Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (4 modified, 0 added, 0 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 - LynxmotionmartServo(LSS).WebHome1 +lynxmotion:LSS - Overview (DEV).WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -xwiki:XWiki. ENantel1 +xwiki:XWiki.RB1 - Hidden
-
... ... @@ -1,1 +1,1 @@ 1 - true1 +false - Content
-
... ... @@ -1,9 +4,6 @@ 1 -(% class="wikigeneratedid" id="HTableofContents" %) 2 -**Table of Contents** 3 - 4 4 {{toc depth="3"/}} 5 5 6 -= Protocol Concepts =3 += Protocol concepts = 7 7 8 8 The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available. 9 9 ... ... @@ -30,7 +30,7 @@ 30 30 31 31 Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page). 32 32 33 -== Action Modifiers == 30 +=== Action Modifiers === 34 34 35 35 Two commands can be used as action modifiers only: Timed Move and Speed. The format is: 36 36 ... ... @@ -51,7 +51,7 @@ 51 51 52 52 == Configuration Commands == 53 53 54 -Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:L ynxmotionSmartServo(LSS).LSS - RC PWM.WebHome]].51 +Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:LSS - Overview (DEV).LSS - RC PWM.WebHome]]. 55 55 56 56 1. Start with a number sign # (U+0023) 57 57 1. Servo ID number as an integer ... ... @@ -109,7 +109,7 @@ 109 109 110 110 #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 111 111 112 -== Virtual Angular Position == 109 +=== Virtual Angular Position === 113 113 114 114 {In progress} 115 115 ... ... @@ -137,50 +137,50 @@ 137 137 = Command List = 138 138 139 139 |= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes 140 -| 1| [[**L**imp>>||anchor="H1.Limp28L29"]]|L| | | | ✓|none|141 -| 2| [[**H**alt & Hold>>||anchor="H2.Halt26Hold28H29"]]|H| | | | ✓|none|142 -| 3| [[**T**imed move>>||anchor="H3.Timedmove28T29"]]|T| | | | ✓|milliseconds| Modifier only(P, D, MD)143 -| 4| [[**S**peed>>||anchor="H4.Speed28S29"]]|S| | | | ✓|microseconds / second| Modifier only(P)144 -| 5| [[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]|MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|145 -| 6| [[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]|O| QO| CO| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|146 -| 7| [[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]|AR| QAR| CAR| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|147 -| 8| [[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]|P| QP| | | ✓|microseconds|(((137 +| 1|**L**imp| L| | | | ✓| none| 138 +| 2|**H**alt & Hold| H| | | | ✓| none| 139 +| 3|**T**imed move| T| | | | ✓| milliseconds| Modifier only 140 +| 4|**S**peed| S| | | | ✓| microseconds / second| Modifier only 141 +| 5|**M**ove in **D**egrees (relative)| MD| | | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 142 +| 6|**O**rigin Offset| O| QO| CO| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 143 +| 7|**A**ngular **R**ange| AR| QAR| CAR| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 144 +| 8|Position in **P**ulse| P| QP| | | ✓| microseconds|((( 148 148 See details below 149 149 ))) 150 -| 9| [[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]|D| QD| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|151 -| 10| [[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]|WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|A.K.A."Speed mode" or "Continuous rotation"152 -| 11| [[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]|WR| QWR| | | ✓| rpm|A.K.A."Speed mode" or "Continuous rotation"153 -| 12| [[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]|SD| QSD| CSD| ✓| ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed154 -| 13| [[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]|SR| QSR| CSR| ✓| ✓|rpm|QSR: Add modifier "2" for instantaneous speed155 -| 14| [[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]|AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4156 -| 15| [[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0.157 -|15b| [[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared158 -|15c| [[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared159 -|15d| [[**E**nable **M**otioncontrol>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|EM0 to disable motion control,EM1 to enable. Session specific/ does not survive power cycles160 -| 16| [[**LED** Color>>||anchor="H16.RGBLED28LED29"]]|LED| QLED| CLED| ✓| ✓|none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6=MAGENTA, 7=WHITE161 -| 17| [[**ID** #>>||anchor="H17.IdentificationNumber"]]|| QID| CID| | ✓|none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to162 -| 18| [[**B**aud rate>>||anchor="H18.BaudRate"]]|B| QB| CB| | ✓|none (integer)|163 -| 19| [[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]|G| QG| CG| ✓| ✓|none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)164 -| 20| [[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]|| QFP|CFP | ✓| ✓|none |165 -| 21| [[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]|| QFD|CFD| ✓| ✓|none |166 -| 22| [[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]|| QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|167 -| 23| [[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]|| QMS| | | |none (string)| Recommended to determine the model|168 -| 23b| [[**M**odel>>||anchor="H23b.QueryModel28QM29"]]|| QM| | | |none (integer)| Returns a raw value representing the three model inputs (36 bit)|169 -| 24| [[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]|| QN| | | |none (integer)|170 -| 25| [[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]|| QF| | | |none (integer)|171 -| 26| [[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]|| Q| | | ✓|none (integer from 1 to 8)| See command description for details172 -| 27| [[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]|| QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|173 -| 28| [[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]|| QT| | | ✓|tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)174 -| 29| [[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]|| QC| | | ✓|milliamps (ex 200 = 0.2A)|175 -| 30| [[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]|| |CRC| |✓|none|(((147 +| 9|Position in **D**egrees| D| QD| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 148 +| 10|**W**heel mode in **D**egrees| WD| QWD| | | ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)| 149 +| 11|**W**heel mode in **R**PM| WR| QWR| | | ✓| rpm| 150 +| 12|Max **S**peed in **D**egrees| SD| QSD| CSD| ✓| ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed 151 +| 13|Max **S**peed in **R**PM| SR| QSR| CSR| ✓| ✓| rpm|QSR: Add modifier "2" for instantaneous speed 152 +| 14|**A**ngular **S**tiffness| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4 153 +| 15|**A**ngular **H**olding Stiffness|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0. 154 +|15b|**A**ngular **A**cceleration|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared 155 +|15c|**A**ngular **D**eceleration|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared 156 +|15d|**M**otion **C**ontrol|MC|QMC| | | ✓|none|MC0 to disable motion control, MC1 to enable. Session specific 157 +| 16|**LED** Color| LED| QLED| CLED| ✓| ✓| none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6=MAGENTA, 7=WHITE 158 +| 17|**ID** #| | QID| CID| | ✓| none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to 159 +| 18|**B**aud rate| B| QB| CB| | ✓| none (integer)| 160 +| 19|**G**yre direction (**G**)| G| QG| CG| ✓| ✓| none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise) 161 +| 20|**F**irst Position (**P**ulse)| | QFP|CFP | ✓| ✓| none | 162 +| 21|**F**irst Position (**D**egrees)| | QFD|CFD| ✓| ✓| none | 163 +| 22|**T**arget (**D**egree) **P**osition| | QDT| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 164 +| 23|**M**odel **String**| | QMS| | | | none (string)| Recommended to determine the model| 165 +| 23b|**M**odel| | QM| | | | none (integer)| Returns a raw value representing the three model inputs (36 bit)| 166 +| 24|Serial **N**umber| | QN| | | | none (integer)| 167 +| 25|**F**irmware version| | QF| | | | none (integer)| 168 +| 26|**Q**uery (general status)| | Q| | | ✓| none (integer from 1 to 8)| See command description for details 169 +| 27|**V**oltage| | QV| | | ✓| millivolts (ex 5936 = 5936mV = 5.936V)| 170 +| 28|**T**emperature| | QT| | | ✓| tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp) 171 +| 29|**C**urrent| | QC| | | ✓| milliamps (ex 200 = 0.2A)| 172 +| 30|**RC** Mode| | |CRC| |✓|none|((( 176 176 CRC: Add modifier "1" for RC-position mode. 177 177 CRC: Add modifier "2" for RC-wheel mode. 178 178 Any other value for the modifier results in staying in smart mode. 179 179 Puts the servo into RC mode. To revert to smart mode, use the button menu. 180 180 ))) 181 -|31| [[**RESET**>>||anchor="H31.RESET"]]|| | | | ✓|none|Soft reset. See command for details.182 -|32| [[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]|| | | |✓|none|Revert to firmware default values. See command for details183 -|33| [[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]|| | | |✓|none|Update firmware. See command for details.178 +|31|**RESET**| | | | | ✓|none|Soft reset. See command for details. 179 +|32|**DEFAULT**| | | | |✓|none|Revert to firmware default values. See command for details 180 +|33|**UPDATE**| | | | |✓|none|Update firmware. See command for details. 184 184 185 185 == Details == 186 186 ... ... @@ -190,33 +190,31 @@ 190 190 191 191 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 192 192 193 - ======__2. Halt & Hold (**H**)__======190 +__2. Halt & Hold (**H**)__ 194 194 195 195 Example: #5H<cr> 196 196 197 197 This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position. 198 198 199 - ======__3. Timed move (**T**)__======196 +__3. Timed move (**T**)__ 200 200 201 201 Example: #5P1500T2500<cr> 202 202 203 203 Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 204 204 205 - Note:If the calculated speedat which a servo must rotate for a timed move is greater than its maximum speed(which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.202 +__4. Speed (**S**)__ 206 206 207 -====== __4. Speed (**S**)__ ====== 208 - 209 209 Example: #5P1500S750<cr> 210 210 211 211 This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 212 212 213 - ======__5. (Relative) Move in Degrees (**MD**)__======208 +__5. (Relative) Move in Degrees (**MD**)__ 214 214 215 215 Example: #5MD123<cr> 216 216 217 217 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 218 218 219 - ======__6. Origin Offset Action (**O**)__======214 +__6. Origin Offset Action (**O**)__ 220 220 221 221 Example: #5O2400<cr> 222 222 ... ... @@ -240,7 +240,7 @@ 240 240 241 241 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. 242 242 243 - ======__7. Angular Range (**AR**)__======238 +__7. Angular Range (**AR**)__ 244 244 245 245 Example: #5AR1800<cr> 246 246 ... ... @@ -264,7 +264,7 @@ 264 264 265 265 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 266 266 267 - ======__8. Position in Pulse (**P**)__======262 +__8. Position in Pulse (**P**)__ 268 268 269 269 Example: #5P2334<cr> 270 270 ... ... @@ -277,7 +277,7 @@ 277 277 This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 278 278 Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 279 279 280 - ======__9. Position in Degrees (**D**)__======275 +__9. Position in Degrees (**D**)__ 281 281 282 282 Example: #5PD1456<cr> 283 283 ... ... @@ -291,7 +291,7 @@ 291 291 292 292 This means the servo is located at 13.2 degrees. 293 293 294 - ======__10. Wheel Mode in Degrees (**WD**)__======289 +__10. Wheel Mode in Degrees (**WD**)__ 295 295 296 296 Ex: #5WD900<cr> 297 297 ... ... @@ -303,7 +303,7 @@ 303 303 304 304 The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 305 305 306 - ======__11. Wheel Mode in RPM (**WR**)__======301 +__11. Wheel Mode in RPM (**WR**)__ 307 307 308 308 Ex: #5WR40<cr> 309 309 ... ... @@ -315,7 +315,7 @@ 315 315 316 316 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 317 317 318 - ======__12. Speed in Degrees (**SD**)__======313 +__12. Speed in Degrees (**SD**)__ 319 319 320 320 Ex: #5SD1800<cr> 321 321 ... ... @@ -340,7 +340,7 @@ 340 340 341 341 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 342 342 343 - ======__13. Speed in RPM (**SR**)__======338 +__13. Speed in RPM (**SR**)__ 344 344 345 345 Ex: #5SD45<cr> 346 346 ... ... @@ -365,7 +365,7 @@ 365 365 366 366 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 367 367 368 - ======__14. Angular Stiffness (**AS**)__======363 +__14. Angular Stiffness (**AS**)__ 369 369 370 370 The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 371 371 ... ... @@ -393,7 +393,7 @@ 393 393 394 394 Writes the desired angular stiffness value to memory. 395 395 396 - ======__15. Angular Hold Stiffness (**AH**)__======391 +__15. Angular Hold Stiffness (**AH**)__ 397 397 398 398 The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 399 399 ... ... @@ -413,19 +413,19 @@ 413 413 414 414 This writes the angular holding stiffness of servo #5 to 2 to EEPROM 415 415 416 - ======__15b: Angular Acceleration (**AA**)__======411 +__15b: Angular Acceleration (**AA**)__ 417 417 418 418 {More details to come} 419 419 420 - ======__15c: Angular Deceleration (**AD**)__======415 +__15c: Angular Deceleration (**AD**)__ 421 421 422 422 {More details to come} 423 423 424 - ======__15d: Motion Control (**EM**)__======419 +__15d: Motion Control (**MC**)__ 425 425 426 426 {More details to come} 427 427 428 - ======__16. RGB LED (**LED**)__======423 +__16. RGB LED (**LED**)__ 429 429 430 430 Ex: #5LED3<cr> 431 431 ... ... @@ -443,7 +443,7 @@ 443 443 444 444 Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 445 445 446 - ======__17. Identification Number__======441 +__17. Identification Number__ 447 447 448 448 A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 449 449 ... ... @@ -459,7 +459,7 @@ 459 459 460 460 Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. 461 461 462 - ======__18. Baud Rate__======457 +__18. Baud Rate__ 463 463 464 464 A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 465 465 \*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. ... ... @@ -476,7 +476,7 @@ 476 476 477 477 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 478 478 479 - ======__19. Gyre Rotation Direction__======474 +__19. Gyre Rotation Direction__ 480 480 481 481 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 482 482 ... ... @@ -494,7 +494,7 @@ 494 494 495 495 This changes the gyre direction as described above and also writes to EEPROM. 496 496 497 - ======__20. First / Initial Position (pulse)__======492 +__20. First / Initial Position (pulse)__ 498 498 499 499 In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 500 500 ... ... @@ -510,7 +510,7 @@ 510 510 511 511 This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 512 512 513 - ======__21. First / Initial Position (Degrees)__======508 +__21. First / Initial Position (Degrees)__ 514 514 515 515 In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 516 516 ... ... @@ -526,37 +526,37 @@ 526 526 527 527 This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up. 528 528 529 - ======__22. Query Target Position in Degrees (**QDT**)__======524 +__22. Query Target Position in Degrees (**QDT**)__ 530 530 531 531 Ex: #5QDT<cr> might return *5QDT6783<cr> 532 532 533 533 The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 534 534 535 - ======__23. Query Model String (**QMS**)__======530 +__23. Query Model String (**QMS**)__ 536 536 537 537 Ex: #5QMS<cr> might return *5QMSLSS-HS1cr> 538 538 539 539 This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 540 540 541 - ======__23b. Query Model (**QM**)__======536 +__23b. Query Model (**QM**)__ 542 542 543 543 Ex: #5QM<cr> might return *5QM68702699520cr> 544 544 545 545 This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision. 546 546 547 - ======__24. Query Serial Number (**QN**)__======542 +__24. Query Serial Number (**QN**)__ 548 548 549 549 Ex: #5QN<cr> might return *5QN~_~_<cr> 550 550 551 551 The number in the response is the servo's serial number which is set and cannot be changed. 552 552 553 - ======__25. Query Firmware (**QF**)__======548 +__25. Query Firmware (**QF**)__ 554 554 555 555 Ex: #5QF<cr> might return *5QF11<cr> 556 556 557 557 The integer in the reply represents the firmware version with one decimal, in this example being 1.1 558 558 559 - ======__26. Query Status (**Q**)__======554 +__26. Query Status (**Q**)__ 560 560 561 561 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 562 562 ... ... @@ -566,32 +566,32 @@ 566 566 |ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 567 567 |ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed 568 568 |ex: *5Q4<cr>|Traveling|Moving at a stable speed 569 -|ex: *5Q5<cr>|Decelerating|Decreasing fromtravel speed towardsfinal position.564 +|ex: *5Q5<cr>|Deccelerating|Decreasing speed towards travel speed towards rest 570 570 |ex: *5Q6<cr>|Holding|Keeping current position 571 571 |ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque 572 -|ex: *5Q8<cr>|Outside limits| {More details coming soon}567 +|ex: *5Q8<cr>|Outside limits|More details coming soon 573 573 |ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 574 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 569 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maxiumum duty and still cannot move (i.e.: stalled) 575 575 576 - ======__27. Query Voltage (**QV**)__======571 +__27. Query Voltage (**QV**)__ 577 577 578 578 Ex: #5QV<cr> might return *5QV11200<cr> 579 579 580 580 The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 581 581 582 - ======__28. Query Temperature (**QT**)__======577 +__28. Query Temperature (**QT**)__ 583 583 584 584 Ex: #5QT<cr> might return *5QT564<cr> 585 585 586 586 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 587 587 588 - ======__29. Query Current (**QC**)__======583 +__29. Query Current (**QC**)__ 589 589 590 590 Ex: #5QC<cr> might return *5QC140<cr> 591 591 592 592 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 593 593 594 - ======__30. RC Mode (**CRC**)__======589 +__30. RC Mode (**CRC**)__ 595 595 596 596 This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 597 597 ... ... @@ -603,13 +603,13 @@ 603 603 604 604 EX: #5CRC<cr> 605 605 606 - ======__31. RESET__======601 +__31. RESET__ 607 607 608 608 Ex: #5RESET<cr> or #5RS<cr> 609 609 610 610 This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 611 611 612 - ======__32. DEFAULT & CONFIRM__======607 +__32. DEFAULT & CONFIRM__ 613 613 614 614 Ex: #5DEFAULT<cr> 615 615 ... ... @@ -621,7 +621,7 @@ 621 621 622 622 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 623 623 624 - ======__33. UPDATE & CONFIRM__======619 +__33. UPDATE & CONFIRM__ 625 625 626 626 Ex: #5UPDATE<cr> 627 627