Last modified by Eric Nantel on 2025/06/06 07:47

From version < 72.2 >
edited by Eric Nantel
on 2019/01/08 11:45
To version < 64.15 >
edited by RB1
on 2018/11/19 09:30
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Lynxmotion Smart Servo (LSS).WebHome
1 +lynxmotion:LSS - Overview (DEV).WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.ENantel
1 +xwiki:XWiki.RB1
Content
... ... @@ -1,8 +3,6 @@
1 -= Table of Contents =
2 -
3 3  {{toc depth="3"/}}
4 4  
5 -= Protocol Concepts =
3 += Protocol concepts =
6 6  
7 7  The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available.
8 8  
... ... @@ -29,7 +29,7 @@
29 29  
30 30  Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page).
31 31  
32 -== Action Modifiers ==
30 +=== Action Modifiers ===
33 33  
34 34  Two commands can be used as action modifiers only: Timed Move and Speed. The format is:
35 35  
... ... @@ -108,7 +108,7 @@
108 108  
109 109  #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
110 110  
111 -== Virtual Angular Position ==
109 +=== Virtual Angular Position ===
112 112  
113 113  {In progress}
114 114  
... ... @@ -136,50 +136,50 @@
136 136  = Command List =
137 137  
138 138  |= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes
139 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓| none|
140 -| 2|[[**H**alt & Hold>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓| none|
141 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓| milliseconds| Modifier only
142 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓| microseconds / second| Modifier only
143 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
144 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
145 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
146 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓| microseconds|(((
137 +| 1|**L**imp| L| | | | ✓| none|
138 +| 2|**H**alt & Hold| H| | | | ✓| none|
139 +| 3|**T**imed move| T| | | | ✓| milliseconds| Modifier only
140 +| 4|**S**peed| S| | | | ✓| microseconds / second| Modifier only
141 +| 5|**M**ove in **D**egrees (relative)| MD| | | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
142 +| 6|**O**rigin Offset| O| QO| CO| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
143 +| 7|**A**ngular **R**ange| AR| QAR| CAR| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
144 +| 8|Position in **P**ulse| P| QP| | | ✓| microseconds|(((
147 147  See details below
148 148  )))
149 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
150 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|
151 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|
152 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD| CSD| ✓| ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed
153 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR| CSR| ✓| ✓| rpm|QSR: Add modifier "2" for instantaneous speed
154 -| 14|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4
155 -| 15|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0.
156 -|15b|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared
157 -|15c|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared
158 -|15d|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles
159 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓| none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6=MAGENTA, 7=WHITE
160 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓| none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to
161 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓| none (integer)|
162 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓| none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)
163 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓| none |
164 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓| none |
165 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
166 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | | none (string)| Recommended to determine the model|
167 -| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | | none (integer)| Returns a raw value representing the three model inputs (36 bit)|
168 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | | none (integer)|
169 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | | none (integer)|
170 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓| none (integer from 1 to 8)| See command description for details
171 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓| millivolts (ex 5936 = 5936mV = 5.936V)|
172 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓| tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)
173 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓| milliamps (ex 200 = 0.2A)|
174 -| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|(((
147 +| 9|Position in **D**egrees| D| QD| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
148 +| 10|**W**heel mode in **D**egrees| WD| QWD| | | ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|
149 +| 11|**W**heel mode in **R**PM| WR| QWR| | | ✓| rpm|
150 +| 12|Max **S**peed in **D**egrees| SD| QSD| CSD| ✓| ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed
151 +| 13|Max **S**peed in **R**PM| SR| QSR| CSR| ✓| ✓| rpm|QSR: Add modifier "2" for instantaneous speed
152 +| 14|**A**ngular **S**tiffness| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4
153 +| 15|**A**ngular **H**olding Stiffness|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0.
154 +|15b|**A**ngular **A**cceleration|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared
155 +|15c|**A**ngular **D**eceleration|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared
156 +|15d|**M**otion **C**ontrol|MC|QMC| | | ✓|none|MC0 to disable motion control, MC1 to enable. Session specific
157 +| 16|**LED** Color| LED| QLED| CLED| ✓| ✓| none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6=MAGENTA, 7=WHITE
158 +| 17|**ID** #| | QID| CID| | ✓| none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to
159 +| 18|**B**aud rate| B| QB| CB| | ✓| none (integer)|
160 +| 19|**G**yre direction (**G**)| G| QG| CG| ✓| ✓| none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)
161 +| 20|**F**irst Position (**P**ulse)| | QFP|CFP | ✓| ✓| none |
162 +| 21|**F**irst Position (**D**egrees)| | QFD|CFD| ✓| ✓| none |
163 +| 22|**T**arget (**D**egree) **P**osition| | QDT| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
164 +| 23|**M**odel **String**| | QMS| | | | none (string)| Recommended to determine the model|
165 +| 23b|**M**odel| | QM| | | | none (integer)| Returns a raw value representing the three model inputs (36 bit)|
166 +| 24|Serial **N**umber| | QN| | | | none (integer)|
167 +| 25|**F**irmware version| | QF| | | | none (integer)|
168 +| 26|**Q**uery (general status)| | Q| | | ✓| none (integer from 1 to 8)| See command description for details
169 +| 27|**V**oltage| | QV| | | ✓| millivolts (ex 5936 = 5936mV = 5.936V)|
170 +| 28|**T**emperature| | QT| | | ✓| tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)
171 +| 29|**C**urrent| | QC| | | ✓| milliamps (ex 200 = 0.2A)|
172 +| 30|**RC** Mode| | |CRC| |✓|none|(((
175 175  CRC: Add modifier "1" for RC-position mode.
176 176  CRC: Add modifier "2" for RC-wheel mode.
177 177  Any other value for the modifier results in staying in smart mode.
178 178  Puts the servo into RC mode. To revert to smart mode, use the button menu.
179 179  )))
180 -|31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|Soft reset. See command for details.
181 -|32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|Revert to firmware default values. See command for details
182 -|33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|Update firmware. See command for details.
178 +|31|**RESET**| | | | | ✓|none|Soft reset. See command for details.
179 +|32|**DEFAULT**| | | | |✓|none|Revert to firmware default values. See command for details
180 +|33|**UPDATE**| | | | |✓|none|Update firmware. See command for details.
183 183  
184 184  == Details ==
185 185  
... ... @@ -189,33 +189,31 @@
189 189  
190 190  This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
191 191  
192 -====== __2. Halt & Hold (**H**)__ ======
190 +__2. Halt & Hold (**H**)__
193 193  
194 194  Example: #5H<cr>
195 195  
196 196  This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position.
197 197  
198 -====== __3. Timed move (**T**)__ ======
196 +__3. Timed move (**T**)__
199 199  
200 200  Example: #5P1500T2500<cr>
201 201  
202 202  Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
203 203  
204 -Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
202 +__4. Speed (**S**)__
205 205  
206 -====== __4. Speed (**S**)__ ======
207 -
208 208  Example: #5P1500S750<cr>
209 209  
210 210  This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
211 211  
212 -====== __5. (Relative) Move in Degrees (**MD**)__ ======
208 +__5. (Relative) Move in Degrees (**MD**)__
213 213  
214 214  Example: #5MD123<cr>
215 215  
216 216  The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
217 217  
218 -====== __6. Origin Offset Action (**O**)__ ======
214 +__6. Origin Offset Action (**O**)__
219 219  
220 220  Example: #5O2400<cr>
221 221  
... ... @@ -239,7 +239,7 @@
239 239  
240 240  This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode.
241 241  
242 -====== __7. Angular Range (**AR**)__ ======
238 +__7. Angular Range (**AR**)__
243 243  
244 244  Example: #5AR1800<cr>
245 245  
... ... @@ -263,7 +263,7 @@
263 263  
264 264  This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
265 265  
266 -====== __8. Position in Pulse (**P**)__ ======
262 +__8. Position in Pulse (**P**)__
267 267  
268 268  Example: #5P2334<cr>
269 269  
... ... @@ -276,7 +276,7 @@
276 276  This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 
277 277  Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
278 278  
279 -====== __9. Position in Degrees (**D**)__ ======
275 +__9. Position in Degrees (**D**)__
280 280  
281 281  Example: #5PD1456<cr>
282 282  
... ... @@ -290,7 +290,7 @@
290 290  
291 291  This means the servo is located at 13.2 degrees.
292 292  
293 -====== __10. Wheel Mode in Degrees (**WD**)__ ======
289 +__10. Wheel Mode in Degrees (**WD**)__
294 294  
295 295  Ex: #5WD900<cr>
296 296  
... ... @@ -302,7 +302,7 @@
302 302  
303 303  The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
304 304  
305 -====== __11. Wheel Mode in RPM (**WR**)__ ======
301 +__11. Wheel Mode in RPM (**WR**)__
306 306  
307 307  Ex: #5WR40<cr>
308 308  
... ... @@ -314,7 +314,7 @@
314 314  
315 315  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
316 316  
317 -====== __12. Speed in Degrees (**SD**)__ ======
313 +__12. Speed in Degrees (**SD**)__
318 318  
319 319  Ex: #5SD1800<cr>
320 320  
... ... @@ -339,7 +339,7 @@
339 339  
340 340  Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
341 341  
342 -====== __13. Speed in RPM (**SR**)__ ======
338 +__13. Speed in RPM (**SR**)__
343 343  
344 344  Ex: #5SD45<cr>
345 345  
... ... @@ -364,7 +364,7 @@
364 364  
365 365  Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
366 366  
367 -====== __14. Angular Stiffness (**AS**)__ ======
363 +__14. Angular Stiffness (**AS**)__
368 368  
369 369  The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
370 370  
... ... @@ -392,7 +392,7 @@
392 392  
393 393  Writes the desired angular stiffness value to memory.
394 394  
395 -====== __15. Angular Hold Stiffness (**AH**)__ ======
391 +__15. Angular Hold Stiffness (**AH**)__
396 396  
397 397  The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
398 398  
... ... @@ -412,19 +412,19 @@
412 412  
413 413  This writes the angular holding stiffness of servo #5 to 2 to EEPROM
414 414  
415 -====== __15b: Angular Acceleration (**AA**)__ ======
411 +__15b: Angular Acceleration (**AA**)__
416 416  
417 417  {More details to come}
418 418  
419 -====== __15c: Angular Deceleration (**AD**)__ ======
415 +__15c: Angular Deceleration (**AD**)__
420 420  
421 421  {More details to come}
422 422  
423 -====== __15d: Motion Control (**EM**)__ ======
419 +__15d: Motion Control (**MC**)__
424 424  
425 425  {More details to come}
426 426  
427 -====== __16. RGB LED (**LED**)__ ======
423 +__16. RGB LED (**LED**)__
428 428  
429 429  Ex: #5LED3<cr>
430 430  
... ... @@ -442,7 +442,7 @@
442 442  
443 443  Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
444 444  
445 -====== __17. Identification Number__ ======
441 +__17. Identification Number__
446 446  
447 447  A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
448 448  
... ... @@ -458,7 +458,7 @@
458 458  
459 459  Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.
460 460  
461 -====== __18. Baud Rate__ ======
457 +__18. Baud Rate__
462 462  
463 463  A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.
464 464  \*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out.
... ... @@ -475,7 +475,7 @@
475 475  
476 476  Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
477 477  
478 -====== __19. Gyre Rotation Direction__ ======
474 +__19. Gyre Rotation Direction__
479 479  
480 480  "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
481 481  
... ... @@ -493,7 +493,7 @@
493 493  
494 494  This changes the gyre direction as described above and also writes to EEPROM.
495 495  
496 -====== __20. First / Initial Position (pulse)__ ======
492 +__20. First / Initial Position (pulse)__
497 497  
498 498  In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
499 499  
... ... @@ -509,7 +509,7 @@
509 509  
510 510  This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled).
511 511  
512 -====== __21. First / Initial Position (Degrees)__ ======
508 +__21. First / Initial Position (Degrees)__
513 513  
514 514  In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
515 515  
... ... @@ -525,37 +525,37 @@
525 525  
526 526  This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up.
527 527  
528 -====== __22. Query Target Position in Degrees (**QDT**)__ ======
524 +__22. Query Target Position in Degrees (**QDT**)__
529 529  
530 530  Ex: #5QDT<cr> might return *5QDT6783<cr>
531 531  
532 532  The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
533 533  
534 -====== __23. Query Model String (**QMS**)__ ======
530 +__23. Query Model String (**QMS**)__
535 535  
536 536  Ex: #5QMS<cr> might return *5QMSLSS-HS1cr>
537 537  
538 538  This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
539 539  
540 -====== __23b. Query Model (**QM**)__ ======
536 +__23b. Query Model (**QM**)__
541 541  
542 542  Ex: #5QM<cr> might return *5QM68702699520cr>
543 543  
544 544  This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision.
545 545  
546 -====== __24. Query Serial Number (**QN**)__ ======
542 +__24. Query Serial Number (**QN**)__
547 547  
548 548  Ex: #5QN<cr> might return *5QN~_~_<cr>
549 549  
550 550  The number in the response is the servo's serial number which is set and cannot be changed.
551 551  
552 -====== __25. Query Firmware (**QF**)__ ======
548 +__25. Query Firmware (**QF**)__
553 553  
554 554  Ex: #5QF<cr> might return *5QF11<cr>
555 555  
556 556  The integer in the reply represents the firmware version with one decimal, in this example being 1.1
557 557  
558 -====== __26. Query Status (**Q**)__ ======
554 +__26. Query Status (**Q**)__
559 559  
560 560  Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
561 561  
... ... @@ -565,32 +565,32 @@
565 565  |ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely
566 566  |ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed
567 567  |ex: *5Q4<cr>|Traveling|Moving at a stable speed
568 -|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position.
564 +|ex: *5Q5<cr>|Deccelerating|Decreasing speed towards travel speed towards rest
569 569  |ex: *5Q6<cr>|Holding|Keeping current position
570 570  |ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque
571 -|ex: *5Q8<cr>|Outside limits|{More details coming soon}
567 +|ex: *5Q8<cr>|Outside limits|More details coming soon
572 572  |ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting
573 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
569 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maxiumum duty and still cannot move (i.e.: stalled)
574 574  
575 -====== __27. Query Voltage (**QV**)__ ======
571 +__27. Query Voltage (**QV**)__
576 576  
577 577  Ex: #5QV<cr> might return *5QV11200<cr>
578 578  
579 579  The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
580 580  
581 -====== __28. Query Temperature (**QT**)__ ======
577 +__28. Query Temperature (**QT**)__
582 582  
583 583  Ex: #5QT<cr> might return *5QT564<cr>
584 584  
585 585  The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
586 586  
587 -====== __29. Query Current (**QC**)__ ======
583 +__29. Query Current (**QC**)__
588 588  
589 589  Ex: #5QC<cr> might return *5QC140<cr>
590 590  
591 591  The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
592 592  
593 -====== __30. RC Mode (**CRC**)__ ======
589 +__30. RC Mode (**CRC**)__
594 594  
595 595  This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
596 596  
... ... @@ -602,13 +602,13 @@
602 602  
603 603  EX: #5CRC<cr>
604 604  
605 -====== __31. RESET__ ======
601 +__31. RESET__
606 606  
607 607  Ex: #5RESET<cr> or #5RS<cr>
608 608  
609 609  This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
610 610  
611 -====== __32. DEFAULT & CONFIRM__ ======
607 +__32. DEFAULT & CONFIRM__
612 612  
613 613  Ex: #5DEFAULT<cr>
614 614  
... ... @@ -620,7 +620,7 @@
620 620  
621 621  Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
622 622  
623 -====== __33. UPDATE & CONFIRM__ ======
619 +__33. UPDATE & CONFIRM__
624 624  
625 625  Ex: #5UPDATE<cr>
626 626  
Copyright RobotShop 2018