Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (4 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
-
Objects (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LSS Communication Protocol 1 +LSS - Communication Protocol - Parent
-
... ... @@ -1,1 +1,1 @@ 1 - ses-v2.lynxmotion-smart-servo.WebHome1 +lynxmotion-smart-servo.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -xwiki:XWiki. ENantel1 +xwiki:XWiki.RB1 - Content
-
... ... @@ -1,129 +1,116 @@ 1 +(% class="wikigeneratedid" id="HTableofContents" %) 2 +**Page Contents** 3 + 1 1 {{toc depth="3"/}} 2 2 3 3 = Serial Protocol = 4 4 5 -The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available. 8 +The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servo motor is available. 6 6 7 -In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo ( seetailson the ConfigureID, or "CID" command [[here>>path:#HIdentificationNumber28ID29]]).Only the servo(s) which have beenconfigured toaspecificIDwillact onacommandsentto thatID. There is currently no CRCorchecksum implemented as part of10 +In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol. 8 8 9 -|(% colspan="2" %)((( 10 10 == Session == 11 -))) 12 -|(% style="width:25px" %) |((( 13 + 13 13 A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 14 14 15 -**Note 1:** For a given session, the action related to a specific command overrides the stored value in EEPROM. 16 +Note #1: For a given session, the action related to a specific commands overrides the stored value in EEPROM. 17 +Note #2: During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s). 18 +You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended. 16 16 17 -**Note 2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s). 18 - 19 -**Note 3:** You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r described below). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays. 20 -))) 21 - 22 -|(% colspan="2" %)((( 23 23 == Action Commands == 24 -))) 25 -|(% style="width:25px" %) |((( 26 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HVirtualAngularPosition]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format: 27 27 28 -1. Start with a number sign **#** (Unicode Character: U+0023) 29 -1. Servo ID number as an integer (assigning an ID described below) 30 -1. Action command (one or more letters, no whitespace, capital or lowercase from the list below) 22 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format: 23 + 24 +1. Start with a number sign # (U+0023) 25 +1. Servo ID number as an integer 26 +1. Action command (one to three letters, no spaces, capital or lower case) 31 31 1. Action value in the correct units with no decimal 32 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)28 +1. End with a control / carriage return '<cr>' 33 33 34 -Ex: #5D1800<cr> 30 +((( 31 +Ex: #5PD1443<cr> 35 35 36 -This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 37 -))) 33 +This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 38 38 39 -|(% colspan="2" %)((( 40 -== Modifiers == 41 -))) 42 -|(% style="width:25px" %) |((( 43 -Modifiers can only be used with certain **action commands**. The format to include a modifier is: 35 +== Action Modifiers == 44 44 45 -1. Start with a number sign **#** (Unicode Character: U+0023) 37 +Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is: 38 + 39 +1. Start with a number sign # (U+0023) 46 46 1. Servo ID number as an integer 47 -1. Action command (one to three letters, no spaces, capital or lower casefrom a subset of action commandsbelow)41 +1. Action command (one to three letters, no spaces, capital or lower case) 48 48 1. Action value in the correct units with no decimal 49 -1. Modifier command (one or twoletters from the list of modifiers below)43 +1. Modifier command (one letter) 50 50 1. Modifier value in the correct units with no decimal 51 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)45 +1. End with a control / carriage return '<cr>' 52 52 53 -Ex: #5 D1800T1500<cr>47 +Ex: #5P1456T1263<cr> 54 54 55 -This results in the servo with ID #5 rotating to(1800intenths of degrees)80.0 degreesin a time ("T") of 1500milliseconds(1.5 seconds).49 +This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds. 56 56 ))) 57 57 58 -|(% colspan="2" %)((( 59 59 == Query Commands == 60 -))) 61 -|(% style="width:25px" %) |((( 53 + 62 62 Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format: 63 63 64 -1. Start with a number sign **#**(Unicode Character: U+0023)56 +1. Start with a number sign # (U+0023) 65 65 1. Servo ID number as an integer 66 -1. Query command (one to four67 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)58 +1. Query command (one to three letters, no spaces, capital or lower case) 59 +1. End with a control / carriage return '<cr>' 68 68 69 -Ex: #5QD<cr> Query the position in (tenth of) degrees for servo with ID #5 61 +((( 62 +Ex: #5QD<cr>Query position in degrees for servo #5 63 +))) 70 70 65 +((( 71 71 The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format: 72 72 73 -1. Start with an asterisk * (U nicode Character: U+0023)68 +1. Start with an asterisk * (U+002A) 74 74 1. Servo ID number as an integer 75 -1. Query command (one to four70 +1. Query command (one to three letters, no spaces, capital letters) 76 76 1. The reported value in the units described, no decimals. 77 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)72 +1. End with a control / carriage return '<cr>' 78 78 79 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries tomultiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a newquerycommand. A reply to the query sent above might be:74 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be: 80 80 81 -Ex: *5QD1800<cr> 82 - 83 -This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees). 76 +((( 77 +Ex: *5QD1443<cr> 84 84 ))) 85 85 86 -|(% colspan="2" %)((( 80 +This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees). 81 + 87 87 == Configuration Commands == 88 -))) 89 -|(% style="width:25px" %) |((( 90 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. 91 91 92 -These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-radio-control-pwm/]]. Configuration commands are not cumulative.This meansthat ifof the sameconfigurationcommands are sent, one after the next, only the last configuration is used and stored.84 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 93 93 94 -The format to send a configuration command is identical to that of an action command: 95 - 96 -1. Start with a number sign **#** (Unicode Character: U+0023) 86 +1. Start with a number sign # (U+0023) 97 97 1. Servo ID number as an integer 98 -1. Configuration command (two to four88 +1. Configuration command (two to three letters, no spaces, capital or lower case) 99 99 1. Configuration value in the correct units with no decimal 100 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)90 +1. End with a control / carriage return '<cr>' 101 101 102 102 Ex: #5CO-50<cr> 103 103 104 -This configures an absolute origin offset ("CO") with respect to factory origin ofservo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory resetthatclears all configurations(through the button menu or with DEFAULT commanddescribed below).94 +This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below. 105 105 106 106 **Session vs Configuration Query** 107 107 108 -By default, the query command returns the session 's98 +By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: 109 109 110 -Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory. 100 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory. 111 111 112 112 After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore: 113 113 114 -#5QSR<cr> or #5QSR0<cr>would return *5QSR4<cr> which represents the value for that session, whereas104 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas 115 115 116 116 #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 117 -))) 118 118 119 -|(% colspan="2" %)((( 120 120 == Virtual Angular Position == 121 -))) 122 -|(% style="width:25px" %) |((( 123 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset). 124 124 125 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]110 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset). 126 126 112 +[[image:LSS-servo-positions.jpg]] 113 + 127 127 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 128 128 129 129 #1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow) ... ... @@ -130,257 +130,214 @@ 130 130 131 131 #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow) 132 132 133 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees. 120 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees. 134 134 135 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 122 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 136 136 137 -#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 124 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 138 138 139 139 #1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow). 140 140 141 -If The virtual position range at power-up is [-180.0°, 180.0°].128 +If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). 142 142 ))) 143 143 144 144 = Command List = 145 145 146 - **Latestfirmwareversion currently: 370**133 +== Regular == 147 147 148 -|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Communication Setup**>>path:#HCommunicationSetup]] 149 -| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 150 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Reset**>>path:#HReset]]|RESET| | | |✓| | |Soft reset. See command for details. 151 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Default** Configuration>>path:#HDefault26confirm]]|DEFAULT| | | |✓| | |Revert to firmware default values. See command for details 152 -| |[[Firmware (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Update** Mode>>path:#HUpdate26confirm]]|UPDATE| | | |✓| | |Update firmware. See command for details. 153 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Confirm** Changes>>path:#HConfirm]]|CONFIRM| | | |✓| | | 154 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**hange to **RC**>>path:#HConfigureRCMode28CRC29]]| | |CRC| |✓| | |Change to RC mode 1 (position) or 2 (wheel). 155 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**ID** #>>path:#HIdentificationNumber28ID29]]| |QID|CID| |✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 156 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**B**audrate>>path:#HBaudRate]]| |QB|CB| |✓|115200| |Reset required after change. 135 +|= #|=Description|=Mod|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 136 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| | L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 137 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| | H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 138 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]|T| | | | | | ✓|milliseconds|(% style="width:510px" %)Modifier only for {P, D, MD}. Time is estimated and can change based on load|(% style="text-align:center; width:113px" %) 139 +| 4|[[**S**peed>>||anchor="H4.Speed28S2CSD29modifier"]]|S/SD| |QS| | | | ✓|microseconds per second / degrees per second|(% style="width:510px" %)S modifier only for {P}. SD modifier only for {D, MD}.|(% style="text-align:center; width:113px" %) 140 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| | MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 141 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| | O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 142 +0 143 +))) 144 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| | AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 145 +1800 146 +))) 147 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| | P| QP| | | | ✓|microseconds|(% style="width:510px" %)((( 148 +Inherited from SSC-32 serial protocol 149 +)))|(% style="text-align:center; width:113px" %) 150 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| | D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 151 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| | WD| QWD| | | | ✓|degrees per second|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 152 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| | WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 153 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| | SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)((( 154 +QSD: Add modifier "2" for instantaneous speed. 157 157 158 -|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion**>>path:#HMotion]] 159 -| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 160 -| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**D**egrees>>path:#HPositioninDegrees28D29]]|D|QD/QDT| | |✓| |1/10°| 161 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in **D**egrees (relative)>>path:#H28Relative29MoveinDegrees28MD29]]|MD| | | |✓| |1/10°| 162 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **D**egrees>>path:#HWheelModeinDegrees28WD29]]|WD|QWD/QVT| | |✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation" 163 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **R**PM>>path:#HWheelModeinRPM28WR29]]|WR|QWR| | |✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation" 164 -| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**P**WM>>path:#HPositioninPWM28P29]]|P|QP| | |✓| |us|Inherited from SSC-32 serial protocol 165 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in PWM (relative)>>path:#H28Relative29MoveinPWM28M29]]|M| | | |✓| |us| 166 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**R**aw **D**uty-cycle **M**ove>>path:#HRawDuty-cycleMove28RDM29]]|RDM|QMD| | |✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW 167 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery Status>>path:#HQueryStatus28Q29]]| |Q| | |✓| |1 to 8 integer|See command description for details 168 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**L**imp>>path:#HLimp28L29]]|L| | | |✓| | | 169 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**H**alt & Hold>>path:#HHalt26Hold28H29]]|H| | | |✓| | | 156 +SD overwrites SR / CSD overwrites CSR and vice-versa. 157 +)))|(% style="text-align:center; width:113px" %)Max per servo 158 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| | SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 159 +QSR: Add modifier "2" for instantaneous speed 170 170 171 -|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion Setup**>>path:#HMotionSetup]] 172 -| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 173 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**E**nable **M**otion Profile>>path:#HEnableMotionProfile28EM29]]|EM|QEM|CEM| |✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile 174 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**ilter **P**osition **C**ount>>path:#HFilterPositionCount28FPC29]]|FPC|QFPC|CFPC|✓|✓|5| |Affects motion only when motion profile is disabled (EM0) 175 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**O**rigin Offset>>path:#HOriginOffset28O29]]|O|QO|CO|✓|✓|0|1/10°| 176 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **R**ange>>path:#HAngularRange28AR29]]|AR|QAR|CAR|✓|✓|1800|1/10°| 177 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **S**tiffness>>path:#HAngularStiffness28AS29]]|AS|QAS|CAS|✓|✓|0|-4 to +4 integer|Suggested values are between 0 to +4 178 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **H**olding Stiffness>>path:#HAngularHoldingStiffness28AH29]]|AH|QAH|CAH|✓|✓|4|-10 to +10 integer| 179 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **A**cceleration>>path:#HAngularAcceleration28AA29]]|AA|QAA|CAA| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 180 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **D**eceleration>>path:#HAngularDeceleration28AD29]]|AD|QAD|CAD| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 181 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**G**yre Direction>>path:#HGyreDirection28G29]]|G|QG|CG|✓|✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 182 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**irst Position (**D**eg)>>path:#HFirstPosition]]| |QFD|CFD|✓|✓|No value|1/10°|Reset required after change. 183 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**aximum **M**otor **D**uty>>path:#HMaximumMotorDuty28MMD29]]|MMD|QMMD| | |✓|1023|255 to 1023 integer| 184 -| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HMaximumSpeedinDegrees28SD29]]|SD|QSD|CSD|✓|✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 185 -| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **R**PM>>path:#HMaximumSpeedinRPM28SR29]]|SR|QSR|CSR|✓|✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 161 +SR overwrites SD / CSR overwrites CSD and vice-versa. 162 +)))|(% style="text-align:center; width:113px" %)Max per servo 163 +| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| | LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 7)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)0 (OFF) 164 +| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| | G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 165 +| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0 166 +| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)115200 167 +| 18|//{coming soon}//| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 168 + 169 +))) 170 +| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstA0Position28Degrees29"]]| | | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)No Value 171 +| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)|(% style="text-align:center; width:113px" %) 172 +| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 173 +| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 174 +| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 175 +| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 176 +| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 177 +| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 178 +| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | | |CRC|✓| | ✓|none|(% style="width:510px" %)((( 179 +Change to RC mode 1 (position) or 2 (wheel). 180 +)))|(% style="text-align:center; width:113px" %)Serial 181 +| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 182 +| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 183 +| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 186 186 187 -|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Modifiers**>>path:#HModifiers]] 188 -| |**Description**|**Modifier**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 189 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed>>path:#HSpeed28S2CSD29modifier]]|S|QS| | |✓| |uS/s |For P action command 190 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HSpeed28S2CSD29modifier]]|SD| | | |✓| |0.1°/s|For D and MD action commands 191 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**T**imed move>>path:#HTimedmove28T29modifier]]|T| | | |✓| |ms|Modifier only for P, D and MD. Time can change based on load 192 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **H**old>>path:#HCurrentHalt26Hold28CH29modifier]]|CH| | | |✓| |mA|Modifier for D, MD, WD and WR 193 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **L**imp>>path:#HCurrentLimp28CL29modifier]]|CL| | | |✓| |mA|Modifier for D, MD, WD and WR 185 +== Advanced == 194 194 195 -|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Telemetry**>>path:#HTelemetry]] 196 -| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 197 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **V**oltage>>path:#HQueryVoltage28QV29]]| |QV| | |✓| |mV| 198 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **T**emperature>>path:#HQueryTemperature28QT29]]| |QT| | |✓| |1/10°C| 199 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **C**urrent>>path:#HQueryCurrent28QC29]]| |QC| | |✓| |mA| 200 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **M**odel **S**tring>>path:#HQueryModelString28QMS29]]| |QMS| | |✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1) 201 -| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **F**irmware Version>>path:#HQueryFirmware28QF29]]| |QF| | |✓| | | 187 +|= #|=(% style="width: 182px;" %)Description|=(% style="width: 56px;" %)Mod|=(% style="width: 70px;" %) Action|=(% style="width: 71px;" %) Query|=(% style="width: 77px;" %) Config|=(% style="width: 77px;" %)Session|=(% style="width: 56px;" %) RC|=(% style="width: 151px;" %) Serial|= Units|=(% style="width: 510px;" %) Notes 188 +| A1|(% style="width:182px" %)[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|(% style="width:56px" %) |(% style="width:70px" %)AS|(% style="width:71px" %)QAS|(% style="width:77px" %)CAS|(% style="width:77px" %)✓|(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4 189 +| A2|(% style="width:182px" %)[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|(% style="width:56px" %) |(% style="width:70px" %)AH|(% style="width:71px" %)QAH|(% style="width:77px" %)CAH|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|none (integer -10 to +10)|(% style="width:510px" %)Effect is different between serial and RC 190 +| A3|(% style="width:182px" %)[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|(% style="width:56px" %) |(% style="width:70px" %)AA|(% style="width:71px" %)QAA|(% style="width:77px" %)CAA|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared 191 +| A4|(% style="width:182px" %)[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|(% style="width:56px" %) |(% style="width:70px" %)AD|(% style="width:71px" %)QAD|(% style="width:77px" %)CAD|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared 192 +| A5|(% style="width:182px" %)[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|(% style="width:56px" %) |(% style="width:70px" %)EM|(% style="width:71px" %)QEM|(% style="width:77px" %) |(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %) ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable 193 +| A6|(% style="width:182px" %)[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]|(% style="width:56px" %) |(% style="width:70px" %) |(% style="width:71px" %)QLB|(% style="width:77px" %) CLB|(% style="width:77px" %) |(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer from 0 to 63)|(% style="width:510px" %)((( 194 +0=No blinking, 63=Always blink; 202 202 203 - |(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallinkwikiinternallinkwikiinternallinkwikiinternallinkwikiinternallink" %)**RGB LED**>>path:#HRGBLED]]204 - | |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**205 -| | [[(%class="wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallinkwikiinternallink wikiinternallink"%)**LED**Color>>path:#HLEDColor28LED29]]|LED|QLED|CLED|✓|✓||0to7integer|0=Off;1=Red;2=Green;3=Blue;4=Yellow;5=Cyan;6=Magenta;7=White206 -| | [[(%class="wikiinternallink wikiinternallinkwikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**onfigure **L**ED **B**linking>>path:#HConfigureLEDBlinking28CLB29]]|||CLB|✓|✓||0to63integer|Resetrequiredafterchange.Seecommand fordetails.196 +Blink while: 1=Limp; 2=Holding; 4=Accel; 8=Decel; 16=Free 32=Travel; 197 +))) 198 +| A7|(% style="width:182px" %)[[**C**urrent **H**alt & **H**old>>||anchor="HA7.CurrentHalt26Hold28CH29"]]|(% style="width:56px" %)CH|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR 199 +| A8|(% style="width:182px" %)[[**C**urrent **L**imp>>||anchor="HA8.CurrentLimp28CL29"]]|(% style="width:56px" %)CL|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR 207 207 208 -= Details = 201 +== Details - Basic == 209 209 210 -== CommunicationSetup ==203 +====== __1. Limp (**L**)__ ====== 211 211 212 -|(% colspan="2" %)((( 213 -====== Reset ====== 214 -))) 215 -|(% style="width:30px" %) |((( 216 -Ex: #5RESET<cr> 205 +Example: #5L<cr> 217 217 218 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HSession]], note #2 for more details. 219 -))) 207 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 220 220 221 -|(% colspan="2" %)((( 222 -====== Default & confirm ====== 223 -))) 224 -|(% style="width:30px" %) |((( 225 -Ex: #5DEFAULT<cr> 209 +====== __2. Halt & Hold (**H**)__ ====== 226 226 227 - This command sets inmotion the reset of all valuesto the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.211 +Example: #5H<cr> 228 228 229 - Ex: #5DEFAULT<cr>followedby#5CONFIRM<cr>213 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position. 230 230 231 - Sinceitit not common to haveto restore all configurations, a confirmation commandis needed after a firmware command is sent.Shouldany commandother than CONFIRM be receivedby the servo after the firmwarecommand has beenreceived,it will exit the command.215 +====== __3. Timed move (**T**) modifier__ ====== 232 232 233 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET. 234 -))) 217 +Example: #5P1500T2500<cr> 235 235 236 -|(% colspan="2" %)((( 237 -====== Update & confirm ====== 238 -))) 239 -|(% style="width:30px" %) |((( 240 -Ex: #5UPDATE<cr> 219 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 241 241 242 - This command setsinmotion theequivalent of a long buttonpress whentheservoisnotpowered inorderto enterfirmwareupdate mode.Thisis usefulshouldthebuttonbebrokenorinaccessible. Theservo thenwaitsfortheCONFIRM command.Anyother commandreceivedwillcause theservo to exittheUPDATE function.221 +Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 243 243 244 - Ex:#5UPDATE<cr>followedby#5CONFIRM<cr>223 +====== __4. Speed (**S**, **SD**) modifier__ ====== 245 245 246 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 225 +Example: #5P1500S750<cr> 226 +Example: #5D0SD180<cr> 247 247 248 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET. 249 -))) 228 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 250 250 251 -|(% colspan="2" %)((( 252 -====== Confirm ====== 253 -))) 254 -|(% style="width:30px" %) |((( 255 -Ex: #5CONFIRM<cr> 230 +Modifer (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second. 256 256 257 - This command isused to confirmchanges after a Default or Updatecommand.232 +Query Speed (**QS**) 258 258 259 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET. 260 -))) 234 +Example: #5QS<cr> might return *5QS300<cr> 261 261 262 -|(% colspan="2" %)((( 263 -====== Configure RC Mode (**CRC**) ====== 264 -))) 265 -|(% style="width:30px" %) |((( 266 -This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 236 +This command queries the current speed in microseconds per second. 267 267 268 - Ex:#5CRC1<cr>238 +====== __5. (Relative) Move in Degrees (**MD**)__ ====== 269 269 270 - Change to RC positionmode.240 +Example: #5MD123<cr> 271 271 272 - Ex:#5CRC2<cr>242 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 273 273 274 - ChangetoRC continuousrotation (wheel)mode.244 +====== __6. Origin Offset Action (**O**)__ ====== 275 275 276 -Ex: #5 CRC*<cr>246 +Example: #5O2400<cr> 277 277 278 - Where*is anyvalue otherthan1or2(or novalue):stayin smartmode248 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 279 279 280 - Ex:#5CRC2<cr>250 +[[image:LSS-servo-default.jpg]] 281 281 282 - This commandwould placethe servoinRC wheelmodeaftera RESETorpower cycle. Note thataftera RESETorpowercycle, theservowill be inRC modeand will notreplyto serial commands. Usingthecommand#5CRC<cr>or #5CRC3<cr>whichrequests that theservo remaininserial modestillrequiresa RESET command.252 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: 283 283 284 -**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-button-menu/]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe. 285 -))) 254 +[[image:LSS-servo-origin.jpg]] 286 286 287 -|(% colspan="2" %)((( 288 -====== Identification Number (**ID**) ====== 289 -))) 290 -|(% style="width:30px" %) |((( 291 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 256 +Origin Offset Query (**QO**) 292 292 293 - QueryIdentification(**QID**)258 +Example: #5QO<cr> Returns: *5QO-13 294 294 295 - EX:#254QID<cr>might return*QID5<cr>260 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero. 296 296 297 - When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to changeit. Usingthe broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively,pushing the button upon startup and temporarily settingthe servo ID to 255 will still result intheservo responding withits "real" ID.262 +Configure Origin Offset (**CO**) 298 298 299 - ConfigureID (**CID**)264 +Example: #5CO-24<cr> 300 300 301 -E x:#4CID5<cr>266 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 302 302 303 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect. 304 -))) 268 +====== __7. Angular Range (**AR**)__ ====== 305 305 306 -|(% colspan="2" %)((( 307 -====== Baud Rate ====== 308 -))) 309 -|(% style="width:30px" %) |((( 310 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200. 270 +Example: #5AR1800<cr> 311 311 312 - QueryBaud Rate (**QB**)272 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: 313 313 314 - Ex: #5QB<cr> might return *5QB115200<cr>Since the command to query the baud rate must bedone at the servo's existing baudrate, it can simply be used to confirm the CB configuration command was correctly received beforethe servo is power cycled and the new baud rate takes effect.274 +[[image:LSS-servo-default.jpg]] 315 315 316 - ConfigureBaudRate(**CB**)276 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 317 317 318 - **Important Note:** theservo's current session retains the given baudrate and the new baud rate will only take effect when the servo is power cycled / RESET.278 +[[image:LSS-servo-ar.jpg]] 319 319 320 - Ex:#5CB9600<cr>280 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range: 321 321 322 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 323 -))) 282 +[[image:LSS-servo-ar-o-1.jpg]] 324 324 325 -|(% colspan="2" %)((( 326 -====== __Automatic Baud Rate__ ====== 327 -))) 328 -|(% style="width:30px" %) |((( 329 -This option allows the LSS to listen to it's serial input and select the right baudrate automatically. 284 +Query Angular Range (**QAR**) 330 330 331 -Q ueryAutomaticBaudRate(**QABR**)286 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees. 332 332 333 - Ex: #5QABR<cr> mightreturn *5ABR0<cr>288 +Configure Angular Range (**CAR**) 334 334 335 - EnableBaud Rate(**ABR**)290 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 336 336 337 - Ex:#5QABR1<cr>292 +====== __8. Position in Pulse (**P**)__ ====== 338 338 339 -E nablebaudrate detection on first byte received after power-up.294 +Example: #5P2334<cr> 340 340 341 - Ex:#5QABR2,30<cr>Enablebaudrate detectiononfirstbyte received after power-up.If no datafor30 seconds enable detectionagain onnextbyte.296 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points. 342 342 343 -Warning: ABR doesnt work well with LSS Config at the moment. 344 -))) 298 +Query Position in Pulse (**QP**) 345 345 346 - ==Motion==300 +Example: #5QP<cr> might return *5QP2334 347 347 348 -|(% colspan="2" %)((( 349 -====== __Position in Degrees (**D**)__ ====== 350 -))) 351 -|(% style="width:30px" %) |((( 352 -Ex: #5D1456<cr> 302 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 303 +Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 353 353 354 - Thismoves the servo to an angle of 145.6degrees, where the center (0) position is centered.Negative values (ex. -176representing-17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle(absolute position)as -900, except the servo would move in a different direction.305 +====== __9. Position in Degrees (**D**)__ ====== 355 355 356 - Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above).307 +Example: #5D1456<cr> 357 357 309 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction. 310 + 311 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position. 312 + 358 358 Query Position in Degrees (**QD**) 359 359 360 -Ex: #5QD<cr> might return *5QD132<cr> 315 +Example: #5QD<cr> might return *5QD132<cr> 361 361 362 -This means the servo is located at 13.2 317 +This means the servo is located at 13.2 degrees. 363 363 364 -Query Target Position in Degrees (**QDT**) 319 +(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 320 +Query Target Position in Degrees (**QDT**) 365 365 366 366 Ex: #5QDT<cr> might return *5QDT6783<cr> 367 367 368 -The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 369 -))) 324 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 370 370 371 -|(% colspan="2" %)((( 372 -====== (Relative) Move in Degrees (**MD**) ====== 373 -))) 374 -|(% style="width:30px" %) |((( 375 -Ex: #5MD123<cr> 326 +====== __10. Wheel Mode in Degrees (**WD**)__ ====== 376 376 377 -The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 378 -))) 379 - 380 -|(% colspan="2" %)((( 381 -====== Wheel Mode in Degrees (**WD**) ====== 382 -))) 383 -|(% style="width:30px" %) |((( 384 384 Ex: #5WD90<cr> 385 385 386 386 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). ... ... @@ -390,15 +390,12 @@ 390 390 Ex: #5QWD<cr> might return *5QWD90<cr> 391 391 392 392 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 393 -))) 394 394 395 -|(% colspan="2" %)((( 396 -====== Wheel Mode in RPM (**WR**) ====== 397 -))) 398 -|(% style="width:30px" %) |((( 338 +====== __11. Wheel Mode in RPM (**WR**)__ ====== 339 + 399 399 Ex: #5WR40<cr> 400 400 401 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). 342 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). 402 402 403 403 Query Wheel Mode in RPM (**QWR**) 404 404 ... ... @@ -405,593 +405,393 @@ 405 405 Ex: #5QWR<cr> might return *5QWR40<cr> 406 406 407 407 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 408 -))) 409 409 410 -|(% colspan="2" %)((( 411 -====== Position in PWM (**P**) ====== 412 -))) 413 -|(% style="width:30px" %) |((( 414 -Ex: #5P2334<cr> 350 +====== __12. Max Speed in Degrees (**SD**)__ ====== 415 415 416 - The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>url:https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]].Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to165.1 degrees. Valid values for P are [500, 2500]. Values outside this range arecorrected / restricted to end points.352 +Ex: #5SD1800<cr> 417 417 418 - QueryPosition inPulse (**QP**)354 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 419 419 420 - Ex: #5QP<cr>mightreturn*5QP2334356 +Query Speed in Degrees (**QSD**) 421 421 422 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 423 -))) 358 +Ex: #5QSD<cr> might return *5QSD1800<cr> 424 424 425 -|(% colspan="2" %)((( 426 -====== __(Relative) Move in PWM (**M**)__ ====== 427 -))) 428 -|(% style="width:30px" %) |((( 429 -Ex: #5M1500<cr> 360 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. 361 +If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 430 430 431 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 432 -))) 363 +|**Command sent**|**Returned value (1/10 °)** 364 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 365 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 366 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 367 +|ex: #5QSD3<cr>|Target travel speed 433 433 434 -|(% colspan="2" %)((( 435 -====== Raw Duty-cycle Move (**RDM**) ====== 436 -))) 437 -|(% style="width:30px" %) |((( 438 -Ex: #5RDM512<cr> 369 +Configure Speed in Degrees (**CSD**) 439 439 440 - Theraw duty-cycle move command (orfree move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.371 +Ex: #5CSD1800<cr> 441 441 442 - The dutyvaluesrangefrom0to1023. Negative values willrotatethe servoin theoppositedirection (forfactorydefault a negativevaluewouldbe counterclockwise).373 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 443 443 444 - QueryMove inDuty-cycle(**QMD**)375 +====== __13. Max Speed in RPM (**SR**)__ ====== 445 445 446 -Ex: #5 QMD<cr>might return *5QMD512377 +Ex: #5SD45<cr> 447 447 448 -This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 449 -))) 379 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 450 450 451 -|(% colspan="2" %)((( 452 -====== Query Status (**Q**) ====== 453 -))) 454 -|(% style="width:30px" %) |((( 455 -The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below. 381 +Query Speed in Degrees (**QSR**) 456 456 457 -Ex: #5Q<cr> might return *5Q 6<cr>383 +Ex: #5QSR<cr> might return *5QSR45<cr> 458 458 459 -w hichindicates themotorisholding aposition.460 -) ))385 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. 386 +If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 461 461 462 -|(% style="width:30px" %) |***Value returned (Q)**|**Status**|**Detailed description** 463 -| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 464 -| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 465 -| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command 466 -| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 467 -| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 468 -| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 469 -| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding) 470 -| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 471 -| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 472 -| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 473 -| |ex: *5Q10<cr>|10: Safe Mode|((( 474 -A safety limit has been exceeded (temperature, peak current or extended high current draw). 388 +|**Command sent**|**Returned value (1/10 °)** 389 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 390 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 391 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 392 +|ex: #5QSR3<cr>|Target travel speed 475 475 476 -Send a Q1 command to know which limit has been reached (described below). 477 -))) 394 +Configure Speed in RPM (**CSR**) 478 478 479 -|(% style="width:30px" %) |(% colspan="3" rowspan="1" %)If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 480 -| |***Value returned (Q1)**|**Status**|**Detailed description** 481 -| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 482 -| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 483 -| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 484 -| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 396 +Ex: #5CSR45<cr> 485 485 486 -|(% colspan="2" %)((( 487 -====== Limp (**L**) ====== 488 -))) 489 -|(% style="width:30px" %) |((( 490 -Ex: #5L<cr> 398 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 491 491 492 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 493 -))) 400 +====== __14. LED Color (**LED**)__ ====== 494 494 495 -|(% colspan="2" %)((( 496 -====== Halt & Hold (**H**) ====== 497 -))) 498 -|(% style="width:30px" %) |((( 499 -Example: #5H<cr> 402 +Ex: #5LED3<cr> 500 500 501 -This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 502 -))) 404 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. 503 503 504 -== MotionSetup==406 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White; 505 505 506 -|(% colspan="2" %)((( 507 -====== Enable Motion Profile (**EM**) ====== 508 -))) 509 -|(% style="width:30px" %) |((( 510 -EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1. 408 +Query LED Color (**QLED**) 511 511 512 -Ex: #5E M1<cr>410 +Ex: #5QLED<cr> might return *5QLED5<cr> 513 513 514 -This command enablesatrapezoidalmotionprofileforservo#5412 +This simple query returns the indicated servo's LED color. 515 515 516 - Ex:#5EM0<cr>414 +Configure LED Color (**CLED**) 517 517 518 - This command will disable the built-in trapezoidal motionprofile. As such,theservowill move at full speed tothe targetpositionusingthe D/MDaction commands.ModifierslikeSD/S or T cannotbe usedin EM0 mode. By defaulttheFilter Position Counter, or "FPC" isactive in EM0 mode to smooth out its operation. EM0 is suggested for applications where an externalcontrollerwill be determining all incremental intermediate positions of the servo'smotion, effectivelyreplacingatrajectorymanager. Topreventhaving tosendpositioncommandscontinuouslytoreachthe desired positionin EM0/FPC active(FPC >= 2),an internalpositionengine(IPE) repeats thelast position command. Notethatin EM0mode, the servo will effectively alwaysbein status: Holding (if using the query status command).416 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 519 519 520 - QueryMotionProfile (**QEM**)418 +====== __15. Gyre Rotation Direction (**G**)__ ====== 521 521 522 - Ex:#5QEM<cr>might return*5QEM1<cr>420 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 523 523 524 - This command will query the motion profile. **0:** motionprofile disabled / **1:** trapezoidal motion profile enabled.422 +Ex: #5G-1<cr> 525 525 526 - ConfigureMotionProfile (**CEM**)424 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 527 527 528 - Ex:#5CEM0<cr>426 +Query Gyre Direction (**QG**) 529 529 530 -This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 531 -))) 428 +Ex: #5QG<cr> might return *5QG-1<cr> 532 532 533 -|(% colspan="2" %)((( 534 -====== Filter Position Count (**FPC**) ====== 535 -))) 536 -|(% style="width:30px" %) |((( 537 -The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default. 430 +The value returned above means the servo is in a counter-clockwise gyration. 538 538 539 - Ex: #5FPC10<cr>432 +Configure Gyre (**CG**) 540 540 541 - Thiscommand allows the userto change the Filter Position Count value for that session.434 +Ex: #5CG-1<cr> 542 542 543 - QueryFilterPositionCount(**QFPC**)436 +This changes the gyre direction as described above and also writes to EEPROM. 544 544 545 - Ex:#5QFPC<cr>mightreturn*5QFPC10<cr>438 +====== __16. Identification Number (**ID**)__ ====== 546 546 547 - This commandwillquery theFilterPositionCount value.440 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate). 548 548 549 - ConfigureFilterPositionCount(**CFPC**)442 +Query Identification (**QID**) 550 550 551 -E x: #5CFPC10<cr>444 +EX: #254QID<cr> might return *QID5<cr> 552 552 553 -This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 554 -))) 446 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 555 555 556 -|(% colspan="2" %)((( 557 -====== Origin Offset (**O**) ====== 558 -))) 559 -|(% style="width:30px" %) |((( 560 -Ex: #5O2400<cr> 448 +Configure ID (**CID**) 561 561 562 - Thiscommand allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero.In the first image, the origin at factory offset '0' (centered).450 +Ex: #4CID5<cr> 563 563 564 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]452 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect. 565 565 566 - Inthesecond image, the origin, and the corresponding angular range (explainedbelow) have been shiftedby +240.0 degrees:454 +====== __17. Baud Rate__ ====== 567 567 568 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]456 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200. The baud rates are currently restricted to those above. 569 569 570 - Origin OffsetQuery (**QO**)458 +Query Baud Rate (**QB**) 571 571 572 -Ex: #5Q O<cr> might return *5QO-13460 +Ex: #5QB<cr> might return *5QB115200<cr> 573 573 574 - Thisallowsyouto queryngle(intenthsofdegrees)of the originnrelationtothe factoryzeroposition.Inthisexample,the neworiginisat-1.3 degreesfromthe factory zero.462 +Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect. 575 575 576 -Configure OriginOffset (**CO**)464 +Configure Baud Rate (**CB**) 577 577 578 - Ex:#5CO-24<cr>466 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET. 579 579 580 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 581 -))) 468 +Ex: #5CB9600<cr> 582 582 583 -|(% colspan="2" %)((( 584 -====== Angular Range (**AR**) ====== 585 -))) 586 -|(% style="width:30px" %) |((( 587 -Ex: #5AR1800<cr> 470 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 588 588 589 - Thiscommand allows you to temporarily change the total angular range of the servo in tenths of degrees.This applies to the Position in Pulse (P) command and RCmode. The default for (P) and RCmodeis 1800 (180.0 degreestotal, or ±90.0 degrees). The image below shows a standard-180.0 to +180.0 range, with no offset:472 +====== __18. {//Coming soon//}__ ====== 590 590 591 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]474 +Command coming soon.... 592 592 593 - Below,theangular rangeisrestricted to180.0 degrees,or -90.0 to +90.0. The center has remained unchanged.476 +====== __19. First Position (Degrees)__ ====== 594 594 595 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]478 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. 596 596 597 - Finally, the angular rangeaction command (ex. #5AR1800<cr>)and origin offsetaction command (ex. #5O-1200<cr>) are usedtomove both the centerandlimit theangularrange:480 +Query First Position in Degrees (**QFD**) 598 598 599 - [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]482 +Ex: #5QFD<cr> might return *5QFD64<cr> 600 600 601 - QueryAngularRange(**QAR**)484 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If there is no first position value stored, the reply will be DIS 602 602 603 - Ex: #5QAR<cr> might return*5AR1800,indicatingthe total angularrangeis 180.0 degrees.486 +Configure First Position in Degrees (**CFD**) 604 604 605 - ConfigureAngular Range (**CAR**)488 +Ex: #5CD64<cr> 606 606 607 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 608 -))) 490 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 609 609 610 -|(% colspan="2" %)((( 611 -====== Angular Stiffness (**AS**) ====== 612 -))) 613 -|(% style="width:30px" %) |((( 614 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units. 492 +====== __20. Query Model String (**QMS**)__ ====== 615 615 616 - Ahighervalueof "angularstiffness":494 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr> 617 617 618 -* The more torque will be applied to try to keep the desired position against external input / changes 619 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 496 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 620 620 621 - Alowervalueon the otherhand:498 +====== __21. Query Serial Number (**QN**)__ ====== 622 622 623 -* Causes a slower acceleration to the travel speed, and a slower deceleration 624 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back 500 +Ex: #5QN<cr> might return *5QN12345678<cr> 625 625 626 -The default valueforstiffnessdepending onthefirmwaremay be0or1. Greatervaluesproduceincreasinglyerraticbehaviorand the effectbecomes extremebelow -4andabove +4. Maximum valuesare-10to+10.502 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user. 627 627 628 - Ex:#5AS-2<cr>504 +====== __22. Query Firmware (**QF**)__ ====== 629 629 630 - Thisreduces the angularstiffness to -2 for that session, allowing the servo to deviatemore around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effectis desired. Upon reset, the servo willuse the value stored inmemory, based on the lastconfiguration command.506 +Ex: #5QF<cr> might return *5QF411<cr> 631 631 632 - Ex:#5QAS<cr>508 +The number in the reply represents the firmware version, in this example being 411. 633 633 634 -Quer iesthe valuebeingused.510 +====== __23. Query Status (**Q**)__ ====== 635 635 636 -Ex: #5CAS-2<cr>Writes the desired angular stiffness value to EEPROM. 637 -))) 512 +The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses. 638 638 639 -|(% colspan="2" %)((( 640 -====== Angular Holding Stiffness (**AH**) ====== 641 -))) 642 -|(% style="width:30px" %) |((( 643 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 514 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 644 644 645 -Ex: #5AH3<cr> 516 +|***Value returned (Q)**|**Status**|**Detailed description** 517 +|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 518 +|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 519 +|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely 520 +|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 521 +|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 522 +|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 523 +|ex: *5Q6<cr>|6: Holding|Keeping current position 524 +|ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 525 +|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 526 +|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 527 +|ex: *5Q10<cr>|10: Safe Mode|((( 528 +A safety limit has been exceeded (temperature, peak current or extended high current draw). 646 646 647 -This sets the holding stiffness for servo #5 to 3 for that session. 648 - 649 -Query Angular Holding Stiffness (**QAH**) 650 - 651 -Ex: #5QAH<cr> might return *5QAH3<cr> 652 - 653 -This returns the servo's angular holding stiffness value. 654 - 655 -Configure Angular Holding Stiffness (**CAH**) 656 - 657 -Ex: #5CAH2<cr> 658 - 659 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 530 +Send a Q1 command to know which limit has been reached (described below). 660 660 ))) 661 661 662 -|(% colspan="2" %)((( 663 -====== Angular Acceleration (**AA**) ====== 664 -))) 665 -|(% style="width:30px" %) |((( 666 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 533 +(% class="wikigeneratedid" %) 534 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 667 667 668 -Ex: #5AA30<cr> 536 +|***Value returned (Q1)**|**Status**|**Detailed description** 537 +|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 538 +|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 539 +|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 540 +|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 669 669 670 - Thissetsthe angular accelerationfor servo #5to 30 degreesper second squared(°/s^^2^^).542 +====== __24. Query Voltage (**QV**)__ ====== 671 671 672 -Q ueryAngularAcceleration(**QAA**)544 +Ex: #5QV<cr> might return *5QV11200<cr> 673 673 674 - Ex:#5QAA<cr>mightreturn*5QAA30<cr>546 +The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 675 675 676 - Thisreturnsthe servo's angular accelerationin degreespersecond squared(°/s^^2^^).548 +====== __25. Query Temperature (**QT**)__ ====== 677 677 678 - ConfigureAngularAcceleration(**CAA**)550 +Ex: #5QT<cr> might return *5QT564<cr> 679 679 680 - Ex:#5CAA30<cr>552 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 681 681 682 -This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 683 -))) 554 +====== __26. Query Current (**QC**)__ ====== 684 684 685 -|(% colspan="2" %)((( 686 -====== Angular Deceleration (**AD**) ====== 687 -))) 688 -|(% style="width:30px" %) |((( 689 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 556 +Ex: #5QC<cr> might return *5QC140<cr> 690 690 691 - Ex:#5AD30<cr>558 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 692 692 693 - Thissetsthe angular decelerationor servo #5 to 30 degreespersecondsquared(°/s^^2^^).560 +====== __27. Configure RC Mode (**CRC**)__ ====== 694 694 695 - QueryAngularDeceleration(**QAD**)562 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 696 696 697 -Ex: #5QAD<cr> might return *5QAD30<cr> 564 +|**Command sent**|**Note** 565 +|ex: #5CRC1<cr>|Change to RC position mode. 566 +|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 567 +|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode. 698 698 699 - Thisreturns the servo's angular deceleration in degrees per second squared (°/s^^2^^).569 +EX: #5CRC2<cr> 700 700 701 - ConfigureAngularDeceleration(**CAD**)571 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command. 702 702 703 - Ex:#5CAD30<cr>573 +Important note:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe. 704 704 705 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 706 -))) 575 +====== __28. **RESET**__ ====== 707 707 708 -|(% colspan="2" %)((( 709 -====== Gyre Direction (**G**) ====== 710 -))) 711 -|(% style="width:30px" %) |((( 712 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1. 577 +Ex: #5RESET<cr> or #5RS<cr> 713 713 714 -Ex: #5G-1<cr> 579 +This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 580 +Note: after a RESET command is received the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details. 715 715 716 - Thiscommand will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. Forexample in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30)to both servos will cause the robot to move forward or backward rather than rotate.582 +====== __29. **DEFAULT** & CONFIRM__ ====== 717 717 718 - QueryGyreDirection (**QG**)584 +Ex: #5DEFAULT<cr> 719 719 720 - Ex:#5QG<cr>might return*5QG-1<cr>586 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 721 721 722 - Thevalue returned above means the servo is in a counter-clockwise gyration. Sending a#5WR30command willrotatethe servoin a counter-clockwisegyrationat 30RPM.588 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 723 723 724 - ConfigureGyre(**CG**)590 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command. 725 725 726 - Ex:#5CG-1<cr>592 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 727 727 728 -This changes the gyre direction as described above and also writes to EEPROM. 729 -))) 594 +====== __30. **UPDATE** & CONFIRM__ ====== 730 730 731 -|(% colspan="2" %)((( 732 -====== First Position ====== 733 -))) 734 -|(% style="width:30px" %) |((( 735 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. 596 +Ex: #5UPDATE<cr> 736 736 737 - QueryFirstPosition inDegrees(**QFD**)598 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. 738 738 739 -E x: #5QFD<cr>might return*5QFD900<cr>600 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr> 740 740 741 - The reply aboveindicatesthatservowithID5hasa firstposition of90.0degrees.Ifhereis nofirstpositionvaluestored,the replywillbeDIS.602 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 742 742 743 - Configure FirstPositioninDegrees(**CFD**)604 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 744 744 745 - Ex:#5CFD900<cr>606 +== Details - Advanced == 746 746 747 -This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 748 -))) 608 +The motion controller used in serial mode is not the same as the motion controller use in RC mode. RC mode is intended to add functionality to what would be considered "normal" RC behavior based on PWM input. 749 749 750 -|(% colspan="2" %)((( 751 -====== Maximum Motor Duty (**MMD**) ====== 752 -))) 753 -|(% style="width:30px" %) |((( 754 -This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance. 610 +====== __A1. Angular Stiffness (**AS**)__ ====== 755 755 756 - Ex:#5MMD512<cr>612 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units. 757 757 758 - Thiswillsettheduty-cycleto512forservowith ID 5for that session.614 +A positive value of "angular stiffness": 759 759 760 -Query Maximum Motor Duty (**QMMD**) 616 +* The more torque will be applied to try to keep the desired position against external input / changes 617 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 761 761 762 - Ex:#5QMMDD<cr> mightreturn*5QMMD512<cr>619 +A negative value on the other hand: 763 763 764 - Thiscommand returnstheconfiguredlimitof thedutycyclevaluesent fromthe servo'sMCUto theMotorController.The defaultvalue is 1023.765 - )))621 +* Causes a slower acceleration to the travel speed, and a slower deceleration 622 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back 766 766 767 -|(% colspan="2" %)((( 768 -====== Maximum Speed in Degrees (**SD**) ====== 769 -))) 770 -|(% style="width:30px" %) |((( 771 -Ex: #5SD1800<cr> 624 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 772 772 773 - This command sets the servo's maximumspeed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. TheSD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.626 +Ex: #5AS-2<cr> 774 774 775 - QuerySpeed inDegrees(**QSD**)628 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 776 776 777 -Ex: #5QS D<cr>might return *5QSD1800<cr>630 +Ex: #5QAS<cr> 778 778 779 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 780 -))) 632 +Queries the value being used. 781 781 782 -|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)** 783 -| |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 784 -| |ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 785 -| |ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 786 -| |ex: #5QSD3<cr>|Target travel speed 634 +Ex: #5CAS<cr> 787 787 788 -|(% style="width:30px" %) |((( 789 -Configure Speed in Degrees (**CSD**) 636 +Writes the desired angular stiffness value to memory. 790 790 791 - Ex:#5CSD1800<cr>638 +====== __A2. Angular Holding Stiffness (**AH**)__ ====== 792 792 793 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 794 -))) 640 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when considering altering a stiffness value, the end effect depends on the mode being tested. 795 795 796 -|(% colspan="2" %)((( 797 -====== Maximum Speed in RPM (**SR**) ====== 798 -))) 799 -|(% style="width:30px" %) |((( 800 -Ex: #5SR45<cr> 642 +Ex: #5AH3<cr> 801 801 802 -This commandsets theservo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speedfor that sessionwould be set to 45rpm. The servo's maximum speed cannot be set higherthan itsphysical limitat a givenvoltage. SR overridesCSR (describedbelow)forthatsession. Uponreset or power cycle, the servorevertstothevalue associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The lastcommand (either SR or SD) received iswhat theervo uses for that session.644 +This sets the holding stiffness for servo #5 to 3 for that session. 803 803 804 -Query Speed inRPM(**QSR**)646 +Query Angular Hold Stiffness (**QAH**) 805 805 806 -Ex: #5Q SR<cr> might return *5QSR45<cr>648 +Ex: #5QAH<cr> might return *5QAH3<cr> 807 807 808 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 809 -))) 650 +This returns the servo's angular holding stiffness value. 810 810 811 -|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)** 812 -| |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 813 -| |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 814 -| |ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 815 -| |ex: #5QSR3<cr>|Target travel speed 652 +Configure Angular Hold Stiffness (**CAH**) 816 816 817 -|((( 818 -Configure Speed in RPM (**CSR**) 654 +Ex: #5CAH2<cr> 819 819 820 - Ex:#5CSR45<cr>656 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. Note that when considering altering a stiffness value, the end effect depends on the mode being tested. 821 821 822 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 823 -)))| 658 +====== __A3: Angular Acceleration (**AA**)__ ====== 824 824 825 - ==Modifiers==660 +The default value for angular acceleration is 100, which is the same as the maximum deceleration. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 826 826 827 -|(% colspan="2" %)((( 828 -====== Speed (**S**, **SD**) modifier ====== 829 -))) 830 -|(% style="width:30px" %) |((( 831 -Ex: #5P1500S750<cr> 662 +Ex: #5AA30<cr> 832 832 833 - Modifier(S) is onlyfor a position (P) action and determines the speed of the move in microseconds per second.Aspeed of 750 microseconds would cause the servoto rotate from itscurrent position to the desired position at a speed of 750 microseconds per second. This command is in placeto ensure backwards compatibility with the SSC-32 / 32U protocol.664 +Query Angular Acceleration (**QAD**) 834 834 835 -Ex: #5 D0SD180<cr>666 +Ex: #5QA<cr> might return *5QA30<cr> 836 836 837 - Modifier (SD) is onlyfor a position (D) or relative position (MD) action and determines the speed of the move in tenths of degreesper second.Aspeed modifier (SD) of 180 would cause the servoto rotate from itscurrent position to the desired absoluteorrelative positionat a speed of 18 degrees per second.668 +Configure Angular Acceleration (**CAD**) 838 838 839 - QuerySpeed (**QS**)670 +Ex: #5CA30<cr> 840 840 841 - Ex:#5QS<cr> mightreturn *5QS300<cr>672 +====== __A4: Angular Deceleration (**AD**)__ ====== 842 842 843 -This command queries the current speed in microseconds per second. 844 -))) 674 +The default value for angular deceleration is 100, which is the same as the maximum acceleration. Values between 1 and 15 have the greatest impact. 845 845 846 -|(% colspan="2" %)((( 847 -====== Timed move (**T**) modifier ====== 848 -))) 849 -|(% style="width:30px" %) |((( 850 - 676 +Ex: #5AD8<cr> 851 851 852 - Example:#5P1500T2500<cr>678 +Query Angular Deceleration (**QAD**) 853 853 854 - Timedmove can be used only as a modifier for a position (P,D, MD) actions. The units areinmilliseconds, so a timed move of 2500 milliseconds would cause the servotorotatefrom its currentposition to the desired position in 2.5seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.680 +Ex: #5QD<cr> might return *5QD8<cr> 855 855 856 -**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 857 -))) 682 +Configure Angular Deceleration (**CAD**) 858 858 859 -|(% colspan="2" %)((( 860 -====== Current Halt & Hold (**CH**) modifier ====== 861 -))) 862 -|(% style="width:30px" %) |((( 863 -Example: #5D1423CH400<cr> 684 +Ex: #5CD8<cr> 864 864 865 - Thishas servo with ID5moveto142.3 degrees but, should it detect a currentof 400mA orhigher before it reaches the desired position, willimmediatelyhalt and hold position.686 +====== __A5: Motion Control (**EM**)__ ====== 866 866 867 -This modifier can be added to the following actions: D; MD; WD; WR. 868 -))) 688 +The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller. 869 869 870 -|(% colspan="2" %)((( 871 -====== Current Limp (**CL**) modifier ====== 872 -))) 873 -|(% style="width:30px" %) |((( 874 -Example: #5D1423CL400<cr> 690 +Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used. 875 875 876 - Thishas servo with ID 5 move to 142.3degrees but, should it detect a current of400mA or higherbeforeitreaches the desired position, will immediatelygolimp.692 +====== __A6. Configure LED Blinking (**CLB**)__ ====== 877 877 878 -This modifier can be added to the following actions: D; MD; WD; WR. 879 -))) 694 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value: 880 880 881 -== Telemetry == 696 +(% style="width:195px" %) 697 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 698 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 699 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1 700 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2 701 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 702 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 703 +|(% style="width:134px" %)Free|(% style="width:58px" %)16 704 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 705 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63 882 882 883 -|(% colspan="2" %)((( 884 -====== Query Voltage (**QV**) ====== 885 -))) 886 -|(% style="width:30px" %) |((( 887 -Ex: #5QV<cr> might return *5QV11200<cr> 707 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 888 888 889 -The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V. 890 -))) 709 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 710 +Ex: #5CLB1<cr> only blink when limp (1) 711 +Ex: #5CLB2<cr> only blink when holding (2) 712 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12) 713 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48) 714 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32) 891 891 892 -|(% colspan="2" %)((( 893 -====== Query Current (**QC**) ====== 894 -))) 895 -|(% style="width:30px" %) |((( 896 - 716 +RESETTING the servo is needed. 897 897 898 - Ex:#5QC<cr> mightreturn *5QC140<cr>718 +====== __A7. Current Halt & Hold (**CH**)__ ====== 899 899 900 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 901 -))) 720 +This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR. 902 902 903 -|(% colspan="2" %)((( 904 -====== Query Model String (**QMS**) ====== 905 -))) 906 -|(% style="width:30px" %) |((( 907 - 722 +Ex: #5D1423CH400<cr> 908 908 909 - Ex:#5QMS<cr>might return*5QMSLSS-HS1<cr>724 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position. 910 910 911 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision. 912 -))) 726 +====== __A8. Current Limp (**CL**)__ ====== 913 913 914 -|(% colspan="2" %)((( 915 -====== Query Firmware (**QF**) ====== 916 -))) 917 -|(% style="width:30px" %) |((( 918 -Ex: #5QF<cr> might return *5QF368<cr> 728 +This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR. 919 919 920 - The number in the reply represents the firmware version, in this examplebeing368.730 +Ex: #5D1423CH400<cr> 921 921 922 -The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14 923 -))) 732 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp. 924 924 925 -= =RGB LED ==734 += RGB LED Patterns = 926 926 927 -|(% colspan="2" %)((( 928 -====== LED Color (**LED**) ====== 929 -))) 930 -|(% style="width:30px" %) |((( 931 - 736 +The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] 932 932 933 -Ex: #5LED3<cr> 934 - 935 -This action sets the servo's RGB LED color for that session. 936 - 937 -The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. 938 - 939 -0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White; 940 - 941 -Query LED Color (**QLED**) 942 - 943 -Ex: #5QLED<cr> might return *5QLED5<cr> 944 - 945 -This simple query returns the indicated servo's LED color. 946 - 947 -Configure LED Color (**CLED**) 948 - 949 -Ex: #5CLED3<cr> 950 - 951 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color. 952 -))) 953 - 954 -|(% colspan="2" %)((( 955 -====== Configure LED Blinking (**CLB**) ====== 956 -))) 957 -|(% style="width:30px" %) |((( 958 - 959 - 960 -This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value: 961 -))) 962 - 963 -|(% style="width:30px" %) |(% style="width:200px" %)**Blink While:**|(% style="width:50px" %)**#**| 964 -| |No blinking|0| 965 -| |Limp|1| 966 -| |Holding|2| 967 -| |Accelerating|4| 968 -| |Decelerating|8| 969 -| |Free|16| 970 -| |Travelling|32| 971 -| |Always blink|63| 972 - 973 -|(% style="width:30px" %) |((( 974 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 975 - 976 -Ex: #5CLB0 to turn off all blinking (LED always solid) 977 - 978 -Ex: #5CLB1 only blink when limp (1) 979 - 980 -Ex: #5CLB2 only blink when holding (2) 981 - 982 -Ex: #5CLB12 only blink when accel or decel (accel 4 + decel 8 = 12) 983 - 984 -Ex: #5CLB48 only blink when free or travel (free 16 + travel 32 = 48) 985 - 986 -Ex: #5CLB63 blink in all status (1 + 2 + 4 + 8 + 16 + 32) 987 - 988 -RESETTING the servo is needed. 989 -))) 990 - 991 -|(% colspan="2" style="width:30px" %)((( 992 -====== RGB LED Patterns ====== 993 -))) 994 -|(% style="width:30px" %) |((( 995 -The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-button-menu/]] 996 -))) 997 -|(% style="width:30px" %) |[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS%20-%20LED%20Patterns.png||alt="LSS - LED Patterns.png"]] 738 +[[image:LSS - LED Patterns.png]]
- LSS-Protocol-Backup-2020-05-01.zip
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.ENantel - Size
-
... ... @@ -1,1 +1,0 @@ 1 -47.4 KB - Content
- XWiki.StyleSheetExtension[0]
-
- Caching policy
-
... ... @@ -1,1 +1,0 @@ 1 -long - Code
-
... ... @@ -1,13 +1,0 @@ 1 -div.cmdcnt 2 -{ 3 - display:table-row; 4 -} 5 -div.cmdpad 6 -{ 7 - display:table-cell; 8 - padding:16px; 9 -} 10 -div.cmdtxt 11 -{ 12 - display:table-cell; 13 -} - Content Type
-
... ... @@ -1,1 +1,0 @@ 1 -CSS - Name
-
... ... @@ -1,1 +1,0 @@ 1 -DivTextIndentation - Parse content
-
... ... @@ -1,1 +1,0 @@ 1 -0 - Use this extension
-
... ... @@ -1,1 +1,0 @@ 1 -currentPage