Last modified by Eric Nantel on 2025/06/06 07:47

From version < 64.14 >
edited by RB1
on 2018/11/19 09:30
To version < 98.1 >
edited by Coleman Benson
on 2019/02/01 16:13
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -lynxmotion:LSS - Overview (DEV).WebHome
1 +Lynxmotion Smart Servo (LSS).WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.RB1
1 +xwiki:XWiki.CBenson
Tags
... ... @@ -1,1 +1,1 @@
1 -LSS|communication|protocol|programming|firmware|control
1 +LSS|communication|protocol|programming|firmware|control|LSS-Ref
Content
... ... @@ -1,16 +1,23 @@
1 +(% class="wikigeneratedid" id="HTableofContents" %)
2 +**Table of Contents**
3 +
1 1  {{toc depth="3"/}}
2 2  
3 -= Protocol concepts =
6 += Serial Protocol Concept =
4 4  
5 -The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available.
8 +The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 RC servo controller and almost everything one might expect to be able to configure for a smart servo motor is available.
6 6  
10 +In order to have servos react differently when commands are sent to all servos in a serial bus, the first step a user should take is to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol.
11 +
7 7  == Session ==
8 8  
9 9  A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
10 10  
16 +Note that for a given session, the action related to a specific commands overrides the stored value in EEPROM.
17 +
11 11  == Action Commands ==
12 12  
13 -Action commands are sent serially to the servo's Rx pin and must be set in the following format:
20 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
14 14  
15 15  1. Start with a number sign # (U+0023)
16 16  1. Servo ID number as an integer
... ... @@ -21,16 +21,12 @@
21 21  (((
22 22  Ex: #5PD1443<cr>
23 23  
24 -Move servo with ID #5 to a position of 144.3 degrees.
31 +This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
25 25  
26 -Action commands cannot be combined with query commands, and only one action command can be sent at a time.
33 +== Action Modifiers ==
27 27  
28 -Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page).
35 +Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is:
29 29  
30 -=== Action Modifiers ===
31 -
32 -Two commands can be used as action modifiers only: Timed Move and Speed. The format is:
33 -
34 34  1. Start with a number sign # (U+0023)
35 35  1. Servo ID number as an integer
36 36  1. Action command (one to three letters, no spaces, capital or lower case)
... ... @@ -41,32 +41,12 @@
41 41  
42 42  Ex: #5P1456T1263<cr>
43 43  
44 -Results in the servo rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds.
45 -
46 -Action modifiers can only be used with certain commands.
47 +This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds.
47 47  )))
48 48  
49 -== Configuration Commands ==
50 -
51 -Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:LSS - Overview (DEV).LSS - RC PWM.WebHome]].
52 -
53 -1. Start with a number sign # (U+0023)
54 -1. Servo ID number as an integer
55 -1. Configuration command (two to three letters, no spaces, capital or lower case)
56 -1. Configuration value in the correct units with no decimal
57 -1. End with a control / carriage return '<cr>'
58 -
59 -Ex: #5CO-50<cr>
60 -
61 -Assigns an absolute origin offset of -5.0 degrees (with respect to factory origin) to servo #5 and changes the offset for that session to -5.0 degrees.
62 -
63 -Configuration commands are not cumulative, in that if two configurations are sent at any time, only the last configuration is used and stored.
64 -
65 -*Important Note: the one exception is the baud rate - the servo's current session retains the given baud rate. The new baud rate will only be in place when the servo is power cycled.
66 -
67 67  == Query Commands ==
68 68  
69 -Query commands are sent serially to the servo's Rx pin and must be set in the following format:
52 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
70 70  
71 71  1. Start with a number sign # (U+0023)
72 72  1. Servo ID number as an integer
... ... @@ -78,49 +78,61 @@
78 78  )))
79 79  
80 80  (((
81 -The query will return a value via the Tx pin with the following format:
64 +The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
82 82  
83 -1. Start with an asterisk (U+002A)
66 +1. Start with an asterisk * (U+002A)
84 84  1. Servo ID number as an integer
85 85  1. Query command (one to three letters, no spaces, capital letters)
86 86  1. The reported value in the units described, no decimals.
87 87  1. End with a control / carriage return '<cr>'
88 88  
72 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be:
73 +
89 89  (((
90 90  Ex: *5QD1443<cr>
91 91  )))
92 92  
93 -Indicates that servo #5 is currently at 144.3 degrees.
78 +This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees).
94 94  
95 -**Session vs Configuration Query**
80 +== Configuration Commands ==
96 96  
97 -By default, the query command returns the sessions' value; should no action commands have been sent to change, it will return the value saved in EEPROM from the last configuration command.
82 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory aftethe servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
98 98  
99 -In order to query the value in EEPROM, add a '1' to the query command.
84 +1. Start with a number sign # (U+0023)
85 +1. Servo ID number as an integer
86 +1. Configuration command (two to three letters, no spaces, capital or lower case)
87 +1. Configuration value in the correct units with no decimal
88 +1. End with a control / carriage return '<cr>'
100 100  
101 -Ex: #5CSR20<cr> sets the maximum speed for servo #5 to 20rpm upon RESET (explained below).
90 +Ex: #5CO-50<cr>
102 102  
103 -After RESET: #5SR4<cr> sets the session's speed to 4rpm.
92 +This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.
104 104  
105 -#5QSR<cr> would return *5QSR4<cr> which represents the value for that session.
94 +**Session vs Configuration Query**
106 106  
107 -#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
96 +By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
108 108  
109 -=== Virtual Angular Position ===
98 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
110 110  
111 -{In progress}
100 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
112 112  
113 -A "virtual position" is one which allows for multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to 360.0 degrees.
102 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas
114 114  
104 +#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
105 +
106 +== Virtual Angular Position ==
107 +
108 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
109 +
115 115  [[image:LSS-servo-positions.jpg]]
116 116  
117 -Example: Gyre direction / rotation is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees.
112 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
118 118  
119 -#1D-300<cr> The servo is sent a command to move to -30.0 degrees (green arrow)
114 +#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
120 120  
121 121  #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
122 122  
123 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees stopping at an absolute position of 60.0 degrees (420.0-360.0), with a virtual position of -420.0 degrees.
118 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
124 124  
125 125  Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
126 126  
... ... @@ -133,93 +133,115 @@
133 133  
134 134  = Command List =
135 135  
136 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes
137 -| 1|**L**imp| L| | | | ✓| none|
138 -| 2|**H**alt & Hold| H| | | | ✓| none|
139 -| 3|**T**imed move| T| | | | ✓| milliseconds| Modifier only
140 -| 4|**S**peed| S| | | | ✓| microseconds / second| Modifier only
141 -| 5|**M**ove in **D**egrees (relative)| MD| | | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
142 -| 6|**O**rigin Offset| O| QO| CO| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
143 -| 7|**A**ngular **R**ange| AR| QAR| CAR| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
144 -| 8|Position in **P**ulse| P| QP| | | ✓| microseconds|(((
145 -See details below
131 +|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
132 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
133 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
134 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)
135 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)
136 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
137 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
138 +0
146 146  )))
147 -| 9|Position in **D**egrees| D| QD| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
148 -| 10|**W**heel mode in **D**egrees| WD| QWD| | | ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|
149 -| 11|**W**heel mode in **R**PM| WR| QWR| | | ✓| rpm|
150 -| 12|Max **S**peed in **D**egrees| SD| QSD| CSD| ✓| ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed
151 -| 13|Max **S**peed in **R**PM| SR| QSR| CSR| ✓| ✓| rpm|QSR: Add modifier "2" for instantaneous speed
152 -| 14|**A**ngular **S**tiffness| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4
153 -| 15|**A**ngular **H**olding Stiffness|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0.
154 -|15b|**A**ngular **A**cceleration|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared
155 -|15c|**A**ngular **D**eceleration|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared
156 -|15d|**M**otion **C**ontrol|MC|QMC| | | ✓|none|MC0 to disable motion control, MC1 to enable. Session specific
157 -| 16|**LED** Color| LED| QLED| CLED| ✓| ✓| none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6=MAGENTA, 7=WHITE
158 -| 17|**ID** #| | QID| CID| | ✓| none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to
159 -| 18|**B**aud rate| B| QB| CB| | ✓| none (integer)|
160 -| 19|**G**yre direction (**G**)| G| QG| CG| ✓| ✓| none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)
161 -| 20|**F**irst Position (**P**ulse)| | QFP|CFP | ✓| ✓| none |
162 -| 21|**F**irst Position (**D**egrees)| | QFD|CFD| ✓| ✓| none |
163 -| 22|**T**arget (**D**egree) **P**osition| | QDT| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
164 -| 23|**M**odel **String**| | QMS| | | | none (string)| Recommended to determine the model|
165 -| 23b|**M**odel| | QM| | | | none (integer)| Returns a raw value representing the three model inputs (36 bit)|
166 -| 24|Serial **N**umber| | QN| | | | none (integer)|
167 -| 25|**F**irmware version| | QF| | | | none (integer)|
168 -| 26|**Q**uery (general status)| | Q| | | ✓| none (integer from 1 to 8)| See command description for details
169 -| 27|**V**oltage| | QV| | | ✓| millivolts (ex 5936 = 5936mV = 5.936V)|
170 -| 28|**T**emperature| | QT| | | ✓| tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)
171 -| 29|**C**urrent| | QC| | | ✓| milliamps (ex 200 = 0.2A)|
172 -| 30|**RC** Mode| | |CRC| |✓|none|(((
173 -CRC: Add modifier "1" for RC-position mode.
174 -CRC: Add modifier "2" for RC-wheel mode.
175 -Any other value for the modifier results in staying in smart mode.
176 -Puts the servo into RC mode. To revert to smart mode, use the button menu.
140 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
141 +1800
177 177  )))
178 -|31|**RESET**| | | | | ✓|none|Soft reset. See command for details.
179 -|32|**DEFAULT**| | | | |✓|none|Revert to firmware default values. See command for details
180 -|33|**UPDATE**| | | | |✓|none|Update firmware. See command for details.
143 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | | ✓|microseconds|(% style="width:510px" %)(((
144 +Inherited from SSC-32 serial protocol
145 +)))|(% style="text-align:center; width:113px" %)
146 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
147 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
148 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
149 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD|✓| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)(((
150 +QSD: Add modifier "2" for instantaneous speed.
181 181  
152 +SD overwrites SR / CSD overwrites CSR and vice-versa.
153 +)))|(% style="text-align:center; width:113px" %)Max per servo
154 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
155 +QSR: Add modifier "2" for instantaneous speed
156 +
157 +SR overwrites SD / CSR overwrites CSD and vice-versa.
158 +)))|(% style="text-align:center; width:113px" %)Max per servo
159 +| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
160 +| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0
161 +| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
162 +| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
163 +| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((
164 +Limp
165 +)))
166 +| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| | ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp
167 +| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
168 +| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %)
169 +| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
170 +| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
171 +| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
172 +| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
173 +| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
174 +| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
175 +| 30a|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1| | | ✓|none|(% style="width:510px" %)(((
176 +Puts the servo into RC mode. To revert to smart mode, use the button menu.
177 +)))|(% style="text-align:center; width:113px" %)Serial
178 +| 30b|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2| | | ✓| |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
179 +| 31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
180 +| 32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
181 +| 33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
182 +
183 +== Advanced ==
184 +
185 +|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
186 +| A1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS|✓| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0
187 +| A2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH|✓| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1
188 +| A3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
189 +| A4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
190 +| A5|[[**E**nable **M**otion Control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %)
191 +| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| | ✓| |none (integer from 0 to 63)|(% style="width:510px" %)(((
192 +0=No blinking, 63=Always blink;
193 +
194 +Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
195 +)))|(% style="text-align:center; width:113px" %)
196 +
182 182  == Details ==
183 183  
184 -===== __1. Limp (**L**)__ =====
199 +====== __1. Limp (**L**)__ ======
185 185  
186 186  Example: #5L<cr>
187 187  
188 188  This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
189 189  
190 -__2. Halt & Hold (**H**)__
205 +====== __2. Halt & Hold (**H**)__ ======
191 191  
192 192  Example: #5H<cr>
193 193  
194 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position.
209 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position.
195 195  
196 -__3. Timed move (**T**)__
211 +====== __3. Timed move (**T**)__ ======
197 197  
198 198  Example: #5P1500T2500<cr>
199 199  
200 -Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
215 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
201 201  
202 -__4. Speed (**S**)__
217 +Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
203 203  
219 +====== __4. Speed (**S**)__ ======
220 +
204 204  Example: #5P1500S750<cr>
205 205  
206 206  This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
207 207  
208 -__5. (Relative) Move in Degrees (**MD**)__
225 +====== __5. (Relative) Move in Degrees (**MD**)__ ======
209 209  
210 210  Example: #5MD123<cr>
211 211  
212 212  The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
213 213  
214 -__6. Origin Offset Action (**O**)__
231 +====== __6. Origin Offset Action (**O**)__ ======
215 215  
216 216  Example: #5O2400<cr>
217 217  
218 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position. The setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. Note that for a given session, the O command overrides the CO command. In the first image, the origin at factory offset '0' (centered).
235 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
219 219  
220 220  [[image:LSS-servo-default.jpg]]
221 221  
222 -In the second image, the origina, as well as the angular range (explained below) have been shifted by 240.0 degrees:
239 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
223 223  
224 224  [[image:LSS-servo-origin.jpg]]
225 225  
... ... @@ -227,39 +227,39 @@
227 227  
228 228  Example: #5QO<cr> Returns: *5QO-13
229 229  
230 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position.
247 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
231 231  
232 232  Configure Origin Offset (**CO**)
233 233  
234 234  Example: #5CO-24<cr>
235 235  
236 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode.
253 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
237 237  
238 -__7. Angular Range (**AR**)__
255 +====== __7. Angular Range (**AR**)__ ======
239 239  
240 240  Example: #5AR1800<cr>
241 241  
242 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). In the first image,
259 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
243 243  
244 244  [[image:LSS-servo-default.jpg]]
245 245  
246 -Here, the angular range has been restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
263 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
247 247  
248 248  [[image:LSS-servo-ar.jpg]]
249 249  
250 -The angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) an be used to move both the center and limit the angular range:
267 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
251 251  
252 252  [[image:LSS-servo-ar-o-1.jpg]]
253 253  
254 254  Query Angular Range (**QAR**)
255 255  
256 -Example: #5QAR<cr> might return *5AR2756
273 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
257 257  
258 258  Configure Angular Range (**CAR**)
259 259  
260 260  This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
261 261  
262 -__8. Position in Pulse (**P**)__
279 +====== __8. Position in Pulse (**P**)__ ======
263 263  
264 264  Example: #5P2334<cr>
265 265  
... ... @@ -272,7 +272,7 @@
272 272  This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 
273 273  Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
274 274  
275 -__9. Position in Degrees (**D**)__
292 +====== __9. Position in Degrees (**D**)__ ======
276 276  
277 277  Example: #5PD1456<cr>
278 278  
... ... @@ -286,7 +286,7 @@
286 286  
287 287  This means the servo is located at 13.2 degrees.
288 288  
289 -__10. Wheel Mode in Degrees (**WD**)__
306 +====== __10. Wheel Mode in Degrees (**WD**)__ ======
290 290  
291 291  Ex: #5WD900<cr>
292 292  
... ... @@ -298,7 +298,7 @@
298 298  
299 299  The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
300 300  
301 -__11. Wheel Mode in RPM (**WR**)__
318 +====== __11. Wheel Mode in RPM (**WR**)__ ======
302 302  
303 303  Ex: #5WR40<cr>
304 304  
... ... @@ -310,7 +310,7 @@
310 310  
311 311  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
312 312  
313 -__12. Speed in Degrees (**SD**)__
330 +====== __12. Speed in Degrees (**SD**)__ ======
314 314  
315 315  Ex: #5SD1800<cr>
316 316  
... ... @@ -335,7 +335,7 @@
335 335  
336 336  Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
337 337  
338 -__13. Speed in RPM (**SR**)__
355 +====== __13. Speed in RPM (**SR**)__ ======
339 339  
340 340  Ex: #5SD45<cr>
341 341  
... ... @@ -360,7 +360,7 @@
360 360  
361 361  Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
362 362  
363 -__14. Angular Stiffness (**AS**)__
380 +====== __14. Angular Stiffness (**AS**)__ ======
364 364  
365 365  The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
366 366  
... ... @@ -388,7 +388,7 @@
388 388  
389 389  Writes the desired angular stiffness value to memory.
390 390  
391 -__15. Angular Hold Stiffness (**AH**)__
408 +====== __15. Angular Hold Stiffness (**AH**)__ ======
392 392  
393 393  The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
394 394  
... ... @@ -408,19 +408,19 @@
408 408  
409 409  This writes the angular holding stiffness of servo #5 to 2 to EEPROM
410 410  
411 -__15b: Angular Acceleration (**AA**)__
428 +====== __15b: Angular Acceleration (**AA**)__ ======
412 412  
413 413  {More details to come}
414 414  
415 -__15c: Angular Deceleration (**AD**)__
432 +====== __15c: Angular Deceleration (**AD**)__ ======
416 416  
417 417  {More details to come}
418 418  
419 -__15d: Motion Control (**MC**)__
436 +====== __15d: Motion Control (**EM**)__ ======
420 420  
421 421  {More details to come}
422 422  
423 -__16. RGB LED (**LED**)__
440 +====== __16. RGB LED (**LED**)__ ======
424 424  
425 425  Ex: #5LED3<cr>
426 426  
... ... @@ -438,8 +438,22 @@
438 438  
439 439  Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
440 440  
441 -__17. Identification Number__
458 +====== __16b. Configure LED Blinking (**CLB**)__ ======
442 442  
460 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details).
461 +You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
462 +
463 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
464 +
465 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
466 +Ex: #5CLB1<cr> only blink when limp
467 +Ex: #5CLB2<cr> only blink when holding
468 +Ex: #5CLB12<cr> only blink when accel or decel
469 +Ex: #5CLB48<cr> only blink when free or travel
470 +Ex: #5CLB63<cr> blink in all status
471 +
472 +====== __17. Identification Number__ ======
473 +
443 443  A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
444 444  
445 445  Query Identification (**QID**)
... ... @@ -454,7 +454,7 @@
454 454  
455 455  Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.
456 456  
457 -__18. Baud Rate__
488 +====== __18. Baud Rate__ ======
458 458  
459 459  A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.
460 460  \*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out.
... ... @@ -467,11 +467,13 @@
467 467  
468 468  Configure Baud Rate (**CB**)
469 469  
501 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled.
502 +
470 470  Ex: #5CB9600<cr>
471 471  
472 472  Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
473 473  
474 -__19. Gyre Rotation Direction__
507 +====== __19. Gyre Rotation Direction__ ======
475 475  
476 476  "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
477 477  
... ... @@ -489,7 +489,7 @@
489 489  
490 490  This changes the gyre direction as described above and also writes to EEPROM.
491 491  
492 -__20. First / Initial Position (pulse)__
525 +====== __20. First / Initial Position (pulse)__ ======
493 493  
494 494  In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
495 495  
... ... @@ -505,7 +505,7 @@
505 505  
506 506  This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled).
507 507  
508 -__21. First / Initial Position (Degrees)__
541 +====== __21. First / Initial Position (Degrees)__ ======
509 509  
510 510  In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
511 511  
... ... @@ -521,37 +521,37 @@
521 521  
522 522  This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up.
523 523  
524 -__22. Query Target Position in Degrees (**QDT**)__
557 +====== __22. Query Target Position in Degrees (**QDT**)__ ======
525 525  
526 526  Ex: #5QDT<cr> might return *5QDT6783<cr>
527 527  
528 528  The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
529 529  
530 -__23. Query Model String (**QMS**)__
563 +====== __23. Query Model String (**QMS**)__ ======
531 531  
532 532  Ex: #5QMS<cr> might return *5QMSLSS-HS1cr>
533 533  
534 534  This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
535 535  
536 -__23b. Query Model (**QM**)__
569 +====== __23b. Query Model (**QM**)__ ======
537 537  
538 538  Ex: #5QM<cr> might return *5QM68702699520cr>
539 539  
540 540  This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision.
541 541  
542 -__24. Query Serial Number (**QN**)__
575 +====== __24. Query Serial Number (**QN**)__ ======
543 543  
544 544  Ex: #5QN<cr> might return *5QN~_~_<cr>
545 545  
546 546  The number in the response is the servo's serial number which is set and cannot be changed.
547 547  
548 -__25. Query Firmware (**QF**)__
581 +====== __25. Query Firmware (**QF**)__ ======
549 549  
550 550  Ex: #5QF<cr> might return *5QF11<cr>
551 551  
552 552  The integer in the reply represents the firmware version with one decimal, in this example being 1.1
553 553  
554 -__26. Query Status (**Q**)__
587 +====== __26. Query Status (**Q**)__ ======
555 555  
556 556  Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
557 557  
... ... @@ -561,32 +561,32 @@
561 561  |ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely
562 562  |ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed
563 563  |ex: *5Q4<cr>|Traveling|Moving at a stable speed
564 -|ex: *5Q5<cr>|Deccelerating|Decreasing speed towards travel speed towards rest
597 +|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position.
565 565  |ex: *5Q6<cr>|Holding|Keeping current position
566 566  |ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque
567 -|ex: *5Q8<cr>|Outside limits|More details coming soon
600 +|ex: *5Q8<cr>|Outside limits|{More details coming soon}
568 568  |ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting
569 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maxiumum duty and still cannot move (i.e.: stalled)
602 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
570 570  
571 -__27. Query Voltage (**QV**)__
604 +====== __27. Query Voltage (**QV**)__ ======
572 572  
573 573  Ex: #5QV<cr> might return *5QV11200<cr>
574 574  
575 575  The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
576 576  
577 -__28. Query Temperature (**QT**)__
610 +====== __28. Query Temperature (**QT**)__ ======
578 578  
579 579  Ex: #5QT<cr> might return *5QT564<cr>
580 580  
581 581  The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
582 582  
583 -__29. Query Current (**QC**)__
616 +====== __29. Query Current (**QC**)__ ======
584 584  
585 585  Ex: #5QC<cr> might return *5QC140<cr>
586 586  
587 587  The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
588 588  
589 -__30. RC Mode (**CRC**)__
622 +====== __30. RC Mode (**CRC**)__ ======
590 590  
591 591  This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
592 592  
... ... @@ -598,13 +598,13 @@
598 598  
599 599  EX: #5CRC<cr>
600 600  
601 -__31. RESET__
634 +====== __31. RESET__ ======
602 602  
603 603  Ex: #5RESET<cr> or #5RS<cr>
604 604  
605 605  This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
606 606  
607 -__32. DEFAULT & CONFIRM__
640 +====== __32. DEFAULT & CONFIRM__ ======
608 608  
609 609  Ex: #5DEFAULT<cr>
610 610  
... ... @@ -616,7 +616,7 @@
616 616  
617 617  Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
618 618  
619 -__33. UPDATE & CONFIRM__
652 +====== __33. UPDATE & CONFIRM__ ======
620 620  
621 621  Ex: #5UPDATE<cr>
622 622  
XWiki.XWikiRights[0]
Allow/Deny
... ... @@ -1,0 +1,1 @@
1 +Allow
Groups
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.XWikiAdminGroup
Levels
... ... @@ -1,0 +1,1 @@
1 +view
XWiki.XWikiRights[1]
Allow/Deny
... ... @@ -1,0 +1,1 @@
1 +Allow
Groups
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiAdminGroup
Levels
... ... @@ -1,0 +1,1 @@
1 +view
XWiki.XWikiRights[2]
Allow/Deny
... ... @@ -1,0 +1,1 @@
1 +Allow
Groups
... ... @@ -1,0 +1,1 @@
1 +XWiki.Profiles (Lynxmotion).BETA Testers
Levels
... ... @@ -1,0 +1,1 @@
1 +view
Copyright RobotShop 2018