Last modified by Eric Nantel on 2025/06/06 07:47

From version < 47.1 >
edited by Coleman Benson
on 2018/07/17 08:25
To version < 94.1 >
edited by Coleman Benson
on 2019/02/01 12:00
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -lynxmotion:LSS - Overview (DEV).WebHome
1 +Lynxmotion Smart Servo (LSS).WebHome
Tags
... ... @@ -1,1 +1,1 @@
1 -LSS|communication|protocol|programming|firmware|control
1 +LSS|communication|protocol|programming|firmware|control|LSS-Ref
Content
... ... @@ -1,12 +1,21 @@
1 -The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available.
1 +(% class="wikigeneratedid" id="HTableofContents" %)
2 +**Table of Contents**
2 2  
3 -=== Session ===
4 +{{toc depth="3"/}}
4 4  
6 += Serial Protocol Concept =
7 +
8 +The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 RC servo controller and almost everything one might expect to be able to configure for a smart servo motor is available.
9 +
10 +In order to have servos react differently when commands are sent to all servos in a serial bus, the first step a user should take is to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol.
11 +
12 +== Session ==
13 +
5 5  A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
6 6  
7 7  == Action Commands ==
8 8  
9 -Action commands are sent serially to the servo's Rx pin and must be set in the following format:
18 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
10 10  
11 11  1. Start with a number sign # (U+0023)
12 12  1. Servo ID number as an integer
... ... @@ -17,16 +17,12 @@
17 17  (((
18 18  Ex: #5PD1443<cr>
19 19  
20 -Move servo with ID #5 to a position of 144.3 degrees.
29 +This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
21 21  
22 -Action commands cannot be combined with query commands, and only one action command can be sent at a time.
31 +== Action Modifiers ==
23 23  
24 -Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page).
33 +Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is:
25 25  
26 -=== Action Modifiers ===
27 -
28 -Two commands can be used as action modifiers only: Timed Move and Speed. The format is:
29 -
30 30  1. Start with a number sign # (U+0023)
31 31  1. Servo ID number as an integer
32 32  1. Action command (one to three letters, no spaces, capital or lower case)
... ... @@ -37,18 +37,12 @@
37 37  
38 38  Ex: #5P1456T1263<cr>
39 39  
40 -Results in the servo rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds.
41 -
42 -Modified commands are command specific.
45 +This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds.
43 43  )))
44 44  
45 -(((
46 -
47 -)))
48 -
49 49  == Configuration Commands ==
50 50  
51 -Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:LSS - Overview (DEV).LSS - RC PWM.WebHome]].
50 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
52 52  
53 53  1. Start with a number sign # (U+0023)
54 54  1. Servo ID number as an integer
... ... @@ -58,15 +58,11 @@
58 58  
59 59  Ex: #5CO-50<cr>
60 60  
61 -Assigns an absolute origin offset of -5.0 degrees (with respect to factory origin) to servo #5 and changes the offset for that session to -5.0 degrees.
60 +This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.
62 62  
63 -Configuration commands are not cumulative, in that if two configurations are sent at any time, only the last configuration is used and stored.
64 -
65 -*Important Note: the one exception is the baud rate - the servo's current session retains the given baud rate. The new baud rate will only be in place when the servo is power cycled.
66 -
67 67  == Query Commands ==
68 68  
69 -Query commands are sent serially to the servo's Rx pin and must be set in the following format:
64 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
70 70  
71 71  1. Start with a number sign # (U+0023)
72 72  1. Servo ID number as an integer
... ... @@ -78,105 +78,160 @@
78 78  )))
79 79  
80 80  (((
81 -The query will return a value via the Tx pin with the following format:
76 +The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
82 82  
83 -1. Start with an asterisk (U+002A)
78 +1. Start with an asterisk * (U+002A)
84 84  1. Servo ID number as an integer
85 85  1. Query command (one to three letters, no spaces, capital letters)
86 86  1. The reported value in the units described, no decimals.
87 87  1. End with a control / carriage return '<cr>'
88 88  
84 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be:
85 +
89 89  (((
90 90  Ex: *5QD1443<cr>
91 91  )))
92 92  
93 -Indicates that servo #5 is currently at 144.3 degrees.
90 +This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees).
94 94  
95 95  **Session vs Configuration Query**
96 96  
97 -By default, the query command returns the sessions' value; should no action commands have been sent to change, it will return the value saved in EEPROM from the last configuration command.
94 +By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
98 98  
99 -In order to query the value in EEPROM, add a '1' to the query command.
96 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
100 100  
101 -Ex: #5CSR20<cr> sets the maximum speed for servo #5 to 20rpm upon RESET (explained below).
98 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
102 102  
103 -After RESET: #5SR4<cr> sets the session's speed to 4rpm.
100 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas
104 104  
105 -#5QSR<cr> would return *5QSR4<cr> which represents the value for that session.
106 -
107 107  #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
103 +
104 +== Virtual Angular Position ==
105 +
106 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
107 +
108 +[[image:LSS-servo-positions.jpg]]
109 +
110 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
111 +
112 +#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
113 +
114 +#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
115 +
116 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
117 +
118 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
119 +
120 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
121 +
122 +#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).
123 +
124 +If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified).
108 108  )))
109 109  
110 110  = Command List =
111 111  
112 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes
113 -| 1|**L**imp| L| | | | ✓| none|
114 -| 2|**H**alt & Hold| H| | | | ✓| none|
115 -| 3|**T**imed move| T| | | | ✓| milliseconds| Modifier only
116 -| 4|**S**peed| S| | | | ✓| microseconds / second| Modifier only
117 -| 5|**M**ove in **D**egrees (relative)| MD| | | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
118 -| 6|**O**rigin Offset| O| QO| CO| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
119 -| 7|**A**ngular **R**ange| AR| QAR| CAR| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
120 -| 8|Position in **P**ulse| P| QP| | | ✓| microseconds|(((
121 -See details below
129 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
130 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
131 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
132 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)
133 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds / second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)
134 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
135 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
136 +0
122 122  )))
123 -| 9|Position in **D**egrees| D| QD| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
124 -| 10|**W**heel mode in **D**egrees| WD| QWD| | | ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|
125 -| 11|**W**heel mode in **R**PM| WR| QWR| | | ✓| rpm|
126 -| 12|Max **S**peed in **D**egrees| SD| QSD| CSD| ✓| ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed
127 -| 13|Max **S**peed in **R**PM| SR| QSR| CSR| ✓| ✓| rpm|QSR: Add modifier "2" for instantaneous speed
128 -| 14|**A**ngular **S**tiffness| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4
129 -| 15|//N/A (removed)//| | | | | | |
130 -| 16|**LED** Color| LED| QLED| CLED| ✓| ✓| none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6=MAGENTA, 7=WHITE
131 -| 17|**ID** #| ID| QID| CID| | ✓| none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to
132 -| 18|**B**aud rate| B| QB| CB| | ✓| none (integer)|
133 -| 19|**G**yre direction (**G**)| G| QG| CG| ✓| ✓| none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)
134 -| 20|**F**irst Position (**P**ulse)| | QFP|CFP | ✓| ✓| none |
135 -| 21|**F**irst Position (**D**egrees)| | QFD|CFD| ✓| ✓| none |
136 -| 22|**T**arget (**D**egree) **P**osition| | QDT| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
137 -| 23|**M**odel| | QM| | | | none (integer)|
138 -| 24|Serial **N**umber| | QN| | | | none (integer)|
139 -| 25|**F**irmware version| | QF| | | | none (integer)|
140 -| 26|**Q**uery (general status)| | Q| | | ✓| none (integer from 1 to 8)| See command description for details
141 -| 27|**V**oltage| | QV| | | ✓| tenths of volt (ex 113 = 11.3V; 92 = 9.2V)|
142 -| 28|**T**emperature| | QT| | | ✓| degrees Celsius|Max temp before error: 85°C (servo goes limp)
143 -| 29|**C**urrent| | QC| | | ✓| tenths of Amps (ex 2 = 0.2A)|
144 -| 30|**RC** Mode| | |CRC| |✓| |Puts the servo into RC mode. To revert to serial mode, use the button menu.
145 -| | | | | | | | |
138 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
139 +1800
140 +)))
141 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(% style="width:510px" %)(((
142 +Inherited from SSC-32 serial protocol
143 +)))|(% style="text-align:center; width:113px" %)
144 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
145 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
146 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
147 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)(((
148 +QSD: Add modifier "2" for instantaneous speed.
146 146  
147 -= Details =
150 +SD overwrites SR / CSD overwrites CSR and vice-versa.
151 +)))|(% style="text-align:center; width:113px" %)Max per servo
152 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓| ✓|rpm|(% style="width:510px" %)(((
153 +QSR: Add modifier "2" for instantaneous speed
148 148  
149 -__1. Limp (**L**)__
155 +SR overwrites SD / CSR overwrites CSD and vice-versa.
156 +)))|(% style="text-align:center; width:113px" %)Max per servo
157 +| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
158 +| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0
159 +| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
160 +| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
161 +| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((
162 +Limp
163 +)))
164 +| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp
165 +| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
166 +| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)|(% style="width:510px" %) Recommended to determine the model|(% style="text-align:center; width:113px" %)
167 +| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)|(% style="width:510px" %) Returns a raw value representing the three model inputs (36 bit)|(% style="text-align:center; width:113px" %)
168 +| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
169 +| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
170 +| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
171 +| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
172 +| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
173 +| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
174 +| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|(% style="width:510px" %)(((
175 +CRC: Add modifier "1" for RC-position mode.
176 +CRC: Add modifier "2" for RC-wheel mode.
177 +Any other value for the modifier results in staying in smart mode.
178 +Puts the servo into RC mode. To revert to smart mode, use the button menu.
179 +)))|(% style="text-align:center; width:113px" %)Serial
180 +|31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
181 +|32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
182 +|33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
150 150  
184 +== Advanced ==
185 +
186 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
187 +| 1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS|CAS| ✓| ✓|none|(% style="width:510px" %)-4 to +4, but suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0
188 +| 2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|(% style="width:510px" %)-10 to +10, with default as 0. |(% style="text-align:center; width:113px" %)1
189 +| 3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
190 +| 4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
191 +| 5|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles|(% style="text-align:center; width:113px" %)
192 +| 6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center; width:113px" %)
193 +| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
194 +
195 +== Details ==
196 +
197 +====== __1. Limp (**L**)__ ======
198 +
151 151  Example: #5L<cr>
152 152  
153 153  This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
154 154  
155 -__2. Halt & Hold (**H**)__
203 +====== __2. Halt & Hold (**H**)__ ======
156 156  
157 157  Example: #5H<cr>
158 158  
159 159  This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position.
160 160  
161 -__3. Timed move (**T**)__
209 +====== __3. Timed move (**T**)__ ======
162 162  
163 163  Example: #5P1500T2500<cr>
164 164  
165 165  Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
166 166  
167 -__4. Speed (**S**)__
215 +Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
168 168  
217 +====== __4. Speed (**S**)__ ======
218 +
169 169  Example: #5P1500S750<cr>
170 170  
171 171  This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
172 172  
173 -__5. (Relative) Move in Degrees (**MD**)__
223 +====== __5. (Relative) Move in Degrees (**MD**)__ ======
174 174  
175 175  Example: #5MD123<cr>
176 176  
177 177  The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
178 178  
179 -__6. Origin Offset Action (**O**)__
229 +====== __6. Origin Offset Action (**O**)__ ======
180 180  
181 181  Example: #5O2400<cr>
182 182  
... ... @@ -200,7 +200,7 @@
200 200  
201 201  This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode.
202 202  
203 -__7. Angular Range (**AR**)__
253 +====== __7. Angular Range (**AR**)__ ======
204 204  
205 205  Example: #5AR1800<cr>
206 206  
... ... @@ -224,7 +224,7 @@
224 224  
225 225  This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
226 226  
227 -__8. Position in Pulse (**P**)__
277 +====== __8. Position in Pulse (**P**)__ ======
228 228  
229 229  Example: #5P2334<cr>
230 230  
... ... @@ -237,7 +237,7 @@
237 237  This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 
238 238  Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
239 239  
240 -__9. Position in Degrees (**D**)__
290 +====== __9. Position in Degrees (**D**)__ ======
241 241  
242 242  Example: #5PD1456<cr>
243 243  
... ... @@ -251,7 +251,7 @@
251 251  
252 252  This means the servo is located at 13.2 degrees.
253 253  
254 -__10. Wheel Mode in Degrees (**WD**)__
304 +====== __10. Wheel Mode in Degrees (**WD**)__ ======
255 255  
256 256  Ex: #5WD900<cr>
257 257  
... ... @@ -263,7 +263,7 @@
263 263  
264 264  The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
265 265  
266 -__11. Wheel Mode in RPM (**WR**)__
316 +====== __11. Wheel Mode in RPM (**WR**)__ ======
267 267  
268 268  Ex: #5WR40<cr>
269 269  
... ... @@ -275,7 +275,7 @@
275 275  
276 276  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
277 277  
278 -__12. Speed in Degrees (**SD**)__
328 +====== __12. Speed in Degrees (**SD**)__ ======
279 279  
280 280  Ex: #5SD1800<cr>
281 281  
... ... @@ -300,7 +300,7 @@
300 300  
301 301  Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
302 302  
303 -__13. Speed in RPM (**SR**)__
353 +====== __13. Speed in RPM (**SR**)__ ======
304 304  
305 305  Ex: #5SD45<cr>
306 306  
... ... @@ -325,7 +325,7 @@
325 325  
326 326  Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
327 327  
328 -__14. Angular Stiffness (AS)__
378 +====== __14. Angular Stiffness (**AS**)__ ======
329 329  
330 330  The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
331 331  
... ... @@ -353,12 +353,40 @@
353 353  
354 354  Writes the desired angular stiffness value to memory.
355 355  
356 -__15. N/A (removed)__
406 +====== __15. Angular Hold Stiffness (**AH**)__ ======
357 357  
358 -This command has been removed.
408 +The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
359 359  
360 -__16. RGB LED (**LED**)__
410 +Ex: #5AH3<cr>
361 361  
412 +This sets the holding stiffness for servo #5 to 3 for that session.
413 +
414 +Query Angular Hold Stiffness (**QAH**)
415 +
416 +Ex: #5QAH<cr> might return *5QAH3<cr>
417 +
418 +This returns the servo's angular holding stiffness value.
419 +
420 +Configure Angular Hold Stiffness (**CAH**)
421 +
422 +Ex: #5CAH2<cr>
423 +
424 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM
425 +
426 +====== __15b: Angular Acceleration (**AA**)__ ======
427 +
428 +{More details to come}
429 +
430 +====== __15c: Angular Deceleration (**AD**)__ ======
431 +
432 +{More details to come}
433 +
434 +====== __15d: Motion Control (**EM**)__ ======
435 +
436 +{More details to come}
437 +
438 +====== __16. RGB LED (**LED**)__ ======
439 +
362 362  Ex: #5LED3<cr>
363 363  
364 364  This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
... ... @@ -375,8 +375,22 @@
375 375  
376 376  Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
377 377  
378 -__17. Identification Number__
456 +====== __16b. Configure LED Blinking (**CLB**)__ ======
379 379  
458 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details).
459 +You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
460 +
461 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
462 +
463 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
464 +Ex: #5CLB1<cr> only blink when limp
465 +Ex: #5CLB2<cr> only blink when holding
466 +Ex: #5CLB12<cr> only blink when accel or decel
467 +Ex: #5CLB48<cr> only blink when free or travel
468 +Ex: #5CLB63<cr> blink in all status
469 +
470 +====== __17. Identification Number__ ======
471 +
380 380  A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
381 381  
382 382  Query Identification (**QID**)
... ... @@ -391,7 +391,7 @@
391 391  
392 392  Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.
393 393  
394 -__18. Baud Rate__
486 +====== __18. Baud Rate__ ======
395 395  
396 396  A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.
397 397  \*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out.
... ... @@ -404,11 +404,13 @@
404 404  
405 405  Configure Baud Rate (**CB**)
406 406  
499 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled.
500 +
407 407  Ex: #5CB9600<cr>
408 408  
409 409  Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
410 410  
411 -__19. Gyre Rotation Direction__
505 +====== __19. Gyre Rotation Direction__ ======
412 412  
413 413  "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
414 414  
... ... @@ -426,9 +426,9 @@
426 426  
427 427  This changes the gyre direction as described above and also writes to EEPROM.
428 428  
429 -__20. First / Initial Position (pulse)__
523 +====== __20. First / Initial Position (pulse)__ ======
430 430  
431 -In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for serial mode only.
525 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
432 432  
433 433  Query First Position in Pulses (**QFP**)
434 434  
... ... @@ -442,9 +442,9 @@
442 442  
443 443  This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled).
444 444  
445 -__21. First / Initial Position (Degrees)__
539 +====== __21. First / Initial Position (Degrees)__ ======
446 446  
447 -In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for serial mode only.
541 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
448 448  
449 449  Query First Position in Degrees (**QFD**)
450 450  
... ... @@ -456,33 +456,39 @@
456 456  
457 457  Ex: #5CD64<cr>
458 458  
459 -This configuration command means the servo, when set to serial mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up.
553 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up.
460 460  
461 -__22. Query Target Position in Degrees (**QDT**)__
555 +====== __22. Query Target Position in Degrees (**QDT**)__ ======
462 462  
463 463  Ex: #5QDT<cr> might return *5QDT6783<cr>
464 464  
465 465  The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
466 466  
467 -__23. Query Model (**QM**)__
561 +====== __23. Query Model String (**QMS**)__ ======
468 468  
469 -Ex: #5QM<cr> might return *5QM11<cr>
563 +Ex: #5QMS<cr> might return *5QMSLSS-HS1cr>
470 470  
471 -This reply means the servo model is 1.1, meaning high speed servo, first revision. 1=HS (high speed) 2=ST (standard) 3=HT (high torque)
565 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
472 472  
473 -__24. Query Serial Number (**QN**)__
567 +====== __23b. Query Model (**QM**)__ ======
474 474  
569 +Ex: #5QM<cr> might return *5QM68702699520cr>
570 +
571 +This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision.
572 +
573 +====== __24. Query Serial Number (**QN**)__ ======
574 +
475 475  Ex: #5QN<cr> might return *5QN~_~_<cr>
476 476  
477 477  The number in the response is the servo's serial number which is set and cannot be changed.
478 478  
479 -__25. Query Firmware (**QF**)__
579 +====== __25. Query Firmware (**QF**)__ ======
480 480  
481 481  Ex: #5QF<cr> might return *5QF11<cr>
482 482  
483 483  The integer in the reply represents the firmware version with one decimal, in this example being 1.1
484 484  
485 -__26. Query Status (**Q**)__
585 +====== __26. Query Status (**Q**)__ ======
486 486  
487 487  Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
488 488  
... ... @@ -492,44 +492,50 @@
492 492  |ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely
493 493  |ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed
494 494  |ex: *5Q4<cr>|Traveling|Moving at a stable speed
495 -|ex: *5Q5<cr>|Deccelerating|Decreasing speed towards travel speed towards rest
595 +|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position.
496 496  |ex: *5Q6<cr>|Holding|Keeping current position
497 497  |ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque
498 -|ex: *5Q8<cr>|Outside limits|More details coming soon
598 +|ex: *5Q8<cr>|Outside limits|{More details coming soon}
499 499  |ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting
500 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maxiumum duty and still cannot move (i.e.: stalled)
600 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
501 501  
502 -__27. Query Voltage (**QV**)__
602 +====== __27. Query Voltage (**QV**)__ ======
503 503  
504 -Ex: #5QV<cr> might return *5QV112<cr>
604 +Ex: #5QV<cr> might return *5QV11200<cr>
505 505  
506 506  The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
507 507  
508 -__28. Query Temperature (**QT**)__
608 +====== __28. Query Temperature (**QT**)__ ======
509 509  
510 510  Ex: #5QT<cr> might return *5QT564<cr>
511 511  
512 512  The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
513 513  
514 -__29. Query Current (**QC**)__
614 +====== __29. Query Current (**QC**)__ ======
515 515  
516 516  Ex: #5QC<cr> might return *5QC140<cr>
517 517  
518 518  The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
519 519  
520 -__20. RC Mode (**CRC**)__
620 +====== __30. RC Mode (**CRC**)__ ======
521 521  
522 -This command puts the servo into RC mode, where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into serial model only using the button menu.
622 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
523 523  
624 +|**Command sent**|**Note**
625 +|ex: #5CRC<cr>|Stay in smart mode.
626 +|ex: #5CRC1<cr>|Change to RC position mode.
627 +|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode.
628 +|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode.
629 +
524 524  EX: #5CRC<cr>
525 525  
526 -__**RESET**__
632 +====== __31. RESET__ ======
527 527  
528 528  Ex: #5RESET<cr> or #5RS<cr>
529 529  
530 530  This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
531 531  
532 -**__DEFAULT __**__& **CONFIRM**__
638 +====== __32. DEFAULT & CONFIRM__ ======
533 533  
534 534  Ex: #5DEFAULT<cr>
535 535  
... ... @@ -541,7 +541,7 @@
541 541  
542 542  Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
543 543  
544 -**__UPDATE __**__& **CONFIRM**__
650 +====== __33. UPDATE & CONFIRM__ ======
545 545  
546 546  Ex: #5UPDATE<cr>
547 547  
... ... @@ -552,23 +552,3 @@
552 552  Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
553 553  
554 554  Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
555 -
556 -=== Virtual Angular Position ===
557 -
558 -{In progress}
559 -
560 -A "virtual position" is one which allows for multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to 360.0 degrees.
561 -
562 -[[image:LSS-servo-positions.jpg]]
563 -
564 -Example: Gyre direction / rotation is positive (clockwise), and origin offset has not been modified.
565 -
566 -#1D-300<cr> The servo is commander to move to -30.0 degrees (green arrow)
567 -
568 -#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
569 -
570 -#1D-4200<cr> The servo rotates counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees and (420.0-360.0) stopping at an absolute position of 60.0 degrees, but virtual position of -420.0.
571 -
572 -Although the final position would be the same as if the servo were commanded to move to -60.0 degrees, it is in fact at -420.0 degrees.
573 -
574 -#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees, which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
XWiki.XWikiRights[0]
Allow/Deny
... ... @@ -1,0 +1,1 @@
1 +Allow
Groups
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.XWikiAdminGroup
Levels
... ... @@ -1,0 +1,1 @@
1 +view
XWiki.XWikiRights[1]
Allow/Deny
... ... @@ -1,0 +1,1 @@
1 +Allow
Groups
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiAdminGroup
Levels
... ... @@ -1,0 +1,1 @@
1 +view
XWiki.XWikiRights[2]
Allow/Deny
... ... @@ -1,0 +1,1 @@
1 +Allow
Groups
... ... @@ -1,0 +1,1 @@
1 +XWiki.Profiles (Lynxmotion).BETA Testers
Levels
... ... @@ -1,0 +1,1 @@
1 +view
Copyright RobotShop 2018