Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Summary
-
Page properties (4 modified, 0 added, 0 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 - LynxmotionmartServo(LSS).WebHome1 +lynxmotion:LSS - Overview (DEV).WebHome - Hidden
-
... ... @@ -1,1 +1,1 @@ 1 - true1 +false - Tags
-
... ... @@ -1,1 +1,1 @@ 1 -LSS|communication|protocol|programming|firmware|control |LSS-Ref1 +LSS|communication|protocol|programming|firmware|control - Content
-
... ... @@ -1,9 +4,6 @@ 1 -(% class="wikigeneratedid" id="HTableofContents" %) 2 -**Table of Contents** 3 - 4 4 {{toc depth="3"/}} 5 5 6 -= Protocol Concepts =3 += Protocol concepts = 7 7 8 8 The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available. 9 9 ... ... @@ -30,7 +30,7 @@ 30 30 31 31 Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page). 32 32 33 -== Action Modifiers == 30 +=== Action Modifiers === 34 34 35 35 Two commands can be used as action modifiers only: Timed Move and Speed. The format is: 36 36 ... ... @@ -51,7 +51,7 @@ 51 51 52 52 == Configuration Commands == 53 53 54 -Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:L ynxmotionSmartServo(LSS).LSS - RC PWM.WebHome]].51 +Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:LSS - Overview (DEV).LSS - RC PWM.WebHome]]. 55 55 56 56 1. Start with a number sign # (U+0023) 57 57 1. Servo ID number as an integer ... ... @@ -109,7 +109,7 @@ 109 109 110 110 #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 111 111 112 -== Virtual Angular Position == 109 +=== Virtual Angular Position === 113 113 114 114 {In progress} 115 115 ... ... @@ -137,51 +137,50 @@ 137 137 = Command List = 138 138 139 139 |= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes 140 -| 1| [[**L**imp>>||anchor="H1.Limp28L29"]]|L| | | | ✓|none|141 -| 2| [[**H**alt & Hold>>||anchor="H2.Halt26Hold28H29"]]|H| | | | ✓|none|142 -| 3| [[**T**imed move>>||anchor="H3.Timedmove28T29"]]|T| | | | ✓|milliseconds| Modifier only(P, D, MD)143 -| 4| [[**S**peed>>||anchor="H4.Speed28S29"]]|S| | | | ✓|microseconds / second| Modifier only(P)144 -| 5| [[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]|MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|145 -| 6| [[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]|O| QO| CO| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|146 -| 7| [[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]|AR| QAR| CAR| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|147 -| 8| [[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]|P| QP| | | ✓|microseconds|(((137 +| 1|**L**imp| L| | | | ✓| none| 138 +| 2|**H**alt & Hold| H| | | | ✓| none| 139 +| 3|**T**imed move| T| | | | ✓| milliseconds| Modifier only 140 +| 4|**S**peed| S| | | | ✓| microseconds / second| Modifier only 141 +| 5|**M**ove in **D**egrees (relative)| MD| | | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 142 +| 6|**O**rigin Offset| O| QO| CO| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 143 +| 7|**A**ngular **R**ange| AR| QAR| CAR| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 144 +| 8|Position in **P**ulse| P| QP| | | ✓| microseconds|((( 148 148 See details below 149 149 ))) 150 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 151 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|A.K.A. "Speed mode" or "Continuous rotation" 152 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|A.K.A. "Speed mode" or "Continuous rotation" 153 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD| CSD| ✓| ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed 154 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR| CSR| ✓| ✓|rpm|QSR: Add modifier "2" for instantaneous speed 155 -| 14|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4 156 -| 15|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0. 157 -|15b|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared 158 -|15c|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared 159 -|15d|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles 160 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6=MAGENTA, 7=WHITE 161 -| 16b|[[**L**ED Blinking>>||anchor="H16b.LEDBlinking"]]| | | CLB| ✓| |none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6=MAGENTA, 7=WHITE 162 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to 163 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)| 164 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise) 165 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none | 166 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none | 167 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 168 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)| Recommended to determine the model| 169 -| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)| Returns a raw value representing the three model inputs (36 bit)| 170 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)| 171 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)| 172 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)| See command description for details 173 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)| 174 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp) 175 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)| 176 -| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|((( 147 +| 9|Position in **D**egrees| D| QD| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 148 +| 10|**W**heel mode in **D**egrees| WD| QWD| | | ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)| 149 +| 11|**W**heel mode in **R**PM| WR| QWR| | | ✓| rpm| 150 +| 12|Max **S**peed in **D**egrees| SD| QSD| CSD| ✓| ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed 151 +| 13|Max **S**peed in **R**PM| SR| QSR| CSR| ✓| ✓| rpm|QSR: Add modifier "2" for instantaneous speed 152 +| 14|**A**ngular **S**tiffness| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4 153 +| 15|**A**ngular **H**olding Stiffness|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0. 154 +|15b|**A**ngular **A**cceleration|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared 155 +|15c|**A**ngular **D**eceleration|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared 156 +|15d|**M**otion **C**ontrol|MC|QMC| | | ✓|none|MC0 to disable motion control, MC1 to enable. Session specific 157 +| 16|**LED** Color| LED| QLED| CLED| ✓| ✓| none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6=MAGENTA, 7=WHITE 158 +| 17|**ID** #| | QID| CID| | ✓| none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to 159 +| 18|**B**aud rate| B| QB| CB| | ✓| none (integer)| 160 +| 19|**G**yre direction (**G**)| G| QG| CG| ✓| ✓| none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise) 161 +| 20|**F**irst Position (**P**ulse)| | QFP|CFP | ✓| ✓| none | 162 +| 21|**F**irst Position (**D**egrees)| | QFD|CFD| ✓| ✓| none | 163 +| 22|**T**arget (**D**egree) **P**osition| | QDT| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 164 +| 23|**M**odel **String**| | QMS| | | | none (string)| Recommended to determine the model| 165 +| 23b|**M**odel| | QM| | | | none (integer)| Returns a raw value representing the three model inputs (36 bit)| 166 +| 24|Serial **N**umber| | QN| | | | none (integer)| 167 +| 25|**F**irmware version| | QF| | | | none (integer)| 168 +| 26|**Q**uery (general status)| | Q| | | ✓| none (integer from 1 to 8)| See command description for details 169 +| 27|**V**oltage| | QV| | | ✓| millivolts (ex 5936 = 5936mV = 5.936V)| 170 +| 28|**T**emperature| | QT| | | ✓| tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp) 171 +| 29|**C**urrent| | QC| | | ✓| milliamps (ex 200 = 0.2A)| 172 +| 30|**RC** Mode| | |CRC| |✓|none|((( 177 177 CRC: Add modifier "1" for RC-position mode. 178 178 CRC: Add modifier "2" for RC-wheel mode. 179 179 Any other value for the modifier results in staying in smart mode. 180 180 Puts the servo into RC mode. To revert to smart mode, use the button menu. 181 181 ))) 182 -|31| [[**RESET**>>||anchor="H31.RESET"]]|| | | | ✓|none|Soft reset. See command for details.183 -|32| [[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]|| | | |✓|none|Revert to firmware default values. See command for details184 -|33| [[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]|| | | |✓|none|Update firmware. See command for details.178 +|31|**RESET**| | | | | ✓|none|Soft reset. See command for details. 179 +|32|**DEFAULT**| | | | |✓|none|Revert to firmware default values. See command for details 180 +|33|**UPDATE**| | | | |✓|none|Update firmware. See command for details. 185 185 186 186 == Details == 187 187 ... ... @@ -191,33 +191,31 @@ 191 191 192 192 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 193 193 194 - ======__2. Halt & Hold (**H**)__======190 +__2. Halt & Hold (**H**)__ 195 195 196 196 Example: #5H<cr> 197 197 198 198 This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position. 199 199 200 - ======__3. Timed move (**T**)__======196 +__3. Timed move (**T**)__ 201 201 202 202 Example: #5P1500T2500<cr> 203 203 204 204 Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 205 205 206 - Note:If the calculated speedat which a servo must rotate for a timed move is greater than its maximum speed(which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.202 +__4. Speed (**S**)__ 207 207 208 -====== __4. Speed (**S**)__ ====== 209 - 210 210 Example: #5P1500S750<cr> 211 211 212 212 This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 213 213 214 - ======__5. (Relative) Move in Degrees (**MD**)__======208 +__5. (Relative) Move in Degrees (**MD**)__ 215 215 216 216 Example: #5MD123<cr> 217 217 218 218 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 219 219 220 - ======__6. Origin Offset Action (**O**)__======214 +__6. Origin Offset Action (**O**)__ 221 221 222 222 Example: #5O2400<cr> 223 223 ... ... @@ -241,7 +241,7 @@ 241 241 242 242 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. 243 243 244 - ======__7. Angular Range (**AR**)__======238 +__7. Angular Range (**AR**)__ 245 245 246 246 Example: #5AR1800<cr> 247 247 ... ... @@ -265,7 +265,7 @@ 265 265 266 266 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 267 267 268 - ======__8. Position in Pulse (**P**)__======262 +__8. Position in Pulse (**P**)__ 269 269 270 270 Example: #5P2334<cr> 271 271 ... ... @@ -278,7 +278,7 @@ 278 278 This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 279 279 Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 280 280 281 - ======__9. Position in Degrees (**D**)__======275 +__9. Position in Degrees (**D**)__ 282 282 283 283 Example: #5PD1456<cr> 284 284 ... ... @@ -292,7 +292,7 @@ 292 292 293 293 This means the servo is located at 13.2 degrees. 294 294 295 - ======__10. Wheel Mode in Degrees (**WD**)__======289 +__10. Wheel Mode in Degrees (**WD**)__ 296 296 297 297 Ex: #5WD900<cr> 298 298 ... ... @@ -304,7 +304,7 @@ 304 304 305 305 The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 306 306 307 - ======__11. Wheel Mode in RPM (**WR**)__======301 +__11. Wheel Mode in RPM (**WR**)__ 308 308 309 309 Ex: #5WR40<cr> 310 310 ... ... @@ -316,7 +316,7 @@ 316 316 317 317 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 318 318 319 - ======__12. Speed in Degrees (**SD**)__======313 +__12. Speed in Degrees (**SD**)__ 320 320 321 321 Ex: #5SD1800<cr> 322 322 ... ... @@ -341,7 +341,7 @@ 341 341 342 342 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 343 343 344 - ======__13. Speed in RPM (**SR**)__======338 +__13. Speed in RPM (**SR**)__ 345 345 346 346 Ex: #5SD45<cr> 347 347 ... ... @@ -366,7 +366,7 @@ 366 366 367 367 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 368 368 369 - ======__14. Angular Stiffness (**AS**)__======363 +__14. Angular Stiffness (**AS**)__ 370 370 371 371 The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 372 372 ... ... @@ -394,7 +394,7 @@ 394 394 395 395 Writes the desired angular stiffness value to memory. 396 396 397 - ======__15. Angular Hold Stiffness (**AH**)__======391 +__15. Angular Hold Stiffness (**AH**)__ 398 398 399 399 The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 400 400 ... ... @@ -414,19 +414,19 @@ 414 414 415 415 This writes the angular holding stiffness of servo #5 to 2 to EEPROM 416 416 417 - ======__15b: Angular Acceleration (**AA**)__======411 +__15b: Angular Acceleration (**AA**)__ 418 418 419 419 {More details to come} 420 420 421 - ======__15c: Angular Deceleration (**AD**)__======415 +__15c: Angular Deceleration (**AD**)__ 422 422 423 423 {More details to come} 424 424 425 - ======__15d: Motion Control (**EM**)__======419 +__15d: Motion Control (**MC**)__ 426 426 427 427 {More details to come} 428 428 429 - ======__16. RGB LED (**LED**)__======423 +__16. RGB LED (**LED**)__ 430 430 431 431 Ex: #5LED3<cr> 432 432 ... ... @@ -444,7 +444,7 @@ 444 444 445 445 Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 446 446 447 - ======__17. Identification Number__======441 +__17. Identification Number__ 448 448 449 449 A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 450 450 ... ... @@ -460,7 +460,7 @@ 460 460 461 461 Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. 462 462 463 - ======__18. Baud Rate__======457 +__18. Baud Rate__ 464 464 465 465 A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 466 466 \*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. ... ... @@ -477,7 +477,7 @@ 477 477 478 478 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 479 479 480 - ======__19. Gyre Rotation Direction__======474 +__19. Gyre Rotation Direction__ 481 481 482 482 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 483 483 ... ... @@ -495,7 +495,7 @@ 495 495 496 496 This changes the gyre direction as described above and also writes to EEPROM. 497 497 498 - ======__20. First / Initial Position (pulse)__======492 +__20. First / Initial Position (pulse)__ 499 499 500 500 In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 501 501 ... ... @@ -511,7 +511,7 @@ 511 511 512 512 This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 513 513 514 - ======__21. First / Initial Position (Degrees)__======508 +__21. First / Initial Position (Degrees)__ 515 515 516 516 In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 517 517 ... ... @@ -527,37 +527,37 @@ 527 527 528 528 This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up. 529 529 530 - ======__22. Query Target Position in Degrees (**QDT**)__======524 +__22. Query Target Position in Degrees (**QDT**)__ 531 531 532 532 Ex: #5QDT<cr> might return *5QDT6783<cr> 533 533 534 534 The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 535 535 536 - ======__23. Query Model String (**QMS**)__======530 +__23. Query Model String (**QMS**)__ 537 537 538 538 Ex: #5QMS<cr> might return *5QMSLSS-HS1cr> 539 539 540 540 This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 541 541 542 - ======__23b. Query Model (**QM**)__======536 +__23b. Query Model (**QM**)__ 543 543 544 544 Ex: #5QM<cr> might return *5QM68702699520cr> 545 545 546 546 This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision. 547 547 548 - ======__24. Query Serial Number (**QN**)__======542 +__24. Query Serial Number (**QN**)__ 549 549 550 550 Ex: #5QN<cr> might return *5QN~_~_<cr> 551 551 552 552 The number in the response is the servo's serial number which is set and cannot be changed. 553 553 554 - ======__25. Query Firmware (**QF**)__======548 +__25. Query Firmware (**QF**)__ 555 555 556 556 Ex: #5QF<cr> might return *5QF11<cr> 557 557 558 558 The integer in the reply represents the firmware version with one decimal, in this example being 1.1 559 559 560 - ======__26. Query Status (**Q**)__======554 +__26. Query Status (**Q**)__ 561 561 562 562 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 563 563 ... ... @@ -567,32 +567,32 @@ 567 567 |ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 568 568 |ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed 569 569 |ex: *5Q4<cr>|Traveling|Moving at a stable speed 570 -|ex: *5Q5<cr>|Decelerating|Decreasing fromtravel speed towardsfinal position.564 +|ex: *5Q5<cr>|Deccelerating|Decreasing speed towards travel speed towards rest 571 571 |ex: *5Q6<cr>|Holding|Keeping current position 572 572 |ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque 573 -|ex: *5Q8<cr>|Outside limits| {More details coming soon}567 +|ex: *5Q8<cr>|Outside limits|More details coming soon 574 574 |ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 575 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 569 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maxiumum duty and still cannot move (i.e.: stalled) 576 576 577 - ======__27. Query Voltage (**QV**)__======571 +__27. Query Voltage (**QV**)__ 578 578 579 579 Ex: #5QV<cr> might return *5QV11200<cr> 580 580 581 581 The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 582 582 583 - ======__28. Query Temperature (**QT**)__======577 +__28. Query Temperature (**QT**)__ 584 584 585 585 Ex: #5QT<cr> might return *5QT564<cr> 586 586 587 587 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 588 588 589 - ======__29. Query Current (**QC**)__======583 +__29. Query Current (**QC**)__ 590 590 591 591 Ex: #5QC<cr> might return *5QC140<cr> 592 592 593 593 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 594 594 595 - ======__30. RC Mode (**CRC**)__======589 +__30. RC Mode (**CRC**)__ 596 596 597 597 This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 598 598 ... ... @@ -604,13 +604,13 @@ 604 604 605 605 EX: #5CRC<cr> 606 606 607 - ======__31. RESET__======601 +__31. RESET__ 608 608 609 609 Ex: #5RESET<cr> or #5RS<cr> 610 610 611 611 This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 612 612 613 - ======__32. DEFAULT & CONFIRM__======607 +__32. DEFAULT & CONFIRM__ 614 614 615 615 Ex: #5DEFAULT<cr> 616 616 ... ... @@ -622,7 +622,7 @@ 622 622 623 623 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 624 624 625 - ======__33. UPDATE & CONFIRM__======619 +__33. UPDATE & CONFIRM__ 626 626 627 627 Ex: #5UPDATE<cr> 628 628