Last modified by Eric Nantel on 2025/06/06 07:47

From version < 53.1 >
edited by RB1
on 2018/09/12 08:55
To version < 94.1 >
edited by Coleman Benson
on 2019/02/01 12:00
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -lynxmotion:LSS - Overview (DEV).WebHome
1 +Lynxmotion Smart Servo (LSS).WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.RB1
1 +xwiki:XWiki.CBenson
Tags
... ... @@ -1,1 +1,1 @@
1 -LSS|communication|protocol|programming|firmware|control
1 +LSS|communication|protocol|programming|firmware|control|LSS-Ref
Content
... ... @@ -1,12 +1,21 @@
1 -The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available.
1 +(% class="wikigeneratedid" id="HTableofContents" %)
2 +**Table of Contents**
2 2  
3 -=== Session ===
4 +{{toc depth="3"/}}
4 4  
6 += Serial Protocol Concept =
7 +
8 +The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 RC servo controller and almost everything one might expect to be able to configure for a smart servo motor is available.
9 +
10 +In order to have servos react differently when commands are sent to all servos in a serial bus, the first step a user should take is to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol.
11 +
12 +== Session ==
13 +
5 5  A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
6 6  
7 7  == Action Commands ==
8 8  
9 -Action commands are sent serially to the servo's Rx pin and must be set in the following format:
18 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
10 10  
11 11  1. Start with a number sign # (U+0023)
12 12  1. Servo ID number as an integer
... ... @@ -17,16 +17,12 @@
17 17  (((
18 18  Ex: #5PD1443<cr>
19 19  
20 -Move servo with ID #5 to a position of 144.3 degrees.
29 +This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
21 21  
22 -Action commands cannot be combined with query commands, and only one action command can be sent at a time.
31 +== Action Modifiers ==
23 23  
24 -Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page).
33 +Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is:
25 25  
26 -=== Action Modifiers ===
27 -
28 -Two commands can be used as action modifiers only: Timed Move and Speed. The format is:
29 -
30 30  1. Start with a number sign # (U+0023)
31 31  1. Servo ID number as an integer
32 32  1. Action command (one to three letters, no spaces, capital or lower case)
... ... @@ -37,18 +37,12 @@
37 37  
38 38  Ex: #5P1456T1263<cr>
39 39  
40 -Results in the servo rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds.
41 -
42 -Modified commands are command specific.
45 +This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds.
43 43  )))
44 44  
45 -(((
46 -
47 -)))
48 -
49 49  == Configuration Commands ==
50 50  
51 -Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:LSS - Overview (DEV).LSS - RC PWM.WebHome]].
50 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
52 52  
53 53  1. Start with a number sign # (U+0023)
54 54  1. Servo ID number as an integer
... ... @@ -58,15 +58,11 @@
58 58  
59 59  Ex: #5CO-50<cr>
60 60  
61 -Assigns an absolute origin offset of -5.0 degrees (with respect to factory origin) to servo #5 and changes the offset for that session to -5.0 degrees.
60 +This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.
62 62  
63 -Configuration commands are not cumulative, in that if two configurations are sent at any time, only the last configuration is used and stored.
64 -
65 -*Important Note: the one exception is the baud rate - the servo's current session retains the given baud rate. The new baud rate will only be in place when the servo is power cycled.
66 -
67 67  == Query Commands ==
68 68  
69 -Query commands are sent serially to the servo's Rx pin and must be set in the following format:
64 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
70 70  
71 71  1. Start with a number sign # (U+0023)
72 72  1. Servo ID number as an integer
... ... @@ -78,110 +78,160 @@
78 78  )))
79 79  
80 80  (((
81 -The query will return a value via the Tx pin with the following format:
76 +The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
82 82  
83 -1. Start with an asterisk (U+002A)
78 +1. Start with an asterisk * (U+002A)
84 84  1. Servo ID number as an integer
85 85  1. Query command (one to three letters, no spaces, capital letters)
86 86  1. The reported value in the units described, no decimals.
87 87  1. End with a control / carriage return '<cr>'
88 88  
84 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be:
85 +
89 89  (((
90 90  Ex: *5QD1443<cr>
91 91  )))
92 92  
93 -Indicates that servo #5 is currently at 144.3 degrees.
90 +This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees).
94 94  
95 95  **Session vs Configuration Query**
96 96  
97 -By default, the query command returns the sessions' value; should no action commands have been sent to change, it will return the value saved in EEPROM from the last configuration command.
94 +By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
98 98  
99 -In order to query the value in EEPROM, add a '1' to the query command.
96 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
100 100  
101 -Ex: #5CSR20<cr> sets the maximum speed for servo #5 to 20rpm upon RESET (explained below).
98 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
102 102  
103 -After RESET: #5SR4<cr> sets the session's speed to 4rpm.
100 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas
104 104  
105 -#5QSR<cr> would return *5QSR4<cr> which represents the value for that session.
106 -
107 107  #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
103 +
104 +== Virtual Angular Position ==
105 +
106 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
107 +
108 +[[image:LSS-servo-positions.jpg]]
109 +
110 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
111 +
112 +#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
113 +
114 +#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
115 +
116 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
117 +
118 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
119 +
120 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
121 +
122 +#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).
123 +
124 +If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified).
108 108  )))
109 109  
110 110  = Command List =
111 111  
112 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes
113 -| 1|**L**imp| L| | | | ✓| none|
114 -| 2|**H**alt & Hold| H| | | | ✓| none|
115 -| 3|**T**imed move| T| | | | ✓| milliseconds| Modifier only
116 -| 4|**S**peed| S| | | | ✓| microseconds / second| Modifier only
117 -| 5|**M**ove in **D**egrees (relative)| MD| | | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
118 -| 6|**O**rigin Offset| O| QO| CO| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
119 -| 7|**A**ngular **R**ange| AR| QAR| CAR| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
120 -| 8|Position in **P**ulse| P| QP| | | ✓| microseconds|(((
121 -See details below
129 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
130 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
131 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
132 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)
133 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds / second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)
134 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
135 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
136 +0
122 122  )))
123 -| 9|Position in **D**egrees| D| QD| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
124 -| 10|**W**heel mode in **D**egrees| WD| QWD| | | ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|
125 -| 11|**W**heel mode in **R**PM| WR| QWR| | | ✓| rpm|
126 -| 12|Max **S**peed in **D**egrees| SD| QSD| CSD| ✓| ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed
127 -| 13|Max **S**peed in **R**PM| SR| QSR| CSR| ✓| ✓| rpm|QSR: Add modifier "2" for instantaneous speed
128 -| 14|**A**ngular **S**tiffness| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4
129 -| 15|//N/A (removed)//| | | | | | |
130 -| 16|**LED** Color| LED| QLED| CLED| ✓| ✓| none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6=MAGENTA, 7=WHITE
131 -| 17|**ID** #| | QID| CID| | ✓| none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to
132 -| 18|**B**aud rate| B| QB| CB| | ✓| none (integer)|
133 -| 19|**G**yre direction (**G**)| G| QG| CG| ✓| ✓| none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)
134 -| 20|**F**irst Position (**P**ulse)| | QFP|CFP | ✓| ✓| none |
135 -| 21|**F**irst Position (**D**egrees)| | QFD|CFD| ✓| ✓| none |
136 -| 22|**T**arget (**D**egree) **P**osition| | QDT| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
137 -| 23|**M**odel| | QM| | | | none (integer)|
138 -| 24|Serial **N**umber| | QN| | | | none (integer)|
139 -| 25|**F**irmware version| | QF| | | | none (integer)|
140 -| 26|**Q**uery (general status)| | Q| | | ✓| none (integer from 1 to 8)| See command description for details
141 -| 27|**V**oltage| | QV| | | ✓| tenths of volt (ex 113 = 11.3V; 92 = 9.2V)|
142 -| 28|**T**emperature| | QT| | | ✓| degrees Celsius|Max temp before error: 85°C (servo goes limp)
143 -| 29|**C**urrent| | QC| | | ✓| tenths of Amps (ex 2 = 0.2A)|
144 -| 30|**RC** Mode| | |CRC| |✓| |(((
138 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
139 +1800
140 +)))
141 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(% style="width:510px" %)(((
142 +Inherited from SSC-32 serial protocol
143 +)))|(% style="text-align:center; width:113px" %)
144 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
145 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
146 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
147 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)(((
148 +QSD: Add modifier "2" for instantaneous speed.
149 +
150 +SD overwrites SR / CSD overwrites CSR and vice-versa.
151 +)))|(% style="text-align:center; width:113px" %)Max per servo
152 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓| ✓|rpm|(% style="width:510px" %)(((
153 +QSR: Add modifier "2" for instantaneous speed
154 +
155 +SR overwrites SD / CSR overwrites CSD and vice-versa.
156 +)))|(% style="text-align:center; width:113px" %)Max per servo
157 +| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
158 +| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0
159 +| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
160 +| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
161 +| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((
162 +Limp
163 +)))
164 +| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp
165 +| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
166 +| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)|(% style="width:510px" %) Recommended to determine the model|(% style="text-align:center; width:113px" %)
167 +| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)|(% style="width:510px" %) Returns a raw value representing the three model inputs (36 bit)|(% style="text-align:center; width:113px" %)
168 +| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
169 +| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
170 +| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
171 +| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
172 +| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
173 +| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
174 +| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|(% style="width:510px" %)(((
145 145  CRC: Add modifier "1" for RC-position mode.
146 146  CRC: Add modifier "2" for RC-wheel mode.
147 147  Any other value for the modifier results in staying in smart mode.
148 148  Puts the servo into RC mode. To revert to smart mode, use the button menu.
149 -)))
150 -| | | | | | | | |
179 +)))|(% style="text-align:center; width:113px" %)Serial
180 +|31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
181 +|32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
182 +|33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
151 151  
152 -= Details =
184 +== Advanced ==
153 153  
154 -__1. Limp (**L**)__
186 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
187 +| 1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS|CAS| ✓| ✓|none|(% style="width:510px" %)-4 to +4, but suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0
188 +| 2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|(% style="width:510px" %)-10 to +10, with default as 0. |(% style="text-align:center; width:113px" %)1
189 +| 3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
190 +| 4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
191 +| 5|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles|(% style="text-align:center; width:113px" %)
192 +| 6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center; width:113px" %)
193 +| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
155 155  
195 +== Details ==
196 +
197 +====== __1. Limp (**L**)__ ======
198 +
156 156  Example: #5L<cr>
157 157  
158 158  This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
159 159  
160 -__2. Halt & Hold (**H**)__
203 +====== __2. Halt & Hold (**H**)__ ======
161 161  
162 162  Example: #5H<cr>
163 163  
164 164  This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position.
165 165  
166 -__3. Timed move (**T**)__
209 +====== __3. Timed move (**T**)__ ======
167 167  
168 168  Example: #5P1500T2500<cr>
169 169  
170 170  Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
171 171  
172 -__4. Speed (**S**)__
215 +Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
173 173  
217 +====== __4. Speed (**S**)__ ======
218 +
174 174  Example: #5P1500S750<cr>
175 175  
176 176  This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
177 177  
178 -__5. (Relative) Move in Degrees (**MD**)__
223 +====== __5. (Relative) Move in Degrees (**MD**)__ ======
179 179  
180 180  Example: #5MD123<cr>
181 181  
182 182  The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
183 183  
184 -__6. Origin Offset Action (**O**)__
229 +====== __6. Origin Offset Action (**O**)__ ======
185 185  
186 186  Example: #5O2400<cr>
187 187  
... ... @@ -205,7 +205,7 @@
205 205  
206 206  This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode.
207 207  
208 -__7. Angular Range (**AR**)__
253 +====== __7. Angular Range (**AR**)__ ======
209 209  
210 210  Example: #5AR1800<cr>
211 211  
... ... @@ -229,7 +229,7 @@
229 229  
230 230  This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
231 231  
232 -__8. Position in Pulse (**P**)__
277 +====== __8. Position in Pulse (**P**)__ ======
233 233  
234 234  Example: #5P2334<cr>
235 235  
... ... @@ -242,7 +242,7 @@
242 242  This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 
243 243  Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
244 244  
245 -__9. Position in Degrees (**D**)__
290 +====== __9. Position in Degrees (**D**)__ ======
246 246  
247 247  Example: #5PD1456<cr>
248 248  
... ... @@ -256,7 +256,7 @@
256 256  
257 257  This means the servo is located at 13.2 degrees.
258 258  
259 -__10. Wheel Mode in Degrees (**WD**)__
304 +====== __10. Wheel Mode in Degrees (**WD**)__ ======
260 260  
261 261  Ex: #5WD900<cr>
262 262  
... ... @@ -268,7 +268,7 @@
268 268  
269 269  The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
270 270  
271 -__11. Wheel Mode in RPM (**WR**)__
316 +====== __11. Wheel Mode in RPM (**WR**)__ ======
272 272  
273 273  Ex: #5WR40<cr>
274 274  
... ... @@ -280,7 +280,7 @@
280 280  
281 281  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
282 282  
283 -__12. Speed in Degrees (**SD**)__
328 +====== __12. Speed in Degrees (**SD**)__ ======
284 284  
285 285  Ex: #5SD1800<cr>
286 286  
... ... @@ -305,7 +305,7 @@
305 305  
306 306  Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
307 307  
308 -__13. Speed in RPM (**SR**)__
353 +====== __13. Speed in RPM (**SR**)__ ======
309 309  
310 310  Ex: #5SD45<cr>
311 311  
... ... @@ -330,7 +330,7 @@
330 330  
331 331  Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
332 332  
333 -__14. Angular Stiffness (AS)__
378 +====== __14. Angular Stiffness (**AS**)__ ======
334 334  
335 335  The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
336 336  
... ... @@ -358,12 +358,40 @@
358 358  
359 359  Writes the desired angular stiffness value to memory.
360 360  
361 -__15. N/A (removed)__
406 +====== __15. Angular Hold Stiffness (**AH**)__ ======
362 362  
363 -This command has been removed.
408 +The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
364 364  
365 -__16. RGB LED (**LED**)__
410 +Ex: #5AH3<cr>
366 366  
412 +This sets the holding stiffness for servo #5 to 3 for that session.
413 +
414 +Query Angular Hold Stiffness (**QAH**)
415 +
416 +Ex: #5QAH<cr> might return *5QAH3<cr>
417 +
418 +This returns the servo's angular holding stiffness value.
419 +
420 +Configure Angular Hold Stiffness (**CAH**)
421 +
422 +Ex: #5CAH2<cr>
423 +
424 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM
425 +
426 +====== __15b: Angular Acceleration (**AA**)__ ======
427 +
428 +{More details to come}
429 +
430 +====== __15c: Angular Deceleration (**AD**)__ ======
431 +
432 +{More details to come}
433 +
434 +====== __15d: Motion Control (**EM**)__ ======
435 +
436 +{More details to come}
437 +
438 +====== __16. RGB LED (**LED**)__ ======
439 +
367 367  Ex: #5LED3<cr>
368 368  
369 369  This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
... ... @@ -380,8 +380,22 @@
380 380  
381 381  Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
382 382  
383 -__17. Identification Number__
456 +====== __16b. Configure LED Blinking (**CLB**)__ ======
384 384  
458 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details).
459 +You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
460 +
461 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
462 +
463 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
464 +Ex: #5CLB1<cr> only blink when limp
465 +Ex: #5CLB2<cr> only blink when holding
466 +Ex: #5CLB12<cr> only blink when accel or decel
467 +Ex: #5CLB48<cr> only blink when free or travel
468 +Ex: #5CLB63<cr> blink in all status
469 +
470 +====== __17. Identification Number__ ======
471 +
385 385  A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
386 386  
387 387  Query Identification (**QID**)
... ... @@ -396,7 +396,7 @@
396 396  
397 397  Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.
398 398  
399 -__18. Baud Rate__
486 +====== __18. Baud Rate__ ======
400 400  
401 401  A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.
402 402  \*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out.
... ... @@ -409,11 +409,13 @@
409 409  
410 410  Configure Baud Rate (**CB**)
411 411  
499 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled.
500 +
412 412  Ex: #5CB9600<cr>
413 413  
414 414  Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
415 415  
416 -__19. Gyre Rotation Direction__
505 +====== __19. Gyre Rotation Direction__ ======
417 417  
418 418  "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
419 419  
... ... @@ -431,7 +431,7 @@
431 431  
432 432  This changes the gyre direction as described above and also writes to EEPROM.
433 433  
434 -__20. First / Initial Position (pulse)__
523 +====== __20. First / Initial Position (pulse)__ ======
435 435  
436 436  In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
437 437  
... ... @@ -447,7 +447,7 @@
447 447  
448 448  This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled).
449 449  
450 -__21. First / Initial Position (Degrees)__
539 +====== __21. First / Initial Position (Degrees)__ ======
451 451  
452 452  In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
453 453  
... ... @@ -463,31 +463,37 @@
463 463  
464 464  This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up.
465 465  
466 -__22. Query Target Position in Degrees (**QDT**)__
555 +====== __22. Query Target Position in Degrees (**QDT**)__ ======
467 467  
468 468  Ex: #5QDT<cr> might return *5QDT6783<cr>
469 469  
470 470  The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
471 471  
472 -__23. Query Model (**QM**)__
561 +====== __23. Query Model String (**QMS**)__ ======
473 473  
474 -Ex: #5QM<cr> might return *5QM11<cr>
563 +Ex: #5QMS<cr> might return *5QMSLSS-HS1cr>
475 475  
476 -This reply means the servo model is 1.1, meaning high speed servo, first revision. 1=HS (high speed) 2=ST (standard) 3=HT (high torque)
565 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
477 477  
478 -__24. Query Serial Number (**QN**)__
567 +====== __23b. Query Model (**QM**)__ ======
479 479  
569 +Ex: #5QM<cr> might return *5QM68702699520cr>
570 +
571 +This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision.
572 +
573 +====== __24. Query Serial Number (**QN**)__ ======
574 +
480 480  Ex: #5QN<cr> might return *5QN~_~_<cr>
481 481  
482 482  The number in the response is the servo's serial number which is set and cannot be changed.
483 483  
484 -__25. Query Firmware (**QF**)__
579 +====== __25. Query Firmware (**QF**)__ ======
485 485  
486 486  Ex: #5QF<cr> might return *5QF11<cr>
487 487  
488 488  The integer in the reply represents the firmware version with one decimal, in this example being 1.1
489 489  
490 -__26. Query Status (**Q**)__
585 +====== __26. Query Status (**Q**)__ ======
491 491  
492 492  Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
493 493  
... ... @@ -497,32 +497,32 @@
497 497  |ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely
498 498  |ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed
499 499  |ex: *5Q4<cr>|Traveling|Moving at a stable speed
500 -|ex: *5Q5<cr>|Deccelerating|Decreasing speed towards travel speed towards rest
595 +|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position.
501 501  |ex: *5Q6<cr>|Holding|Keeping current position
502 502  |ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque
503 -|ex: *5Q8<cr>|Outside limits|More details coming soon
598 +|ex: *5Q8<cr>|Outside limits|{More details coming soon}
504 504  |ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting
505 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maxiumum duty and still cannot move (i.e.: stalled)
600 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
506 506  
507 -__27. Query Voltage (**QV**)__
602 +====== __27. Query Voltage (**QV**)__ ======
508 508  
509 -Ex: #5QV<cr> might return *5QV112<cr>
604 +Ex: #5QV<cr> might return *5QV11200<cr>
510 510  
511 511  The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
512 512  
513 -__28. Query Temperature (**QT**)__
608 +====== __28. Query Temperature (**QT**)__ ======
514 514  
515 515  Ex: #5QT<cr> might return *5QT564<cr>
516 516  
517 517  The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
518 518  
519 -__29. Query Current (**QC**)__
614 +====== __29. Query Current (**QC**)__ ======
520 520  
521 521  Ex: #5QC<cr> might return *5QC140<cr>
522 522  
523 523  The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
524 524  
525 -__30. RC Mode (**CRC**)__
620 +====== __30. RC Mode (**CRC**)__ ======
526 526  
527 527  This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
528 528  
... ... @@ -534,13 +534,13 @@
534 534  
535 535  EX: #5CRC<cr>
536 536  
537 -__**RESET**__
632 +====== __31. RESET__ ======
538 538  
539 539  Ex: #5RESET<cr> or #5RS<cr>
540 540  
541 541  This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
542 542  
543 -**__DEFAULT __**__& **CONFIRM**__
638 +====== __32. DEFAULT & CONFIRM__ ======
544 544  
545 545  Ex: #5DEFAULT<cr>
546 546  
... ... @@ -552,7 +552,7 @@
552 552  
553 553  Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
554 554  
555 -**__UPDATE __**__& **CONFIRM**__
650 +====== __33. UPDATE & CONFIRM__ ======
556 556  
557 557  Ex: #5UPDATE<cr>
558 558  
... ... @@ -563,23 +563,3 @@
563 563  Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
564 564  
565 565  Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
566 -
567 -=== Virtual Angular Position ===
568 -
569 -{In progress}
570 -
571 -A "virtual position" is one which allows for multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to 360.0 degrees.
572 -
573 -[[image:LSS-servo-positions.jpg]]
574 -
575 -Example: Gyre direction / rotation is positive (clockwise), and origin offset has not been modified.
576 -
577 -#1D-300<cr> The servo is commander to move to -30.0 degrees (green arrow)
578 -
579 -#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
580 -
581 -#1D-4200<cr> The servo rotates counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees and (420.0-360.0) stopping at an absolute position of 60.0 degrees, but virtual position of -420.0.
582 -
583 -Although the final position would be the same as if the servo were commanded to move to -60.0 degrees, it is in fact at -420.0 degrees.
584 -
585 -#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees, which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
XWiki.XWikiRights[0]
Allow/Deny
... ... @@ -1,0 +1,1 @@
1 +Allow
Groups
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.XWikiAdminGroup
Levels
... ... @@ -1,0 +1,1 @@
1 +view
XWiki.XWikiRights[1]
Allow/Deny
... ... @@ -1,0 +1,1 @@
1 +Allow
Groups
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiAdminGroup
Levels
... ... @@ -1,0 +1,1 @@
1 +view
XWiki.XWikiRights[2]
Allow/Deny
... ... @@ -1,0 +1,1 @@
1 +Allow
Groups
... ... @@ -1,0 +1,1 @@
1 +XWiki.Profiles (Lynxmotion).BETA Testers
Levels
... ... @@ -1,0 +1,1 @@
1 +view
Copyright RobotShop 2018