200 +Example: #5L<cr> 299 299 300 - When usingthebroadcast query ID command,itis best to onlyhave one servoconnectedandthus receiveonlyonereply.Thisisuseful whenouarenotsure oftheservo's ID,but don'twantto change it. Usingthe broadcastcommand (ID 254) withonlyoneservowill havethat servo replywith itsID number. Alternatively,pushingthe button upon startup andtemporarilysettingthe servoID to255 willstillresult in theservorespondingwithits "real" ID.202 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 301 301 302 - ConfigureID(**CID**)204 +====== __2. Halt & Hold (**H**)__ ====== 303 303 304 -Ex: # 4CID5<cr>206 +Example: #5H<cr> 305 305 306 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect. 307 -))) 208 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position. 308 308 309 -|(% colspan="2" %)((( 310 -====== Baud Rate ====== 311 -))) 312 -|(% style="width:30px" %) |((( 313 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200. 210 +====== __3. Timed move (**T**)__ ====== 314 314 315 - Query Baud Rate(**QB**)212 +Example: #5P1500T2500<cr> 316 316 317 - Ex:#5QB<cr>mightreturn*5QB115200<cr>Since the commandtoquerythebaudrate must bedoneatthe servo'sexistingbaudrate,it can simplybeused toconfirmtheCBconfigurationcommandwascorrectlyreceivedbeforetheervois power cycledandthenewbaudrate takes effect.214 +Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 318 318 319 - ConfigureBaudRate (**CB**)216 +Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 320 320 321 - **ImportantNote:** theservo's current session retains the given baud rate and the new baud rate will only take effect when the servo ispower cycled/ RESET.218 +====== __4. Speed (**S**)__ ====== 322 322 323 -Ex: #5 CB9600<cr>220 +Example: #5P1500S750<cr> 324 324 325 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 326 -))) 222 +This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 327 327 328 -|(% colspan="2" %)((( 329 -====== __Automatic Baud Rate__ ====== 330 -))) 331 -|(% style="width:30px" %) |((( 332 -This option allows the LSS to listen to it's serial input and select the right baudrate automatically. 224 +====== __5. (Relative) Move in Degrees (**MD**)__ ====== 333 333 334 - Query Automatic Baud Rate(**QABR**)226 +Example: #5MD123<cr> 335 335 336 - Ex:#5QABR<cr>might return*5ABR0<cr>228 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 337 337 338 - EnableBaud Rate(**ABR**)230 +====== __6. Origin Offset Action (**O**)__ ====== 339 339 340 -Ex: #5 QABR1<cr>232 +Example: #5O2400<cr> 341 341 342 - Enablebaudratedetectiononfirstbyte received afterpower-up.234 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position. The setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. Note that for a given session, the O command overrides the CO command. In the first image, the origin at factory offset '0' (centered). 343 343 344 - Ex: #5QABR2,30<cr>Enablebaudrate detection on first byteeceived after power-up. If nodata for 30 seconds enable detection again on next byte.236 +[[image:LSS-servo-default.jpg]] 345 345 346 -Warning: ABR doesnt work well with LSS Config at the moment. 347 -))) 238 +In the second image, the origina, as well as the angular range (explained below) have been shifted by 240.0 degrees: 348 348 349 - == Motion==240 +[[image:LSS-servo-origin.jpg]] 350 350 351 -|(% colspan="2" %)((( 352 -====== __Position in Degrees (**D**)__ ====== 353 -))) 354 -|(% style="width:30px" %) |((( 355 -Ex: #5D1456<cr> 242 +Origin Offset Query (**QO**) 356 356 357 - This moves the servo toan angleof 145.6 degrees, where thecenter(0) position is centered. Negative values (ex. -176representing -17.6 degrees)could also be used. A full circle would be from-1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.244 +Example: #5QO<cr> Returns: *5QO-13 358 358 359 - Larger values are permitted and allowfor multi-turnfunctionalityusingtheconcept ofvirtualposition(explainedabove).246 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. 360 360 361 - QueryPositionin Degrees (**QD**)248 +Configure Origin Offset (**CO**) 362 362 363 -Ex: #5 QD<cr> might return *5QD132<cr>250 +Example: #5CO-24<cr> 364 364 365 -This m eans the servo islocated at13.2degrees.252 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. 366 366 367 - QueryTargetPositionin Degrees(**QDT**)254 +====== __7. Angular Range (**AR**)__ ====== 368 368 369 -Ex: #5 QDT<cr> might return *5QDT6783<cr>256 +Example: #5AR1800<cr> 370 370 371 -The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 372 -))) 258 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). In the first image, 373 373 374 -|(% colspan="2" %)((( 375 -====== (Relative) Move in Degrees (**MD**) ====== 376 -))) 377 -|(% style="width:30px" %) |((( 378 -Ex: #5MD123<cr> 260 +[[image:LSS-servo-default.jpg]] 379 379 380 -The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 381 -))) 262 +Here, the angular range has been restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 382 382 383 -|(% colspan="2" %)((( 384 -====== Wheel Mode in Degrees (**WD**) ====== 385 -))) 386 -|(% style="width:30px" %) |((( 387 -Ex: #5WD90<cr> 264 +[[image:LSS-servo-ar.jpg]] 388 388 389 -Thi scommandsetsthe servoto wheel modewhereit willrotateinthedesired direction attheselectedspeed.Theexample abovewouldhavetheservo rotateat 90.0 degreesper secondclockwise (assuming factorydefaultconfigurations).266 +The angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) an be used to move both the center and limit the angular range: 390 390 391 - Query Wheel Modein Degrees(**QWD**)268 +[[image:LSS-servo-ar-o-1.jpg]] 392 392 393 - Ex: #5QWD<cr>might return *5QWD90<cr>270 +Query Angular Range (**QAR**) 394 394 395 -The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 396 -))) 272 +Example: #5QAR<cr> might return *5AR2756 397 397 398 -|(% colspan="2" %)((( 399 -====== Wheel Mode in RPM (**WR**) ====== 400 -))) 401 -|(% style="width:30px" %) |((( 402 -Ex: #5WR40<cr> 274 +Configure Angular Range (**CAR**) 403 403 404 -This command s etsthe servo towheelmode whereitwill rotateinthe desireddirectionatthe selectedrpm. Wheel mode(a.k.a. "continuousrotation") hastheservooperatelikeagearedDCmotor. The servo's maximum rpm cannotbe sethigherthanits physicalimitatagivenvoltage. The example abovewould have theservo rotateat40rpm clockwise(assuming factorydefaultconfigurations).276 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 405 405 406 - QueryWheelModeinRPM(**QWR**)278 +====== __8. Position in Pulse (**P**)__ ====== 407 407 408 -Ex: #5 QWR<cr> might return *5QWR40<cr>280 +Example: #5P2334<cr> 409 409 410 -The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 411 -))) 282 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected to end points. 412 412 413 -|(% colspan="2" %)((( 414 -====== Position in PWM (**P**) ====== 415 -))) 416 -|(% style="width:30px" %) |((( 417 -Ex: #5P2334<cr> 418 - 419 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>url:https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points. 420 - 421 421 Query Position in Pulse (**QP**) 422 422 423 -Ex: #5QP<cr> might return *5QP2334 286 +Example: #5QP<cr> might return *5QP2334 424 424 425 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).426 -) ))288 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 289 +Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 427 427 428 -|(% colspan="2" %)((( 429 -====== __(Relative) Move in PWM (**M**)__ ====== 430 -))) 431 -|(% style="width:30px" %) |((( 432 -Ex: #5M1500<cr> 291 +====== __9. Position in Degrees (**D**)__ ====== 433 433 434 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 435 -))) 293 +Example: #5PD1456<cr> 436 436 437 -|(% colspan="2" %)((( 438 -====== Raw Duty-cycle Move (**RDM**) ====== 439 -))) 440 -|(% style="width:30px" %) |((( 441 -Ex: #5RDM512<cr> 295 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction. 442 442 443 - Theawduty-cyclemove command (orfreemovecommand)willrotatethe servot a specified dutycycle valueinwheelmode (a.k.a. "continuousrotation")likea geared DC motor.297 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position. 444 444 445 - The duty valuesrangefrom 0 to 1023. Negative valueswill rotate the servointhe opposite direction(for factory default a negativevaluewould be counter clockwise).299 +Query Position in Degrees (**QD**) 446 446 447 - QueryMovein Duty-cycle(**QMD**)301 +Example: #5QD<cr> might return *5QD132<cr> 448 448 449 - Ex:#5QMD<cr>might return*5QMD512303 +This means the servo is located at 13.2 degrees. 450 450 451 -This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 452 -))) 305 +====== __10. Wheel Mode in Degrees (**WD**)__ ====== 453 453 454 -|(% colspan="2" %)((( 455 -====== Query Status (**Q**) ====== 456 -))) 457 -|(% style="width:30px" %) |((( 458 -The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below. 307 +Ex: #5WD900<cr> 459 459 460 - Ex:#5Q<cr>might return*5Q6<cr>309 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). 461 461 462 -which indicates the motor is holding a position. 463 -))) 311 +Query Wheel Mode in Degrees (**QWD**) 464 464 465 -|(% style="width:30px" %) |***Value returned (Q)**|**Status**|**Detailed description** 466 -| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 467 -| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 468 -| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command 469 -| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 470 -| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 471 -| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 472 -| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding) 473 -| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 474 -| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 475 -| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 476 -| |ex: *5Q10<cr>|10: Safe Mode|((( 477 -A safety limit has been exceeded (temperature, peak current or extended high current draw). 313 +Ex: #5QWD<cr> might return *5QWD900<cr> 478 478 479 -Send a Q1 command to know which limit has been reached (described below). 480 -))) 315 +The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 481 481 482 -|(% style="width:30px" %) |(% colspan="3" rowspan="1" %)If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 483 -| |***Value returned (Q1)**|**Status**|**Detailed description** 484 -| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 485 -| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 486 -| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 487 -| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 317 +====== __11. Wheel Mode in RPM (**WR**)__ ====== 488 488 489 -|(% colspan="2" %)((( 490 -====== Limp (**L**) ====== 491 -))) 492 -|(% style="width:30px" %) |((( 493 -Ex: #5L<cr> 319 +Ex: #5WR40<cr> 494 494 495 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 496 -))) 321 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). 497 497 498 -|(% colspan="2" %)((( 499 -====== Halt & Hold (**H**) ====== 500 -))) 501 -|(% style="width:30px" %) |((( 502 -Example: #5H<cr> 323 +Query Wheel Mode in RPM (**QWR**) 503 503 504 -This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 505 -))) 325 +Ex: #5QWR<cr> might return *5QWR40<cr> 506 506 507 - ==MotionSetup==327 +The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 508 508 509 -|(% colspan="2" %)((( 510 -====== Enable Motion Profile (**EM**) ====== 511 -))) 512 -|(% style="width:30px" %) |((( 513 -EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1. 329 +====== __12. Speed in Degrees (**SD**)__ ====== 514 514 515 -Ex: #5 EM1<cr>331 +Ex: #5SD1800<cr> 516 516 517 -This command ena bles a trapezoidal motion profile for servo#5333 +This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session. 518 518 519 - Ex:#5EM0<cr>335 +Query Speed in Degrees (**QSD**) 520 520 521 - Thiscommand will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers likeSD/S or Tcannot be used in EM0 mode. By default the FilterPosition Counter, or "FPC" is active in EM0mode to smooth outits operation. EM0 is suggested for applications where an externalcontroller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously toreach the desired positionin EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0mode, the servo will effectively always be in status: Holding (if using the query status command).337 +Ex: #5QSD<cr> might return *5QSD1800<cr> 522 522 523 -Query Motion Profile (**QEM**) 339 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed. 340 +If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 524 524 525 -Ex: #5QEM<cr> might return *5QEM1<cr> 342 +|**Command sent**|**Returned value (1/10 °)** 343 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 344 +|ex: #5QSD1<cr>|Configured maximum speed (set by CSD/CSR) 345 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 346 +|ex: #5QSD3<cr>|Target travel speed 526 526 527 - This command will query themotionprofile. **0:** motionprofiledisabled/**1:**trapezoidal motion profile enabled.348 +Configure Speed in Degrees (**CSD**) 528 528 529 - ConfigureMotion Profile (**CEM**)350 +Ex: #5CSD1800<cr> 530 530 531 - Ex:#5CEM0<cr>352 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 532 532 533 -This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 534 -))) 354 +====== __13. Speed in RPM (**SR**)__ ====== 535 535 536 -|(% colspan="2" %)((( 537 -====== Filter Position Count (**FPC**) ====== 538 -))) 539 -|(% style="width:30px" %) |((( 540 -The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default. 356 +Ex: #5SD45<cr> 541 541 542 - Ex:#5FPC10<cr>358 +This command sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session. 543 543 544 - This command allows theuserto changetheFilter PositionCount valueforthat session.360 +Query Speed in Degrees (**QSR**) 545 545 546 -Q ueryFilterPosition Count(**QFPC**)362 +Ex: #5QSR<cr> might return *5QSR45<cr> 547 547 548 -Ex: #5QFPC<cr> might return *5QFPC10<cr> 364 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed. 365 +If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 549 549 550 -This command will query the Filter Position Count value. 367 +|**Command sent**|**Returned value (1/10 °)** 368 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 369 +|ex: #5QSR1<cr>|Configured maximum speed (set by CSD/CSR) 370 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 371 +|ex: #5QSR3<cr>|Target travel speed 551 551 552 -Configure FilterPositionCount(**CFPC**)373 +Configure Speed in RPM (**CSR**) 553 553 554 -Ex: #5C FPC10<cr>375 +Ex: #5CSR45<cr> 555 555 556 -This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 557 -))) 377 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 558 558 559 -|(% colspan="2" %)((( 560 -====== Origin Offset (**O**) ====== 561 -))) 562 -|(% style="width:30px" %) |((( 563 -Ex: #5O2400<cr> 379 +====== __14. Angular Stiffness (**AS**)__ ====== 564 564 565 -Th iscommand allowsyoutochange theoriginof the servoinrelationtothe factoryzeropositionfor that session.Aswith allaction commands,the setting will belostuponservoreset/ powercycle.Origin offset commandsare notcumulative and alwaysrelatetofactoryzero.Inthefirstimage,theorigin at factory offset'0' (centered).381 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 566 566 567 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]383 +A positive value of "angular stiffness": 568 568 569 -In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: 385 +* The more torque will be applied to try to keep the desired position against external input / changes 386 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 570 570 571 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]388 +A negative value on the other hand: 572 572 573 -Origin Offset Query (**QO**) 390 +* Causes a slower acceleration to the travel speed, and a slower deceleration 391 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back 574 574 575 - Ex:#5QO<cr>might return*5QO-13393 +The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior. 576 576 577 - This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example,the new origin is at-1.3 degrees from the factory zero.395 +Ex: #5AS-2<cr> 578 578 579 - ConfigureOriginOffset(**CO**)397 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 580 580 581 -Ex: #5 CO-24<cr>399 +Ex: #5QAS<cr> 582 582 583 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 584 -))) 401 +Queries the value being used. 585 585 586 -|(% colspan="2" %)Angular Range (**AR**)((( 587 -====== ====== 588 -))) 589 -|(% style="width:30px" %) |((( 590 -Ex: #5AR1800<cr> 403 +Ex: #5CAS<cr> 591 591 592 - Thiscommand allows youtotemporarily changethe total angularrange of theservointenthsof degrees. Thisapplies to the Position in Pulse(P) command and RC mode. The defaultfor(P) and RCmodeis 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:405 +Writes the desired angular stiffness value to memory. 593 593 594 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]407 +====== __15. Angular Hold Stiffness (**AH**)__ ====== 595 595 596 - Below, the angularrangeis restrictedto180.0degrees,or -90.0to+90.0.Thecenterhasremainedunchanged.409 +The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 597 597 598 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]411 +Ex: #5AH3<cr> 599 599 600 - Finally,theangular rangeactioncommand (ex.#5AR1800<cr>) andoriginoffset actioncommand (ex.#5O-1200<cr>)are usedtomoveboththe centerand limittheangular range:413 +This sets the holding stiffness for servo #5 to 3 for that session. 601 601 602 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]415 +Query Angular Hold Stiffness (**QAH**) 603 603 604 -Q ueryAngularRange(**QAR**)417 +Ex: #5QAH<cr> might return *5QAH3<cr> 605 605 606 - Ex: #5QAR<cr> mightreturn*5AR1800, indicating thetotalangularrangeis180.0 degrees.419 +This returns the servo's angular holding stiffness value. 607 607 608 -Configure Angular Range (**CAR**)421 +Configure Angular Hold Stiffness (**CAH**) 609 609 610 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 611 -))) 423 +Ex: #5CAH2<cr> 612 612 613 -|(% colspan="2" %)((( 614 -====== Angular Stiffness (**AS**) ====== 615 -))) 616 -|(% style="width:30px" %) |((( 617 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units. 425 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM 618 618 619 - Ahighervalue of "angularstiffness":427 +====== __15b: Angular Acceleration (**AA**)__ ====== 620 620 621 -* The more torque will be applied to try to keep the desired position against external input / changes 622 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 429 +{More details to come} 623 623 624 - Alowervalueon theotherhand:431 +====== __15c: Angular Deceleration (**AD**)__ ====== 625 625 626 -* Causes a slower acceleration to the travel speed, and a slower deceleration 627 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back 433 +{More details to come} 628 628 629 - Thedefaultvalue for stiffness dependingonthe firmware may be 0or 1. Greater values produce increasingly erratic behaviorand the effect becomes extreme below-4 and above +4.Maximumvalues are -10 to +10.435 +====== __15d: Motion Control (**EM**)__ ====== 630 630 631 - Ex:#5AS-2<cr>437 +{More details to come} 632 632 633 - Thisreduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position.Thiscanbe beneficial in many situations such as impacts(legged robots)where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.439 +====== __16. RGB LED (**LED**)__ ====== 634 634 635 -Ex: #5 QAS<cr>441 +Ex: #5LED3<cr> 636 636 637 - Queries the value beingused.443 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. 638 638 639 -Ex: #5CAS-2<cr>Writes the desired angular stiffness value to EEPROM. 640 -))) 445 +0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE 641 641 642 -|(% colspan="2" %)((( 643 -====== Angular Holding Stiffness (**AH**) ====== 644 -))) 645 -|(% style="width:30px" %) |((( 646 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 447 +Query LED Color (**QLED**) 647 647 648 -Ex: #5 AH3<cr>449 +Ex: #5QLED<cr> might return *5QLED5<cr> 649 649 650 -This sets the holding stiffnessforservo#5to3 forthat session.451 +This simple query returns the indicated servo's LED color. 651 651 652 - Query AngularHoldingStiffness(**QAH**)453 +Configure LED Color (**CLED**) 653 653 654 -E x:#5QAH<cr>mightreturn*5QAH3<cr>455 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 655 655 656 - Thisreturnsthe servo's angularholding stiffnessvalue.457 +====== __16b. Configure LED Blinking (**CLB**)__ ====== 657 657 658 -Configure Angular Holding Stiffness (**CAH**) 459 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 460 +You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 659 659 660 - Ex:#5CAH2<cr>462 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 661 661 662 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 663 -))) 464 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 465 +Ex: #5CLB1<cr> only blink when limp 466 +Ex: #5CLB2<cr> only blink when holding 467 +Ex: #5CLB12<cr> only blink when accel or decel 468 +Ex: #5CLB48<cr> only blink when free or travel 469 +Ex: #5CLB63<cr> blink in all status 664 664 665 -|(% colspan="2" %)((( 666 -====== Angular Acceleration (**AA**) ====== 667 -))) 668 -|(% style="width:30px" %) |((( 669 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 471 +====== __17. Identification Number__ ====== 670 670 671 - Ex: #5AA30<cr>473 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 672 672 673 - This setstheangular accelerationfor servo #5 to 30 degrees per second squared(°/s^^2^^).475 +Query Identification (**QID**) 674 674 675 -Q ueryAngularAcceleration(**QAA**)477 +EX: #254QID<cr> might return *QID5<cr> 676 676 677 - Ex:#5QAA<cr>might return*5QAA30<cr>479 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply using the broadcast command (ID 254). Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 678 678 679 - This returns the servo's angular acceleration in degrees per second squared(°/s^^2^^).481 +Configure ID (**CID**) 680 680 681 - ConfigureAngular Acceleration (**CAA**)483 +Ex: #4CID5<cr> 682 682 683 -E x:#5CAA30<cr>485 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. 684 684 685 -This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 686 -))) 487 +====== __18. Baud Rate__ ====== 687 687 688 -|(% colspan="2" %)((( 689 -====== Angular Deceleration (**AD**) ====== 690 -))) 691 -|(% style="width:30px" %) |((( 692 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 489 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 490 +\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. 693 693 694 - Ex: #5AD30<cr>492 +Query Baud Rate (**QB**) 695 695 696 - Thissetstheangulardecelerationfor servo #5to 30degrees per second squared (°/s^^2^^).494 +Ex: #5QB<cr> might return *5QB9600<cr> 697 697 698 -Query AngularDeceleration(**QAD**)496 +Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled. 699 699 700 - Ex: #5QAD<cr> mightreturn*5QAD30<cr>498 +Configure Baud Rate (**CB**) 701 701 702 - Thisreturns the servo's angular deceleration in degrees per second squared (°/s^^2^^).500 +Ex: #5CB9600<cr> 703 703 704 - ConfigureAngularDeceleration(**CAD**)502 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 705 705 706 - Ex:#5CAD30<cr>504 +====== __19. Gyre Rotation Direction__ ====== 707 707 708 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 709 -))) 506 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 710 710 711 -|(% colspan="2" %)((( 712 -====== Gyre Direction (**G**) ====== 713 -))) 714 -|(% style="width:30px" %) |((( 715 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1. 508 +{images showing before and after with AR and Origin offset} 716 716 717 -Ex: #5G-1<cr> 718 - 719 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 720 - 721 721 Query Gyre Direction (**QG**) 722 722 723 723 Ex: #5QG<cr> might return *5QG-1<cr> 724 724 725 -The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.514 +The value returned above means the servo is in a counter-clockwise gyration. 726 726 727 727 Configure Gyre (**CG**) 728 728 ... ... @@ -729,272 +729,142 @@ 729 729 Ex: #5CG-1<cr> 730 730 731 731 This changes the gyre direction as described above and also writes to EEPROM. 732 -))) 733 733 734 -|(% colspan="2" %)((( 735 -====== First Position ====== 736 -))) 737 -|(% style="width:30px" %) |((( 738 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. 522 +====== __20. First / Initial Position (pulse)__ ====== 739 739 740 - QueryFirst Position in Degrees(**QFD**)524 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 741 741 742 - Ex: #5QFD<cr>mightreturn *5QFD900<cr>526 +Query First Position in Pulses (**QFP**) 743 743 744 - Thereply above indicates that servowithID 5 has a firstposition of 90.0 degrees. Ifthere isnofirstposition value stored, the reply will be DIS.528 +Ex: #5QFP<cr> might return *5QFP1550<cr> 745 745 746 - ConfigureFirstPositioninDegrees(**CFD**)530 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If no first position has been set, servo will respond with DIS ("disabled"). 747 747 748 - Ex: #5CFD900<cr>532 +Configure First Position in Pulses (**CFP**) 749 749 750 -This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 751 -))) 534 +Ex: #5CP1550<cr> 752 752 753 -|(% colspan="2" %)((( 754 -====== Maximum Motor Duty (**MMD**) ====== 755 -))) 756 -|(% style="width:30px" %) |((( 757 -This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance. 536 +This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 758 758 759 - Ex:#5MMD512<cr>538 +====== __21. First / Initial Position (Degrees)__ ====== 760 760 761 - This willset the duty-cycle to512for servowithID5for that session.540 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 762 762 763 -Query MaximumMotorDuty(**QMMD**)542 +Query First Position in Degrees (**QFD**) 764 764 765 -Ex: #5Q MMDD<cr> might return *5QMMD512<cr>544 +Ex: #5QFD<cr> might return *5QFD64<cr> 766 766 767 -This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023. 768 -))) 546 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. 769 769 770 -|(% colspan="2" %)((( 771 -====== Maximum Speed in Degrees (**SD**) ====== 772 -))) 773 -|(% style="width:30px" %) |((( 774 -Ex: #5SD1800<cr> 548 +Configure First Position in Degrees (**CFD**) 775 775 776 - This command sets the servo's maximumspeed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overridesCSD(described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.550 +Ex: #5CD64<cr> 777 777 778 - QuerySpeed inDegrees(**QSD**)552 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up. 779 779 780 - Ex:#5QSD<cr>mightreturn *5QSD1800<cr>554 +====== __22. Query Target Position in Degrees (**QDT**)__ ====== 781 781 782 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 783 -))) 556 +Ex: #5QDT<cr> might return *5QDT6783<cr> 784 784 785 -|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)** 786 -| |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 787 -| |ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 788 -| |ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 789 -| |ex: #5QSD3<cr>|Target travel speed 558 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 790 790 791 -|(% style="width:30px" %) |((( 792 -Configure Speed in Degrees (**CSD**) 560 +====== __23. Query Model String (**QMS**)__ ====== 793 793 794 -Ex: #5 CSD1800<cr>562 +Ex: #5QMS<cr> might return *5QMSLSS-HS1cr> 795 795 796 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 797 -))) 564 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 798 798 799 -|(% colspan="2" %)((( 800 -====== Maximum Speed in RPM (**SR**) ====== 801 -))) 802 -|(% style="width:30px" %) |((( 803 -Ex: #5SR45<cr> 566 +====== __23b. Query Model (**QM**)__ ====== 804 804 805 - This command sets the servo's maximumspeed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speedcannot be set higherthan its physical limit at agiven voltage. SR overrides CSR (described below) for thatsession. Uponresetor power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) andSR are effectively the same, but allow the userto specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.568 +Ex: #5QM<cr> might return *5QM68702699520cr> 806 806 807 - QuerySpeed inRPM(**QSR**)570 +This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision. 808 808 809 - Ex:#5QSR<cr>mightreturn*5QSR45<cr>572 +====== __24. Query Serial Number (**QN**)__ ====== 810 810 811 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 812 -))) 574 +Ex: #5QN<cr> might return *5QN~_~_<cr> 813 813 814 -|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)** 815 -| |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 816 -| |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 817 -| |ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 818 -| |ex: #5QSR3<cr>|Target travel speed 576 +The number in the response is the servo's serial number which is set and cannot be changed. 819 819 820 -|((( 821 -Configure Speed in RPM (**CSR**) 578 +====== __25. Query Firmware (**QF**)__ ====== 822 822 823 -Ex: #5 CSR45<cr>580 +Ex: #5QF<cr> might return *5QF11<cr> 824 824 825 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 826 -)))| 582 +The integer in the reply represents the firmware version with one decimal, in this example being 1.1 827 827 828 -== Modifiers ==584 +====== __26. Query Status (**Q**)__ ====== 829 829 830 -|(% colspan="2" %)((( 831 -====== Speed (**S**, **SD**) modifier ====== 832 -))) 833 -|(% style="width:30px" %) |((( 834 -Ex: #5P1500S750<cr> 586 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 835 835 836 -Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 588 +|*Value returned|**Status**|**Detailed description** 589 +|ex: *5Q0<cr>|Unknown|LSS is unsure 590 +|ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely 591 +|ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 592 +|ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed 593 +|ex: *5Q4<cr>|Traveling|Moving at a stable speed 594 +|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position. 595 +|ex: *5Q6<cr>|Holding|Keeping current position 596 +|ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque 597 +|ex: *5Q8<cr>|Outside limits|{More details coming soon} 598 +|ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 599 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 837 837 838 - Ex:#5D0SD180<cr>601 +====== __27. Query Voltage (**QV**)__ ====== 839 839 840 - Modifier(SD) is only for a position (D) or relative position (MD) action and determinesthe speed of themovein tenths of degrees per second. A speed modifier (SD) of 180 would cause the servotorotatefrom its currentposition to the desired absolute or relative position at a speed of18 degrees per second.603 +Ex: #5QV<cr> might return *5QV11200<cr> 841 841 842 - QuerySpeed (**QS**)605 +The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 843 843 844 - Ex:#5QS<cr>might return*5QS300<cr>607 +====== __28. Query Temperature (**QT**)__ ====== 845 845 846 -This command queries the current speed in microseconds per second. 847 -))) 609 +Ex: #5QT<cr> might return *5QT564<cr> 848 848 849 -|(% colspan="2" %)((( 850 -====== Timed move (**T**) modifier ====== 851 -))) 852 -|(% style="width:30px" %) |((( 853 - 611 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 854 854 855 - Example:#5P1500T2500<cr>613 +====== __29. Query Current (**QC**)__ ====== 856 856 857 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 858 - 859 -**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 860 -))) 861 - 862 -|(% colspan="2" %)((( 863 -====== Current Halt & Hold (**CH**) modifier ====== 864 -))) 865 -|(% style="width:30px" %) |((( 866 -Example: #5D1423CH400<cr> 867 - 868 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position. 869 - 870 -This modifier can be added to the following actions: D; MD; WD; WR. 871 -))) 872 - 873 -|(% colspan="2" %)((( 874 -====== Current Limp (**CL**) modifier ====== 875 -))) 876 -|(% style="width:30px" %) |((( 877 -Example: #5D1423CL400<cr> 878 - 879 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp. 880 - 881 -This modifier can be added to the following actions: D; MD; WD; WR. 882 -))) 883 - 884 -== Telemetry == 885 - 886 -|(% colspan="2" %)((( 887 -====== Query Voltage (**QV**) ====== 888 -))) 889 -|(% style="width:30px" %) |((( 890 -Ex: #5QV<cr> might return *5QV11200<cr> 891 - 892 -The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V. 893 -))) 894 - 895 -|(% colspan="2" %)((( 896 -====== Query Current (**QC**) ====== 897 -))) 898 -|(% style="width:30px" %) |((( 899 - 900 - 901 901 Ex: #5QC<cr> might return *5QC140<cr> 902 902 903 903 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 904 -))) 905 905 906 -|(% colspan="2" %)((( 907 -====== Query Model String (**QMS**) ====== 908 -))) 909 -|(% style="width:30px" %) |((( 910 - 619 +====== __30. RC Mode (**CRC**)__ ====== 911 911 912 - Ex:#5QMS<cr>might return*5QMSLSS-HS1<cr>621 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 913 913 914 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision. 915 -))) 623 +|**Command sent**|**Note** 624 +|ex: #5CRC<cr>|Stay in smart mode. 625 +|ex: #5CRC1<cr>|Change to RC position mode. 626 +|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 627 +|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode. 916 916 917 -|(% colspan="2" %)((( 918 -====== Query Firmware (**QF**) ====== 919 -))) 920 -|(% style="width:30px" %) |((( 921 -Ex: #5QF<cr> might return *5QF368<cr> 629 +EX: #5CRC<cr> 922 922 923 - Thenumber in the reply represents the firmware version, in this example being368.631 +====== __31. RESET__ ====== 924 924 925 -The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14 926 -))) 633 +Ex: #5RESET<cr> or #5RS<cr> 927 927 928 - ==RGBLED==635 +This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 929 929 930 -|(% colspan="2" %)((( 931 -====== LED Color (**LED**) ====== 932 -))) 933 -|(% style="width:30px" %) |((( 934 - 637 +====== __32. DEFAULT & CONFIRM__ ====== 935 935 936 -Ex: #5 LED3<cr>639 +Ex: #5DEFAULT<cr> 937 937 938 -This action sets the servo'sRGBLEDcolor for that session.641 +This command sets in motion the reset all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 939 939 940 - The LEDcanbe usedfor aesthetics,or (basedonusercode) to provide visual status updates. Using timing can create patterns.643 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 941 941 942 - 0=Off(black);1=Red2=Green;3=Blue;4=Yellow;5=Cyan;6=Magenta;7=White;645 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 943 943 944 - QueryLEDColor(**QLED**)647 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 945 945 946 - Ex:#5QLED<cr>mightreturn *5QLED5<cr>649 +====== __33. UPDATE & CONFIRM__ ====== 947 947 948 - This simple query returns the indicated servo's LEDcolor.651 +Ex: #5UPDATE<cr> 949 949 950 - ConfigureLEDColor(**CLED**)653 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. 951 951 952 -E x: #5CLED3<cr>655 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr> 953 953 954 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color. 955 -))) 657 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 956 956 957 -|(% colspan="2" %)((( 958 -====== Configure LED Blinking (**CLB**) ====== 959 -))) 960 -|(% style="width:30px" %) |((( 961 - 962 - 963 -This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value: 964 -))) 965 - 966 -|(% style="width:30px" %) |(% style="width:200px" %)**Blink While:**|(% style="width:50px" %)**#**| 967 -| |No blinking|0| 968 -| |Limp|1| 969 -| |Holding|2| 970 -| |Accelerating|4| 971 -| |Decelerating|8| 972 -| |Free|16| 973 -| |Travelling|32| 974 -| |Always blink|63| 975 - 976 -|(% style="width:30px" %) |((( 977 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 978 - 979 -Ex: #5CLB0 to turn off all blinking (LED always solid) 980 - 981 -Ex: #5CLB1 only blink when limp (1) 982 - 983 -Ex: #5CLB2 only blink when holding (2) 984 - 985 -Ex: #5CLB12 only blink when accel or decel (accel 4 + decel 8 = 12) 986 - 987 -Ex: #5CLB48 only blink when free or travel (free 16 + travel 32 = 48) 988 - 989 -Ex: #5CLB63 blink in all status (1 + 2 + 4 + 8 + 16 + 32) 990 - 991 -RESETTING the servo is needed. 992 -))) 993 - 994 -|(% colspan="2" style="width:30px" %)((( 995 -====== RGB LED Patterns ====== 996 -))) 997 -|(% style="width:30px" %) |((( 998 -The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-button-menu/]] 999 -))) 1000 -|(% style="width:30px" %) |[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS%20-%20LED%20Patterns.png||alt="LSS - LED Patterns.png"]] 659 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
- LSS - LED Patterns.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.RB1 - Size
-
... ... @@ -1,1 +1,0 @@ 1 -116.3 KB - Content
- LSS-Protocol-Backup-2020-05-01.zip
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -47.4 KB - Content
- XWiki.StyleSheetExtension[0]
-
- Caching policy
-
... ... @@ -1,1 +1,0 @@ 1 -long - Code
-
... ... @@ -1,13 +1,0 @@ 1 -div.cmdcnt 2 -{ 3 - display:table-row; 4 -} 5 -div.cmdpad 6 -{ 7 - display:table-cell; 8 - padding:16px; 9 -} 10 -div.cmdtxt 11 -{ 12 - display:table-cell; 13 -} - Content Type
-
... ... @@ -1,1 +1,0 @@ 1 -CSS - Name
-
... ... @@ -1,1 +1,0 @@ 1 -DivTextIndentation - Parse content
-
... ... @@ -1,1 +1,0 @@ 1 -0 - Use this extension
-
... ... @@ -1,1 +1,0 @@ 1 -currentPage
- XWiki.XWikiRights[0]
-
- Allow/Deny
-
... ... @@ -1,0 +1,1 @@ 1 +Allow - Groups
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.XWikiAdminGroup - Levels
-
... ... @@ -1,0 +1,1 @@ 1 +view
- XWiki.XWikiRights[1]
-
- Allow/Deny
-
... ... @@ -1,0 +1,1 @@ 1 +Allow - Groups
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.XWikiAdminGroup - Levels
-
... ... @@ -1,0 +1,1 @@ 1 +view