Last modified by Eric Nantel on 2025/06/06 07:47

From version < 83.1 >
edited by RB1
on 2019/01/23 10:45
To version < 64.15 >
edited by RB1
on 2018/11/19 09:30
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Lynxmotion Smart Servo (LSS).WebHome
1 +lynxmotion:LSS - Overview (DEV).WebHome
Hidden
... ... @@ -1,1 +1,1 @@
1 -true
1 +false
Tags
... ... @@ -1,1 +1,1 @@
1 -LSS|communication|protocol|programming|firmware|control|LSS-Ref
1 +LSS|communication|protocol|programming|firmware|control
Content
... ... @@ -1,9 +4,6 @@
1 -(% class="wikigeneratedid" id="HTableofContents" %)
2 -**Table of Contents**
3 -
4 4  {{toc depth="3"/}}
5 5  
6 -= Protocol Concepts =
3 += Protocol concepts =
7 7  
8 8  The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available.
9 9  
... ... @@ -30,7 +30,7 @@
30 30  
31 31  Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page).
32 32  
33 -== Action Modifiers ==
30 +=== Action Modifiers ===
34 34  
35 35  Two commands can be used as action modifiers only: Timed Move and Speed. The format is:
36 36  
... ... @@ -51,7 +51,7 @@
51 51  
52 52  == Configuration Commands ==
53 53  
54 -Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]].
51 +Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:LSS - Overview (DEV).LSS - RC PWM.WebHome]].
55 55  
56 56  1. Start with a number sign # (U+0023)
57 57  1. Servo ID number as an integer
... ... @@ -109,7 +109,7 @@
109 109  
110 110  #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
111 111  
112 -== Virtual Angular Position ==
109 +=== Virtual Angular Position ===
113 113  
114 114  {In progress}
115 115  
... ... @@ -137,51 +137,50 @@
137 137  = Command List =
138 138  
139 139  |= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes
140 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none|
141 -| 2|[[**H**alt & Hold>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none|
142 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds| Modifier only (P, D, MD)
143 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds / second| Modifier only (P)
144 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
145 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
146 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
147 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(((
137 +| 1|**L**imp| L| | | | ✓| none|
138 +| 2|**H**alt & Hold| H| | | | ✓| none|
139 +| 3|**T**imed move| T| | | | ✓| milliseconds| Modifier only
140 +| 4|**S**peed| S| | | | ✓| microseconds / second| Modifier only
141 +| 5|**M**ove in **D**egrees (relative)| MD| | | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
142 +| 6|**O**rigin Offset| O| QO| CO| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
143 +| 7|**A**ngular **R**ange| AR| QAR| CAR| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
144 +| 8|Position in **P**ulse| P| QP| | | ✓| microseconds|(((
148 148  See details below
149 149  )))
150 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
151 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|A.K.A. "Speed mode" or "Continuous rotation"
152 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|A.K.A. "Speed mode" or "Continuous rotation"
153 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD| CSD| ✓| ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed
154 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR| CSR| ✓| ✓|rpm|QSR: Add modifier "2" for instantaneous speed
155 -| 14|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4
156 -| 15|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0.
157 -|15b|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared
158 -|15c|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared
159 -|15d|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles
160 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;
161 -| 16b|[[**L**ED Blinking>>||anchor="H16b.LEDBlinking"]]| | | CLB| ✓| |none (integer from 0 to 63)|0=No blinking, Blink while: 1=Limp; 2=Holding 3=Accel; 4=Decel; 5=Free 6=Travel; 63=Always blink;
162 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to
163 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)|
164 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)
165 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none |
166 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none |
167 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
168 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)| Recommended to determine the model|
169 -| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)| Returns a raw value representing the three model inputs (36 bit)|
170 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)|
171 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)|
172 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)| See command description for details
173 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|
174 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)
175 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)|
176 -| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|(((
147 +| 9|Position in **D**egrees| D| QD| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
148 +| 10|**W**heel mode in **D**egrees| WD| QWD| | | ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|
149 +| 11|**W**heel mode in **R**PM| WR| QWR| | | ✓| rpm|
150 +| 12|Max **S**peed in **D**egrees| SD| QSD| CSD| ✓| ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed
151 +| 13|Max **S**peed in **R**PM| SR| QSR| CSR| ✓| ✓| rpm|QSR: Add modifier "2" for instantaneous speed
152 +| 14|**A**ngular **S**tiffness| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4
153 +| 15|**A**ngular **H**olding Stiffness|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0.
154 +|15b|**A**ngular **A**cceleration|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared
155 +|15c|**A**ngular **D**eceleration|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared
156 +|15d|**M**otion **C**ontrol|MC|QMC| | | ✓|none|MC0 to disable motion control, MC1 to enable. Session specific
157 +| 16|**LED** Color| LED| QLED| CLED| ✓| ✓| none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6=MAGENTA, 7=WHITE
158 +| 17|**ID** #| | QID| CID| | ✓| none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to
159 +| 18|**B**aud rate| B| QB| CB| | ✓| none (integer)|
160 +| 19|**G**yre direction (**G**)| G| QG| CG| ✓| ✓| none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)
161 +| 20|**F**irst Position (**P**ulse)| | QFP|CFP | ✓| ✓| none |
162 +| 21|**F**irst Position (**D**egrees)| | QFD|CFD| ✓| ✓| none |
163 +| 22|**T**arget (**D**egree) **P**osition| | QDT| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
164 +| 23|**M**odel **String**| | QMS| | | | none (string)| Recommended to determine the model|
165 +| 23b|**M**odel| | QM| | | | none (integer)| Returns a raw value representing the three model inputs (36 bit)|
166 +| 24|Serial **N**umber| | QN| | | | none (integer)|
167 +| 25|**F**irmware version| | QF| | | | none (integer)|
168 +| 26|**Q**uery (general status)| | Q| | | ✓| none (integer from 1 to 8)| See command description for details
169 +| 27|**V**oltage| | QV| | | ✓| millivolts (ex 5936 = 5936mV = 5.936V)|
170 +| 28|**T**emperature| | QT| | | ✓| tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)
171 +| 29|**C**urrent| | QC| | | ✓| milliamps (ex 200 = 0.2A)|
172 +| 30|**RC** Mode| | |CRC| |✓|none|(((
177 177  CRC: Add modifier "1" for RC-position mode.
178 178  CRC: Add modifier "2" for RC-wheel mode.
179 179  Any other value for the modifier results in staying in smart mode.
180 180  Puts the servo into RC mode. To revert to smart mode, use the button menu.
181 181  )))
182 -|31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|Soft reset. See command for details.
183 -|32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|Revert to firmware default values. See command for details
184 -|33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|Update firmware. See command for details.
178 +|31|**RESET**| | | | | ✓|none|Soft reset. See command for details.
179 +|32|**DEFAULT**| | | | |✓|none|Revert to firmware default values. See command for details
180 +|33|**UPDATE**| | | | |✓|none|Update firmware. See command for details.
185 185  
186 186  == Details ==
187 187  
... ... @@ -191,33 +191,31 @@
191 191  
192 192  This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
193 193  
194 -====== __2. Halt & Hold (**H**)__ ======
190 +__2. Halt & Hold (**H**)__
195 195  
196 196  Example: #5H<cr>
197 197  
198 198  This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position.
199 199  
200 -====== __3. Timed move (**T**)__ ======
196 +__3. Timed move (**T**)__
201 201  
202 202  Example: #5P1500T2500<cr>
203 203  
204 204  Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
205 205  
206 -Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
202 +__4. Speed (**S**)__
207 207  
208 -====== __4. Speed (**S**)__ ======
209 -
210 210  Example: #5P1500S750<cr>
211 211  
212 212  This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
213 213  
214 -====== __5. (Relative) Move in Degrees (**MD**)__ ======
208 +__5. (Relative) Move in Degrees (**MD**)__
215 215  
216 216  Example: #5MD123<cr>
217 217  
218 218  The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
219 219  
220 -====== __6. Origin Offset Action (**O**)__ ======
214 +__6. Origin Offset Action (**O**)__
221 221  
222 222  Example: #5O2400<cr>
223 223  
... ... @@ -241,7 +241,7 @@
241 241  
242 242  This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode.
243 243  
244 -====== __7. Angular Range (**AR**)__ ======
238 +__7. Angular Range (**AR**)__
245 245  
246 246  Example: #5AR1800<cr>
247 247  
... ... @@ -265,7 +265,7 @@
265 265  
266 266  This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
267 267  
268 -====== __8. Position in Pulse (**P**)__ ======
262 +__8. Position in Pulse (**P**)__
269 269  
270 270  Example: #5P2334<cr>
271 271  
... ... @@ -278,7 +278,7 @@
278 278  This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 
279 279  Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
280 280  
281 -====== __9. Position in Degrees (**D**)__ ======
275 +__9. Position in Degrees (**D**)__
282 282  
283 283  Example: #5PD1456<cr>
284 284  
... ... @@ -292,7 +292,7 @@
292 292  
293 293  This means the servo is located at 13.2 degrees.
294 294  
295 -====== __10. Wheel Mode in Degrees (**WD**)__ ======
289 +__10. Wheel Mode in Degrees (**WD**)__
296 296  
297 297  Ex: #5WD900<cr>
298 298  
... ... @@ -304,7 +304,7 @@
304 304  
305 305  The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
306 306  
307 -====== __11. Wheel Mode in RPM (**WR**)__ ======
301 +__11. Wheel Mode in RPM (**WR**)__
308 308  
309 309  Ex: #5WR40<cr>
310 310  
... ... @@ -316,7 +316,7 @@
316 316  
317 317  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
318 318  
319 -====== __12. Speed in Degrees (**SD**)__ ======
313 +__12. Speed in Degrees (**SD**)__
320 320  
321 321  Ex: #5SD1800<cr>
322 322  
... ... @@ -341,7 +341,7 @@
341 341  
342 342  Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
343 343  
344 -====== __13. Speed in RPM (**SR**)__ ======
338 +__13. Speed in RPM (**SR**)__
345 345  
346 346  Ex: #5SD45<cr>
347 347  
... ... @@ -366,7 +366,7 @@
366 366  
367 367  Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
368 368  
369 -====== __14. Angular Stiffness (**AS**)__ ======
363 +__14. Angular Stiffness (**AS**)__
370 370  
371 371  The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
372 372  
... ... @@ -394,7 +394,7 @@
394 394  
395 395  Writes the desired angular stiffness value to memory.
396 396  
397 -====== __15. Angular Hold Stiffness (**AH**)__ ======
391 +__15. Angular Hold Stiffness (**AH**)__
398 398  
399 399  The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
400 400  
... ... @@ -414,19 +414,19 @@
414 414  
415 415  This writes the angular holding stiffness of servo #5 to 2 to EEPROM
416 416  
417 -====== __15b: Angular Acceleration (**AA**)__ ======
411 +__15b: Angular Acceleration (**AA**)__
418 418  
419 419  {More details to come}
420 420  
421 -====== __15c: Angular Deceleration (**AD**)__ ======
415 +__15c: Angular Deceleration (**AD**)__
422 422  
423 423  {More details to come}
424 424  
425 -====== __15d: Motion Control (**EM**)__ ======
419 +__15d: Motion Control (**MC**)__
426 426  
427 427  {More details to come}
428 428  
429 -====== __16. RGB LED (**LED**)__ ======
423 +__16. RGB LED (**LED**)__
430 430  
431 431  Ex: #5LED3<cr>
432 432  
... ... @@ -444,12 +444,8 @@
444 444  
445 445  Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
446 446  
447 -====== __16b. Configure LED Blinking (**CLB**)__ ======
441 +__17. Identification Number__
448 448  
449 -???
450 -
451 -====== __17. Identification Number__ ======
452 -
453 453  A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
454 454  
455 455  Query Identification (**QID**)
... ... @@ -464,7 +464,7 @@
464 464  
465 465  Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.
466 466  
467 -====== __18. Baud Rate__ ======
457 +__18. Baud Rate__
468 468  
469 469  A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.
470 470  \*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out.
... ... @@ -481,7 +481,7 @@
481 481  
482 482  Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
483 483  
484 -====== __19. Gyre Rotation Direction__ ======
474 +__19. Gyre Rotation Direction__
485 485  
486 486  "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
487 487  
... ... @@ -499,7 +499,7 @@
499 499  
500 500  This changes the gyre direction as described above and also writes to EEPROM.
501 501  
502 -====== __20. First / Initial Position (pulse)__ ======
492 +__20. First / Initial Position (pulse)__
503 503  
504 504  In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
505 505  
... ... @@ -515,7 +515,7 @@
515 515  
516 516  This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled).
517 517  
518 -====== __21. First / Initial Position (Degrees)__ ======
508 +__21. First / Initial Position (Degrees)__
519 519  
520 520  In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
521 521  
... ... @@ -531,37 +531,37 @@
531 531  
532 532  This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up.
533 533  
534 -====== __22. Query Target Position in Degrees (**QDT**)__ ======
524 +__22. Query Target Position in Degrees (**QDT**)__
535 535  
536 536  Ex: #5QDT<cr> might return *5QDT6783<cr>
537 537  
538 538  The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
539 539  
540 -====== __23. Query Model String (**QMS**)__ ======
530 +__23. Query Model String (**QMS**)__
541 541  
542 542  Ex: #5QMS<cr> might return *5QMSLSS-HS1cr>
543 543  
544 544  This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
545 545  
546 -====== __23b. Query Model (**QM**)__ ======
536 +__23b. Query Model (**QM**)__
547 547  
548 548  Ex: #5QM<cr> might return *5QM68702699520cr>
549 549  
550 550  This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision.
551 551  
552 -====== __24. Query Serial Number (**QN**)__ ======
542 +__24. Query Serial Number (**QN**)__
553 553  
554 554  Ex: #5QN<cr> might return *5QN~_~_<cr>
555 555  
556 556  The number in the response is the servo's serial number which is set and cannot be changed.
557 557  
558 -====== __25. Query Firmware (**QF**)__ ======
548 +__25. Query Firmware (**QF**)__
559 559  
560 560  Ex: #5QF<cr> might return *5QF11<cr>
561 561  
562 562  The integer in the reply represents the firmware version with one decimal, in this example being 1.1
563 563  
564 -====== __26. Query Status (**Q**)__ ======
554 +__26. Query Status (**Q**)__
565 565  
566 566  Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
567 567  
... ... @@ -571,32 +571,32 @@
571 571  |ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely
572 572  |ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed
573 573  |ex: *5Q4<cr>|Traveling|Moving at a stable speed
574 -|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position.
564 +|ex: *5Q5<cr>|Deccelerating|Decreasing speed towards travel speed towards rest
575 575  |ex: *5Q6<cr>|Holding|Keeping current position
576 576  |ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque
577 -|ex: *5Q8<cr>|Outside limits|{More details coming soon}
567 +|ex: *5Q8<cr>|Outside limits|More details coming soon
578 578  |ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting
579 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
569 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maxiumum duty and still cannot move (i.e.: stalled)
580 580  
581 -====== __27. Query Voltage (**QV**)__ ======
571 +__27. Query Voltage (**QV**)__
582 582  
583 583  Ex: #5QV<cr> might return *5QV11200<cr>
584 584  
585 585  The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
586 586  
587 -====== __28. Query Temperature (**QT**)__ ======
577 +__28. Query Temperature (**QT**)__
588 588  
589 589  Ex: #5QT<cr> might return *5QT564<cr>
590 590  
591 591  The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
592 592  
593 -====== __29. Query Current (**QC**)__ ======
583 +__29. Query Current (**QC**)__
594 594  
595 595  Ex: #5QC<cr> might return *5QC140<cr>
596 596  
597 597  The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
598 598  
599 -====== __30. RC Mode (**CRC**)__ ======
589 +__30. RC Mode (**CRC**)__
600 600  
601 601  This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
602 602  
... ... @@ -608,13 +608,13 @@
608 608  
609 609  EX: #5CRC<cr>
610 610  
611 -====== __31. RESET__ ======
601 +__31. RESET__
612 612  
613 613  Ex: #5RESET<cr> or #5RS<cr>
614 614  
615 615  This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
616 616  
617 -====== __32. DEFAULT & CONFIRM__ ======
607 +__32. DEFAULT & CONFIRM__
618 618  
619 619  Ex: #5DEFAULT<cr>
620 620  
... ... @@ -626,7 +626,7 @@
626 626  
627 627  Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
628 628  
629 -====== __33. UPDATE & CONFIRM__ ======
619 +__33. UPDATE & CONFIRM__
630 630  
631 631  Ex: #5UPDATE<cr>
632 632  
Copyright RobotShop 2018