Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 - LynxmotionSmartServo(LSS).WebHome1 +lynxmotion-smart-servo.WebHome - Hidden
-
... ... @@ -1,1 +1,1 @@ 1 - true1 +false - Content
-
... ... @@ -1,649 +1,958 @@ 1 1 (% class="wikigeneratedid" id="HTableofContents" %) 2 -** TableofContents**2 +**Page Contents** 3 3 4 4 {{toc depth="3"/}} 5 5 6 -= Protocol Concepts=6 += Serial Protocol = 7 7 8 -The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time ryingto staycompact and robust yet highly versatile.Almost everything one might expect to be able to configure for a smart servo8 +The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available. 9 9 10 +In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on CID [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC or checksum implemented as part of the protocol. 11 + 10 10 == Session == 11 11 12 -A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 14 +{{html wiki="true" clean="false"}} 15 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 16 +A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.<div class="wikimodel-emptyline"></div> 13 13 18 +**Note #1:** For a given session, the action related to a specific commands overrides the stored value in EEPROM.<div class="wikimodel-emptyline"></div> 19 +**Note #2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).<div class="wikimodel-emptyline"></div> 20 +You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays. 21 +<div class="wikimodel-emptyline"></div></div></div> 22 +{{/html}} 23 + 14 14 == Action Commands == 15 15 16 -Action commands are sent serially to the servo's Rx pin and must be set in the following format: 26 +{{html wiki="true" clean="false"}} 27 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 28 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]]. Action commands are sent serially to the servo's Rx pin and must be sent in the following format:<div class="wikimodel-emptyline"></div> 17 17 18 -1. Start with a number sign # (U+0023) 30 +1. Start with a number sign **#** (Unicode Character: U+0023) 19 19 1. Servo ID number as an integer 20 -1. Action command (one tothreeletters, no spaces, capital or lower case)32 +1. Action command (one or more letters, no whitespace, capital or lower case) 21 21 1. Action value in the correct units with no decimal 22 -1. End with a c ontrol / carriage return'<cr>'34 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 23 23 24 24 ((( 25 -Ex: #5 PD1443<cr>37 +Ex: #5D1800<cr><div class="wikimodel-emptyline"></div> 26 26 27 -Move servo with ID #5 to a position of 144.3 degrees. 39 +This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 40 +<div class="wikimodel-emptyline"></div></div></div> 41 +{{/html}} 28 28 29 - Actioncommands cannot be combined with query commands,and only one action command can be sent at a time.43 +== Modifiers == 30 30 31 -Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page). 45 +{{html wiki="true" clean="false"}} 46 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 47 +Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div> 32 32 33 -== Action Modifiers == 34 - 35 -Two commands can be used as action modifiers only: Timed Move and Speed. The format is: 36 - 37 -1. Start with a number sign # (U+0023) 49 +1. Start with a number sign **#** (Unicode Character: U+0023) 38 38 1. Servo ID number as an integer 39 39 1. Action command (one to three letters, no spaces, capital or lower case) 40 40 1. Action value in the correct units with no decimal 41 -1. Modifier command (one letter) 53 +1. Modifier command (one letter to too letters) 42 42 1. Modifier value in the correct units with no decimal 43 -1. End with a c ontrol / carriage return'<cr>'55 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 44 44 45 -Ex: #5 P1456T1263<cr>57 +Ex: #5D1800T1500<cr><div class="wikimodel-emptyline"></div> 46 46 47 -Results in the servo rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds. 59 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div> 60 +<div class="wikimodel-emptyline"></div></div></div> 61 +{{/html}} 48 48 49 -Action modifiers can only be used with certain commands. 50 -))) 63 +== Query Commands == 51 51 52 -== Configuration Commands == 65 +{{html wiki="true" clean="false"}} 66 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 67 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div> 53 53 54 -Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. 69 +1. Start with a number sign **#** (Unicode Character: U+0023) 70 +1. Servo ID number as an integer 71 +1. Query command (one to four letters, no spaces, capital or lower case) 72 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 55 55 56 -1. Start with a number sign # (U+0023) 74 +Ex: #5QD<cr> Query position in (tenth of) degrees for servo #5<div class="wikimodel-emptyline"></div> 75 + 76 +The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format: 77 + 78 +1. Start with an asterisk * (Unicode Character: U+0023) 57 57 1. Servo ID number as an integer 58 -1. Configurationcommand (two tothreeletters, no spaces, capitalorlowercase)59 -1. Configurationvalue in thecorrectunitswithno decimal60 -1. End with a c ontrol / carriage return'<cr>'80 +1. Query command (one to four letters, no spaces, capital letters) 81 +1. The reported value in the units described, no decimals. 82 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 61 61 62 - Ex:#5CO-50<cr>84 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div> 63 63 64 - Assignsan absolute origin offsetof -5.0degrees (withrespect to factory origin) toservo #5 andchanges theoffsetfor that sessionto -5.0 degrees.86 +Ex: *5QD1800<cr><div class="wikimodel-emptyline"></div> 65 65 66 -Configuration commands are not cumulative, in that if two configurations are sent at any time, only the last configuration is used and stored. 88 +This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees). 89 +<div class="wikimodel-emptyline"></div></div></div> 90 +{{/html}} 67 67 68 - *ImportantNote: the one exception is the baud rate - the servo's current session retains thegiven baudrate. The new baud rate willonlybe in place whentheservois power cycled.92 +== Configuration Commands == 69 69 70 -== Query Commands == 94 +{{html wiki="true" clean="false"}} 95 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 96 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div> 71 71 72 - Query commands are sent seriallytotheservo's Rxpin and mustbe setin thefollowingformat:98 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div> 73 73 74 -1. Start with a number sign # (U+0023) 100 +The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div> 101 + 102 +1. Start with a number sign **#** (Unicode Character: U+0023) 75 75 1. Servo ID number as an integer 76 -1. Query command (one to three letters, no spaces, capital or lower case) 77 -1. End with a control / carriage return '<cr>' 104 +1. Configuration command (two to four letters, no spaces, capital or lower case) 105 +1. Configuration value in the correct units with no decimal 106 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 78 78 79 -((( 80 -Ex: #5QD<cr>Query position in degrees for servo #5 81 -))) 108 +Ex: #5CO-50<cr><div class="wikimodel-emptyline"></div> 82 82 83 -((( 84 -The query will return a value via the Tx pin with the following format: 110 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div> 85 85 86 -1. Start with an asterisk (U+002A) 87 -1. Servo ID number as an integer 88 -1. Query command (one to three letters, no spaces, capital letters) 89 -1. The reported value in the units described, no decimals. 90 -1. End with a control / carriage return '<cr>' 112 +**Session vs Configuration Query**<div class="wikimodel-emptyline"></div> 91 91 92 -((( 93 -Ex: *5QD1443<cr> 94 -))) 114 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div> 95 95 96 - Indicates thatservo #5is currentlyat144.3degrees.116 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div> 97 97 98 - **SessionvsConfigurationQuery**118 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div> 99 99 100 - By default,thequery commandreturnsthe sessions' value;shouldno actioncommands have been senttochange, it willreturn the valuesaved in EEPROMfromthe lastconfigurationcommand.120 +#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas<div class="wikimodel-emptyline"></div> 101 101 102 -In order to query the value in EEPROM, add a '1' to the query command. 122 +#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 123 +<div class="wikimodel-emptyline"></div></div></div> 124 +{{/html}} 103 103 104 - Ex:#5CSR20<cr> sets the maximumspeed forservo#5to20rpm uponRESET (explained below).126 +== Virtual Angular Position == 105 105 106 -After RESET: #5SR4<cr> sets the session's speed to 4rpm. 128 +{{html wiki="true" clean="false"}} 129 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 130 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div> 107 107 108 - #5QSR<cr> would return*5QSR4<cr> whichrepresentsthevalueforthat session.132 +[[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div> 109 109 110 - #5QSR1<cr>wouldreturn*5QSR20<cr>which representsthe valueEEPROM134 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div> 111 111 112 - ==VirtualAngularPosition==136 +#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div> 113 113 114 - {In progress}138 +#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div> 115 115 116 - A "virtualposition" isonewhich allows formultiplerotationsofthe output horn, moving thecenterpositionandmore.The"absoluteposition"wouldbetheangleof theoutputshaftwith respect to360.0 degrees.140 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div> 117 117 118 - [[image:LSS-servo-positions.jpg]]142 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.<div class="wikimodel-emptyline"></div> 119 119 120 - Example: Gyre direction/rotationispositive (clockwise),and originoffsethasnotbeenmodified.Eachsquarerepresents30degrees.144 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div> 121 121 122 -#1D -300<cr>The servois senta commandtomove to-30.0 degrees (greenarrow)146 +#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div> 123 123 124 -#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow) 148 +If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°]. 149 +<div class="wikimodel-emptyline"></div></div></div> 150 +{{/html}} 125 125 126 - #1D-4200<cr>This next commandrotates the servo counterclockwisetoa position of -420 degrees (red arrow), which means one full rotation of 360 degrees, stopping at an absolute position of 60.0 degrees (420.0-360.0), with a virtual position of -420.0 degrees.152 += Command List = 127 127 128 - Although the final physical position would bethesame as iftheservowerecommanded to moveto -60.0 degrees, the servois infactat-420.0 degrees.154 +**Latest firmware version currently : 368.29.14** 129 129 130 -#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 156 +|(% colspan="10" style="color:orange; font-size:18px" %)**Communication Setup** 157 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 158 +| |Soft **Reset**|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Soft reset. See command for details. 159 +| |**Default** Configuration|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Revert to firmware default values. See command for details 160 +| |Firmware **Update** Mode|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Update firmware. See command for details. 161 +| |**Confirm** Changes|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 162 +| |**C**hange to **RC**|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CRC|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Change to RC mode 1 (position) or 2 (wheel). 163 +| |**ID** #|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %) |(% style="text-align:center" %)✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 164 +| |**B**audrate|(% style="text-align:center" %) |(% style="text-align:center" %)QB|(% style="text-align:center" %)CB|(% style="text-align:center" %) |(% style="text-align:center" %)✓|115200| |Reset required after change. 131 131 132 -#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow). 166 +|(% colspan="10" style="color:orange; font-size:18px" %)**Motion** 167 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 168 +| |Position in **D**egrees|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 169 +| |**M**ove in **D**egrees (relative)|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 170 +| |**W**heel mode in **D**egrees|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation" 171 +| |**W**heel mode in **R**PM|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation" 172 +| |Position in **P**WM|(% style="text-align:center" %)P|(% style="text-align:center" %)QP|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|Inherited from SSC-32 serial protocol 173 +| |**M**ove in PWM (relative)|(% style="text-align:center" %)M|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us| 174 +| |**R**aw **D**uty-cycle **M**ove|(% style="text-align:center" %)RDM|(% style="text-align:center" %)QMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW 175 +| |**Q**uery Status|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1 to 8 integer|See command description for details 176 +| |**L**imp|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 177 +| |**H**alt & Hold|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 133 133 134 -If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). 135 -))) 179 +|(% colspan="10" style="color:orange; font-size:18px" %)**Motion Setup** 180 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 181 +| |**E**nable **M**otion Profile|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|(% style="text-align:center" %) |(% style="text-align:center" %)✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile 182 +| |**F**ilter **P**osition **C**ount|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|5| |Affects motion only when motion profile is disabled (EM0) 183 +| |**O**rigin Offset|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|1/10°| 184 +| |**A**ngular **R**ange|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1800|1/10°| 185 +| |**A**ngular **S**tiffness|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|-4 to +4 integer|Suggested values are between 0 to +4 186 +| |**A**ngular **H**olding Stiffness |(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|4|-10 to +10 integer| 187 +| |**A**ngular **A**cceleration|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 188 +| |**A**ngular **D**eceleration|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 189 +| |**G**yre Direction|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 190 +| |**F**irst Position (**D**eg)|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|No value|1/10°|Reset required after change. 191 +| |**M**aximum **M**otor **D**uty|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓|1023|255 to 1023 integer| 192 +| |Maximum **S**peed in **D**egrees|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 193 +| |Maximum **S**peed in **R**PM|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 136 136 137 -= Command List = 195 +|(% colspan="10" style="color:orange; font-size:18px" %)**Modifiers** 196 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 197 +| |**S**peed|(% style="text-align:center" %)S|(% style="text-align:center" %)QS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |uS/s |For P action command 198 +| |**S**peed in **D**egrees|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|For D and MD action commands 199 +| |**T**imed move|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |ms|Modifier only for P, D and MD. Time can change based on load 200 +| |**C**urrent **H**old|(% style="text-align:center" %)CH|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 201 +| |**C**urrent **L**imp|(% style="text-align:center" %)CL|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 138 138 139 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes|=(% style="width: 50px;" %) 140 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none| | 141 -| 2|[[**H**alt & Hold>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none| | 142 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds| Modifier only (P, D, MD)| 143 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds / second| Modifier only (P)| 144 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| | 145 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| | 146 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| | 147 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|((( 148 -See details below 149 -)))| 150 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| | 151 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|A.K.A. "Speed mode" or "Continuous rotation"| 152 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|A.K.A. "Speed mode" or "Continuous rotation"| 153 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD| CSD| ✓| ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed| 154 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR| CSR| ✓| ✓|rpm|QSR: Add modifier "2" for instantaneous speed| 155 -| 14|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4| 156 -| 15|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0. | 157 -|15b|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared| 158 -|15c|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared| 159 -|15d|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles| 160 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|7 161 -| 16b|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;| 162 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to| 163 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)| | 164 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)| 165 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none | | 166 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none | | 167 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| | 168 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)| Recommended to determine the model| | 169 -| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)| Returns a raw value representing the three model inputs (36 bit)| | 170 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)| | 171 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)| | 172 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)| See command description for details| 173 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)| | 174 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)| 175 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)| | 176 -| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|((( 177 -CRC: Add modifier "1" for RC-position mode. 178 -CRC: Add modifier "2" for RC-wheel mode. 179 -Any other value for the modifier results in staying in smart mode. 180 -Puts the servo into RC mode. To revert to smart mode, use the button menu. 181 -)))| 182 -|31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|Soft reset. See command for details.| 183 -|32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|Revert to firmware default values. See command for details| 184 -|33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|Update firmware. See command for details.| 203 +|(% colspan="10" style="color:orange; font-size:18px" %)**Telemetry** 204 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 205 +| |**Q**uery **V**oltage|(% style="text-align:center" %) |(% style="text-align:center" %)QV|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mV| 206 +| |**Q**uery **T**emperature|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°C| 207 +| |**Q**uery **C**urrent|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA| 208 +| |**Q**uery **M**odel **S**tring|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1) 209 +| |**Q**uery **F**irmware Version|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 210 +| |**Q**uery Serial **N**umber|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the unique serial number for the servo 185 185 186 -== Details == 212 +|(% colspan="10" style="color:orange; font-size:18px" %)**RGB LED** 213 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 214 +| |**LED** Color|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White 215 +| |**C**onfigure **L**ED **B**linking|(% style="text-align:center" %) |(% style="text-align:center" %)QLB|(% style="text-align:center" %)CLB|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 63 integer|Reset required after change. See command for details. 187 187 188 -= =====__1.Limp(**L**)__======217 += (% style="color:inherit; font-family:inherit" %)Details(%%) = 189 189 190 - Example:#5L<cr>219 +== (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) == 191 191 192 - Thisaction causestheservotogo "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.221 +====== __Reset__ ====== 193 193 194 -====== __2. Halt & Hold (**H**)__ ====== 223 +{{html wiki="true" clean="false"}} 224 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 225 +Ex: #5RESET<cr><div class="wikimodel-emptyline"></div> 226 +This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). 227 +Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div> 228 +</div></div> 229 +{{/html}} 195 195 196 - Example:#5H<cr>231 +====== __Default & confirm__ ====== 197 197 198 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position. 233 +{{html wiki="true" clean="false"}} 234 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 235 +Ex: #5DEFAULT<cr><div class="wikimodel-emptyline"></div> 199 199 200 - ======__3.Timed move(**T**)__======237 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div> 201 201 202 -E xample: #5P1500T2500<cr>239 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 203 203 204 - Timedmovecanbeusedonlyas amodifierforaposition(P) action.The units areinmilliseconds,so atimedmoveof2500millisecondswouldcause the servo torotate fromits currentpositionto thedesiredpositionin2.5 seconds.Thiscommandsin place to ensure backwardscompatibility with theSSC-32/32U protocol.241 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div> 205 205 206 -Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 243 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 244 +</div></div> 245 +{{/html}} 207 207 208 -====== __ 4. Speed(**S**)__ ======247 +====== __Update & confirm__ ====== 209 209 210 -Example: #5P1500S750<cr> 249 +{{html wiki="true" clean="false"}} 250 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 251 +Ex: #5UPDATE<cr><div class="wikimodel-emptyline"></div> 211 211 212 -This command isamodifieronlyforaposition(P) actionanddetermines thespeedofthemoveinmicrosecondspersecond.Aspeedof750 microseconds wouldcausetheservoto rotatefromitscurrent positionto thedesired position ataspeedof750 microseconds persecond.Thiscommand isin place toensurebackwards compatibilitywiththeSSC-32 / 32Uprotocol.253 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div> 213 213 214 - ======__5.(Relative)Movein Degrees (**MD**)__ ======255 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 215 215 216 - Example:#5MD123<cr>257 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div> 217 217 218 -The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 259 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 260 +</div></div> 261 +{{/html}} 219 219 220 -====== __ 6. OriginOffsetAction(**O**)__ ======263 +====== __Configure RC Mode (**CRC**)__ ====== 221 221 222 -Example: #5O2400<cr> 265 +{{html wiki="true" clean="false"}} 266 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 267 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.<div class="wikimodel-emptyline"></div> 223 223 224 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position. The setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. Note that for a given session, the O command overrides the CO command. In the first image, the origin at factory offset '0' (centered). 269 +|**Command sent**|**Note** 270 +|ex: #5CRC1<cr>|Change to RC position mode. 271 +|ex: #5CRC2<cr>|Change to RC continuous rotation (wheel) mode. 272 +|ex: #5CRC*<cr>|Where * is any value other than 1 or 2 (or no value): stay in smart mode.<div class="wikimodel-emptyline"></div> 225 225 226 - [[image:LSS-servo-default.jpg]]274 +EX: #5CRC2<cr><div class="wikimodel-emptyline"></div> 227 227 228 - In the secondimage,the origina,as wellasthe angularrange(explainedbelow)havebeen shiftedby240.0degrees:276 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.<div class="wikimodel-emptyline"></div> 229 229 230 -[[image:LSS-servo-origin.jpg]] 278 +**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.<div class="wikimodel-emptyline"></div> 279 +</div></div> 280 +{{/html}} 231 231 232 - OriginOffset Query(**QO**)282 +====== __Identification Number (**ID**)__ ====== 233 233 234 -Example: #5QO<cr> Returns: *5QO-13 284 +{{html wiki="true" clean="false"}} 285 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 286 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div> 235 235 236 - This allows youto querytheangle (intenths ofdegrees) ofthe origin inrelation to thefactory zeroposition.288 +Query Identification (**QID**)<div class="wikimodel-emptyline"></div> 237 237 238 - ConfigureOriginOffset(**CO**)290 +EX: #254QID<cr> might return *QID5<cr><div class="wikimodel-emptyline"></div> 239 239 240 - Example:#5CO-24<cr>292 +When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div> 241 241 242 - This command allows you to change the origin of the servo in relationtothe factory zero positionin EEPROM. The setting will be saved uponservo reset / power cycle. Origin offset configuration commands are not cumulative andalways relateo factoryzero. The new originis also usedn RC mode.294 +Configure ID (**CID**)<div class="wikimodel-emptyline"></div> 243 243 244 - ======__7.Angular Range(**AR**)__ ======296 +Ex: #4CID5<cr><div class="wikimodel-emptyline"></div> 245 245 246 -Example: #5AR1800<cr> 298 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div> 299 +</div></div> 300 +{{/html}} 247 247 248 - Thiscommand allows youto temporarily change the total angular range of the servo in tenths ofdegrees.This applies to the Position in Pulse (P) command andRC mode. The defaultfor (P) and RC modeis 1800 (180.0 degrees total, or ±90.0 degrees). In the first image,302 +====== __Baud Rate__ ====== 249 249 250 -[[image:LSS-servo-default.jpg]] 304 +{{html wiki="true" clean="false"}} 305 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 306 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div> 251 251 252 - Here,theangularrangehasbeen restricted to180.0degrees, or-90.0 to +90.0. Thecenter has remainedunchanged.308 +Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div> 253 253 254 - [[image:LSS-servo-ar.jpg]]310 +Ex: #5QB<cr> might return *5QB115200<cr><div class="wikimodel-emptyline"></div> 255 255 256 - The angular range actioncommand(ex.#5AR1800<cr>)and originoffsetaction command(ex. #5O-1200<cr>) an beusedtomove boththecenter andlimittheangularrange:312 +Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div> 257 257 258 - [[image:LSS-servo-ar-o-1.jpg]]314 +Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div> 259 259 260 - QueryAngularRange(**QAR**)316 +**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div> 261 261 262 -Ex ample: #5QAR<cr>mightreturn*5AR2756318 +Ex: #5CB9600<cr><div class="wikimodel-emptyline"></div> 263 263 264 -Configure Angular Range (**CAR**) 320 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div> 321 +</div></div> 322 +{{/html}} 265 265 266 - Thiscommand allows youto change the total angular range of the servoin tenthsof degrees inEEPROM. The setting will be saved upon servo reset / power cycle.324 +== Motion == 267 267 268 -====== __ 8.Position inPulse (**P**)__ ======326 +====== __Position in Degrees (**D**)__ ====== 269 269 270 -Example: #5P2334<cr> 328 +{{html wiki="true" clean="false"}} 329 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 330 +Example: #5D1456<cr><div class="wikimodel-emptyline"></div> 271 271 272 -Th epositionin PWM pulseswasretainedinorderto bebackward compatiblewith theSSC-32/ 32Uprotocol.Thisrelates thesiredanglewith an RCstandardPWM pulseandis furtherxplained inhe SSC-32 andSSC-32Umanualsfound onLynxmotion.com.Without any modificationstoconfigurationconsidered,anda ±90.0 degreesstandardrange where1500microsecondsiscentered,apulse of 2334wouldsetthe servoto 165.1 degrees.Valid valuesforPare[500,2500].Values outsidethis rangearecorrected toendpoints.332 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div> 273 273 274 - QueryPosition inPulse(**QP**)334 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div> 275 275 276 - Example: #5QP<cr>mightreturn*5QP2334336 +Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div> 277 277 278 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 279 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 338 +Example: #5QD<cr> might return *5QD132<cr><div class="wikimodel-emptyline"></div> 280 280 281 - ======__9. PositioninDegrees(**D**)__======340 +This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div> 282 282 283 -Example: #5PD1456<cr> 342 +(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 343 +Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div> 284 284 285 - Thismovesthe servotoan angle of 145.6 degrees, wherethecenter(0) positionis centered. Negativevalues(ex. -176 representing -17.6 degrees) are used. A full circle would be from-1800 to1800degrees. A value of 2700 would be the same angle as-900,exceptthe servo would moveina differentdirection.345 +Ex: #5QDT<cr> might return *5QDT6783<cr><div class="wikimodel-emptyline"></div> 286 286 287 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position. 347 +The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 348 +<div class="wikimodel-emptyline"></div></div></div> 349 +{{/html}} 288 288 289 - QueryPositionin Degrees (**QD**)351 +====== __(Relative) Move in Degrees (**MD**)__ ====== 290 290 291 -Example: #5QD<cr> might return *5QD132<cr> 353 +{{html wiki="true" clean="false"}} 354 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 355 +Example: #5MD123<cr><div class="wikimodel-emptyline"></div> 292 292 293 -This means the servo is located at 13.2 degrees. 357 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 358 +<div class="wikimodel-emptyline"></div></div></div> 359 +{{/html}} 294 294 295 -====== __ 10.Wheel Mode in Degrees (**WD**)__ ======361 +====== __Wheel Mode in Degrees (**WD**)__ ====== 296 296 297 -Ex: #5WD900<cr> 363 +{{html wiki="true" clean="false"}} 364 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 365 +Ex: #5WD90<cr><div class="wikimodel-emptyline"></div> 298 298 299 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). 367 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div> 300 300 301 -Query Wheel Mode in Degrees (**QWD**) 369 +Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div> 302 302 303 -Ex: #5QWD <cr>might return *5QWD900<cr>371 +Ex: #5QWD<cr> might return *5QWD90<cr><div class="wikimodel-emptyline"></div> 304 304 305 -The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 373 +The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 374 +<div class="wikimodel-emptyline"></div></div></div> 375 +{{/html}} 306 306 307 -====== __ 11.Wheel Mode in RPM (**WR**)__ ======377 +====== __Wheel Mode in RPM (**WR**)__ ====== 308 308 309 -Ex: #5WR40<cr> 379 +{{html wiki="true" clean="false"}} 380 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 381 +Ex: #5WR40<cr><div class="wikimodel-emptyline"></div> 310 310 311 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). 383 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div> 312 312 313 -Query Wheel Mode in RPM (**QWR**) 385 +Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div> 314 314 315 -Ex: #5QWR <cr>might return *5QWR40<cr>387 +Ex: #5QWR<cr> might return *5QWR40<cr><div class="wikimodel-emptyline"></div> 316 316 317 317 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 390 +<div class="wikimodel-emptyline"></div></div></div> 391 +{{/html}} 318 318 319 -====== __ 12.SpeedinDegrees(**SD**)__ ======393 +====== __Position in PWM (**P**)__ ====== 320 320 321 -Ex: #5SD1800<cr> 395 +{{html wiki="true" clean="false"}} 396 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 397 +Example: #5P2334<cr><div class="wikimodel-emptyline"></div> 322 322 323 -Th iscommandsetstheservo'smaximumspeedforactioncommandsintenthsof degreespersecondforthat session.In the exampleabove,the servo'sximumspeedrthat sessionwouldbeset to 180.0degreesper second.Thereforemaximumspeedor actionscan be set"onthefly". The servo's maximumspeedcannotbesethigherthan itsphysical limitta givenvoltage.SDoverridesCSD (describedbelow) for thatsession.Uponresetorpowercycle,the servo revertstothevalueassociatedwithCSDas describedbelow.Note that SD and SR (describedbelow) are effectivelythesame,butallow theuser tospecifythespeedineitherunit. Thelastcommand(either SRor SD)is whattheservouses for thatsession.399 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div> 324 324 325 -Query SpeedinDegrees (**QSD**)401 +Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div> 326 326 327 -Ex: #5Q SD<cr>might return *5QSD1800<cr>403 +Example: #5QP<cr> might return *5QP2334<div class="wikimodel-emptyline"></div> 328 328 329 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed. 330 -If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 405 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 406 +Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 407 +<div class="wikimodel-emptyline"></div></div></div> 408 +{{/html}} 331 331 332 -|**Command sent**|**Returned value (1/10 °)** 333 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 334 -|ex: #5QSD1<cr>|Configured maximum speed (set by CSD/CSR) 335 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 336 -|ex: #5QSD3<cr>|Target travel speed 410 +====== __(Relative) Move in PWM (**M**)__ ====== 337 337 338 -Configure Speed in Degrees (**CSD**) 412 +{{html wiki="true" clean="false"}} 413 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 414 +Example: #5M1500<cr><div class="wikimodel-emptyline"></div> 339 339 340 -Ex: #5CSD1800<cr> 416 +The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 417 +<div class="wikimodel-emptyline"></div></div></div> 418 +{{/html}} 341 341 342 - Usingthe CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speedwillbe set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSDvalue is used. Note that CSD and CSR (described below) are effectively thesame, but allow theuser to specify the speed in either unit. The last command(either CSRor CSD)is what the servo uses for that session.420 +====== __Raw Duty-cycle Move (**RDM**)__ ====== 343 343 344 -====== __13. Speed in RPM (**SR**)__ ====== 422 +{{html wiki="true" clean="false"}} 423 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 424 +Example: #5RDM512<cr><div class="wikimodel-emptyline"></div> 345 345 346 - Ex:#5SD45<cr>426 +The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div> 347 347 348 -Th iscommandsetsthe servo's maximum speedforctioncommandsinrpm forthat session.In theexample above,the servo's maximum speed for thatsessionwouldbe set to 45rpm. Therefore maximum speed for actions can beset"on thefly". Theservo'smaximum speed cannotbe setigherthan itsphysical limitat a givenvoltage. SD overrides CSD (described below)forthatsession. Uponresetor power cycle,theservorevertsto thevalueassociatedwith CSD as describedbelow. Notethat SD (describedabove) and SR are effectively the same, but allow the user to specify thespeedneither unit. Thelast command (either SR or SD) ishat the servouses for that session.428 +The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div> 349 349 350 -Query Speedin Degrees(**QSR**)430 +Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div> 351 351 352 -Ex: #5Q SR<cr>might return *5QSR45<cr>432 +Example: #5QMD<cr> might return *5QMD512<div class="wikimodel-emptyline"></div> 353 353 354 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed. 355 -If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 434 +This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 435 +<div class="wikimodel-emptyline"></div></div></div> 436 +{{/html}} 356 356 357 -|**Command sent**|**Returned value (1/10 °)** 358 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 359 -|ex: #5QSR1<cr>|Configured maximum speed (set by CSD/CSR) 360 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 361 -|ex: #5QSR3<cr>|Target travel speed 438 +====== __Query Status (**Q**)__ ====== 362 362 363 -Configure Speed in RPM (**CSR**) 440 +{{html wiki="true" clean="false"}} 441 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 442 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div> 364 364 365 -Ex: #5CSR45<cr> 444 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div> 445 +</div></div> 446 +{{/html}} 366 366 367 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 448 +|(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description** 449 +| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 450 +| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 451 +| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command 452 +| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 453 +| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 454 +| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 455 +| |ex: *5Q6<cr>|6: Holding|Keeping current position 456 +| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 457 +| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 458 +| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 459 +| |ex: *5Q10<cr>|10: Safe Mode|((( 460 +A safety limit has been exceeded (temperature, peak current or extended high current draw). 368 368 369 -====== __14. Angular Stiffness (**AS**)__ ====== 462 +Send a Q1 command to know which limit has been reached (described below). 463 +))) 370 370 371 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 465 +{{html wiki="true" clean="false"}} 466 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 467 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div> 468 +</div></div> 469 +{{/html}} 372 372 373 -A positive value of "angular stiffness": 471 +|(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description** 472 +| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 473 +| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 474 +| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 475 +| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 374 374 375 -* The more torque will be applied to try to keep the desired position against external input / changes 376 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 477 +====== __Limp (**L**)__ ====== 377 377 378 -A negative value on the other hand: 479 +{{html wiki="true" clean="false"}} 480 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 481 +Example: #5L<cr><div class="wikimodel-emptyline"></div> 379 379 380 -* Causes a slower acceleration to the travel speed, and a slower deceleration 381 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back 483 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 484 +<div class="wikimodel-emptyline"></div></div></div> 485 +{{/html}} 382 382 383 - Thedefaultvalue iszeroand the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produceincreasinglyerratic behavior.487 +====== __Halt & Hold (**H**)__ ====== 384 384 385 -Ex: #5AS-2<cr> 489 +{{html wiki="true" clean="false"}} 490 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 491 +Example: #5H<cr><div class="wikimodel-emptyline"></div> 386 386 387 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 493 +This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 494 +<div class="wikimodel-emptyline"></div></div></div> 495 +{{/html}} 388 388 389 - Ex:#5QAS<cr>497 +== Motion Setup == 390 390 391 - Queriesthe valuebeingused.499 +====== __Enable Motion Profile (**EM**)__ ====== 392 392 393 -Ex: #5CAS<cr> 501 +{{html wiki="true" clean="false"}} 502 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 503 +Ex: #5EM1<cr><div class="wikimodel-emptyline"></div> 394 394 395 - Writesthe desired angularstiffness value tomemory.505 +This command enables a trapezoidal motion profile. By default, the trapezoidal motion profile is enabled. If the motion profile is enabled, angular acceleration (AA) and angular deceleration(AD) will have an effect on the motion. Also, SD/S and T modifiers can be used.<div class="wikimodel-emptyline"></div> 396 396 397 - ======__15. AngularHoldStiffness (**AH**)__ ======507 +Ex: #5EM0<cr><div class="wikimodel-emptyline"></div> 398 398 399 -Th eangularholdingstiffnessdetermines the servo'sabilitytoholdadesiredpositionunderload.Values canbefrom-10to10,withthedefaultbeing0. Notethatnegative values meanthefinalpositioncan be easilydeflected.509 +This command will disable the trapezoidal motion profile. As such, the servo will move at full speed for D/MD action commands. Angular acceleration (AA) and angular deceleration(AD) won't have an effect on motion in this mode and modifiers SD/S or T cannot be used.<div class="wikimodel-emptyline"></div> 400 400 401 - Ex:#5AH3<cr>511 +Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div> 402 402 403 - Thissetstheholdingstiffnessforservo#5o 3 forhatsession.513 +Ex: #5QEM<cr> might return *5QEM1<cr><div class="wikimodel-emptyline"></div> 404 404 405 - QueryAngularHoldStiffness(**QAH**)515 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div> 406 406 407 - Ex: #5QAH<cr> mightreturn *5QAH3<cr>517 +Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div> 408 408 409 - Thisreturnsthe servo'sangular holding stiffnessvalue.519 +Ex: #5CEM0<cr><div class="wikimodel-emptyline"></div> 410 410 411 -Configure Angular Hold Stiffness (**CAH**) 521 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 522 +<div class="wikimodel-emptyline"></div></div></div> 523 +{{/html}} 412 412 413 - Ex:#5CAH2<cr>525 +====== __Filter Position Count (**FPC**)__ ====== 414 414 415 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM 527 +{{html wiki="true" clean="false"}} 528 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 529 +Ex: #5FPC10<cr><div class="wikimodel-emptyline"></div> 530 +This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div> 416 416 417 - ====== __15b: AngularAcceleration (**AA**)__======532 +Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div> 418 418 419 - {Moredetailstocome}534 +Ex: #5QFPC<cr> might return *5QFPC10<cr><div class="wikimodel-emptyline"></div> 420 420 421 - ======__15c: AngularDeceleration(**AD**)__======536 +This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div> 422 422 423 - {Moredetailsto come}538 +Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div> 424 424 425 - ======__15d:Motion Control(**EM**)__ ======540 +Ex: #5CFPC10<cr><div class="wikimodel-emptyline"></div> 426 426 427 -{More details to come} 542 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 543 +<div class="wikimodel-emptyline"></div></div></div> 544 +{{/html}} 428 428 429 -====== __ 16.RGBLED(**LED**)__ ======546 +====== __Origin Offset (**O**)__ ====== 430 430 431 -Ex: #5LED3<cr> 548 +{{html wiki="true" clean="false"}} 549 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 550 +Example: #5O2400<cr><div class="wikimodel-emptyline"></div> 432 432 433 -This action setsthe servo'sRGBLEDcolor for that session.TheLEDcanbeusedforaesthetics,or(basedonusercode)toprovidevisualstatusupdates.Using timingcancreatepatterns.552 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div> 434 434 435 - 0=OFF 1=RED 2=GREEN 3= BLUE4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE554 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 436 436 437 - QueryLEDColor (**QLED**)556 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div> 438 438 439 - Ex:#5QLED<cr> mightreturn*5QLED5<cr>558 +[[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div> 440 440 441 - Thissimplequeryreturns the indicatedservo'sLED color.560 +Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div> 442 442 443 - ConfigureLEDColor (**CLED**)562 +Example: #5QO<cr> might return *5QO-13<div class="wikimodel-emptyline"></div> 444 444 445 - ConfiguringtheLEDcolorviatheCLED command setsthestartupcolor of theservoafteraresetrpowercycle.Notethatitalsochanges thesession'sLEDcolorimmediatelyas.564 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div> 446 446 447 - ====== __16b.ConfigureLED Blinking(**CLB**)__======566 +Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div> 448 448 449 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 450 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 568 +Example: #5CO-24<cr><div class="wikimodel-emptyline"></div> 451 451 452 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 570 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 571 +<div class="wikimodel-emptyline"></div></div></div> 572 +{{/html}} 453 453 454 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 455 -Ex: #5CLB1<cr> only blink when limp 456 -Ex: #5CLB2<cr> only blink when holding 457 -Ex: #5CLB12<cr> only blink when accel or decel 458 -Ex: #5CLB48<cr> only blink when free or travel 459 -Ex: #5CLB63<cr> blink in all status 574 +====== __Angular Range (**AR**)__ ====== 460 460 461 -====== __17. Identification Number__ ====== 576 +{{html wiki="true" clean="false"}} 577 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 578 +Example: #5AR1800<cr><div class="wikimodel-emptyline"></div> 462 462 463 - Aservo'sidentification number cannotbeset"onthefly"andmustbeconfiguredviatheCID commanddescribed below.Thefactory defaultID number forall servos is0. Sincemartservosare intendedtobedaisychained,in orderto responddifferentlyfromoneanother,theusermustsetdifferent identificationnumbers.Servoswiththe sameIDandbaud rate willallreceiveandreact to thesame commands.580 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div> 464 464 465 - Query Identification(**QID**)582 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 466 466 467 - EX:#254QID<cr>might return*QID5<cr>584 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div> 468 468 469 - When using the query ID command, it is best to only haveone servoconnectedand thusreceive only one reply usingthe broadcastcommand (ID 254). Alternatively, pushing the button upon startup andtemporarily setting the servo ID to 255 will still result intheservo responding with its "real" ID.586 +[[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div> 470 470 471 - ConfigureID(**CID**)588 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div> 472 472 473 - Ex:#4CID5<cr>590 +[[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div> 474 474 475 - Setting a servo'sID in EEPROM is done via the CID command.All servos connected to the same serial bus will beassigned that ID. In most situations each servomust be setauniqueID, which means each servomust beconnected individually to the serial busand receive a unique CID number. It is best too this before the servos are added to an assembly. Numbered stickers areprovidedto distinguish each servo after their ID is set, thoughyou are free to use whatever alternativemethodyou like.592 +Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div> 476 476 477 - ======__18.BaudRate__======594 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div> 478 478 479 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 480 -\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. 596 +Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div> 481 481 482 -Query Baud Rate (**QB**) 598 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 599 +<div class="wikimodel-emptyline"></div></div></div> 600 +{{/html}} 483 483 484 - Ex:#5QB<cr> might return *5QB9600<cr>602 +====== __Angular Stiffness (**AS**)__ ====== 485 485 486 -Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled. 604 +{{html wiki="true" clean="false"}} 605 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 606 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div> 487 487 488 - ConfigureBaudRate(**CB**)608 +A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div> 489 489 490 -Ex: #5CB9600<cr> 610 +* The more torque will be applied to try to keep the desired position against external input / changes 611 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div> 491 491 492 - Sendingthiscommandwill change thebaudrate associatedwith servo ID 5 to 9600 bits per second.613 +A lower value on the other hand:<div class="wikimodel-emptyline"></div> 493 493 494 -====== __19. Gyre Rotation Direction__ ====== 615 +* Causes a slower acceleration to the travel speed, and a slower deceleration 616 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div> 495 495 496 - "Gyre"isdefinedas a circularcourse ormotion. The effect of changing thegyre direction isasifyouweretouseamirrorimageofacircle.CW =1;CCW= -1.The factorydefaultis clockwise(CW).618 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 497 497 498 - {imageshowing before andafter with AR and Originoffset}620 +Ex: #5AS-2<cr><div class="wikimodel-emptyline"></div> 499 499 500 - QueryGyreDirection (**QG**)622 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div> 501 501 502 -Ex: #5Q G<cr> mightreturn*5QG-1<cr>624 +Ex: #5QAS<cr><div class="wikimodel-emptyline"></div> 503 503 504 - The valuereturnedabovemeanstheservoisin a counter-clockwisegyration.626 +Queries the value being used.<div class="wikimodel-emptyline"></div> 505 505 506 -C onfigureGyre(**CG**)628 +Ex: #5CAS-2<cr><div class="wikimodel-emptyline"></div> 507 507 508 -Ex: #5CG-1<cr> 630 +Writes the desired angular stiffness value to EEPROM. 631 +<div class="wikimodel-emptyline"></div></div></div> 632 +{{/html}} 509 509 510 - Thischanges the gyredirectionas described above and alsowritesto EEPROM.634 +====== __Angular Holding Stiffness (**AH**)__ ====== 511 511 512 -====== __20. First / Initial Position (pulse)__ ====== 636 +{{html wiki="true" clean="false"}} 637 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 638 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 513 513 514 - Incertaincases, a usermightwant to havethe servo move to a specific angle upon power up. We refer to thisasfirst position". The factorydefault has no first position valuestored in EEPROM and therefore upon power up, the servo remains limpuntila position(or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.640 +Ex: #5AH3<cr><div class="wikimodel-emptyline"></div> 515 515 516 - QueryFirstPositioninPulses(**QFP**)642 +This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div> 517 517 518 - Ex: #5QFP<cr>mightreturn *5QFP1550<cr>644 +Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div> 519 519 520 - Thereply above indicatesthatservo with ID 5 has a first positionpulse of 1550 microseconds. If no firstposition hasbeenset, servowill respond with DIS ("disabled").646 +Ex: #5QAH<cr> might return *5QAH3<cr><div class="wikimodel-emptyline"></div> 521 521 522 - ConfigureFirstPosition inPulses(**CFP**)648 +This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div> 523 523 524 - Ex:#5CP1550<cr>650 +Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div> 525 525 526 - Thisconfigurationcommand meanstheservo,when set to RC mode, willimmediately moveto an angle equivalent to having received an RC pulse of 1550microseconds upon power up. Sending a CFP command without a number resultsintheservo remaining limp upon power up (i.e.disabled).652 +Ex: #5CAH2<cr><div class="wikimodel-emptyline"></div> 527 527 528 -====== __21. First / Initial Position (Degrees)__ ====== 654 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 655 +<div class="wikimodel-emptyline"></div></div></div> 656 +{{/html}} 529 529 530 - Incertaincases, a user might want to have the servomove to a specificangleupon power up. We refer to this as "first position". The factory default has no first position valuestored in EEPROMandtherefore upon power up, the servo remains limp until a position (or hold command)is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.658 +====== __Angular Acceleration (**AA**)__ ====== 531 531 532 -Query First Position in Degrees (**QFD**) 660 +{{html wiki="true" clean="false"}} 661 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 662 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 533 533 534 -Ex: #5 QFD<cr> mightreturn*5QFD64<cr>664 +Ex: #5AA30<cr><div class="wikimodel-emptyline"></div> 535 535 536 -Th ereplyaboveindicatesthat servowith ID5hasafirstpositionpulseof 1550 microseconds.666 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 537 537 538 - ConfigureFirstPositionin Degrees(**CFD**)668 +Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div> 539 539 540 -Ex: #5 CD64<cr>670 +Ex: #5QAA<cr> might return *5QAA30<cr><div class="wikimodel-emptyline"></div> 541 541 542 -This configurationcommand means the servo, whensetto smartmode, will immediately moveto6.4degreesupon powerup. Sending a CFDcommandwithoutanumberresultsin theservoremaininglimpuponpower up.672 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 543 543 544 - ====== __22. QueryTargetPositionin Degrees(**QDT**)__======674 +Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div> 545 545 546 -Ex: #5 QDT<cr> mightreturn*5QDT6783<cr>676 +Ex: #5CAA30<cr><div class="wikimodel-emptyline"></div> 547 547 548 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 678 +This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 679 +<div class="wikimodel-emptyline"></div></div></div> 680 +{{/html}} 549 549 550 -====== __ 23. QueryModelString(**QMS**)__ ======682 +====== __Angular Deceleration (**AD**)__ ====== 551 551 552 -Ex: #5QMS<cr> might return *5QMSLSS-HS1cr> 684 +{{html wiki="true" clean="false"}} 685 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 686 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 553 553 554 - Thisreply meansthe servomodelis LSS-HS1, meaning a high speedservo, first revision.688 +Ex: #5AD30<cr><div class="wikimodel-emptyline"></div> 555 555 556 - ======__23b.QueryModel(**QM**)__======690 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 557 557 558 - Ex: #5QM<cr>mightreturn *5QM68702699520cr>692 +Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div> 559 559 560 - Thisreplymeansthe servomodelis 0xFFF000000 or 100, meaning a high speedservo, first revision.694 +Ex: #5QAD<cr> might return *5QAD30<cr><div class="wikimodel-emptyline"></div> 561 561 562 - ======__24. QuerySerialNumber (**QN**)__======696 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 563 563 564 - Ex: #5QN<cr> mightreturn *5QN~_~_<cr>698 +Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div> 565 565 566 - Thenumber intheresponse isthe servo'sserialnumberwhichis setand cannot bechanged.700 +Ex: #5CAD30<cr><div class="wikimodel-emptyline"></div> 567 567 568 -====== __25. Query Firmware (**QF**)__ ====== 702 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 703 +<div class="wikimodel-emptyline"></div></div></div> 704 +{{/html}} 569 569 570 - Ex:#5QF<cr>mightreturn *5QF11<cr>706 +====== __Gyre Direction (**G**)__ ====== 571 571 572 -The integer in the reply represents the firmware version with one decimal, in this example being 1.1 708 +{{html wiki="true" clean="false"}} 709 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 710 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div> 573 573 574 - ======__26. Query Status(**Q**)__======712 +Ex: #5G-1<cr><div class="wikimodel-emptyline"></div> 575 575 576 - Ex:#5Q<cr>might return*5Q6<cr>,whichindicates the motor is holdingaposition.714 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div> 577 577 578 -|*Value returned|**Status**|**Detailed description** 579 -|ex: *5Q0<cr>|Unknown|LSS is unsure 580 -|ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely 581 -|ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 582 -|ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed 583 -|ex: *5Q4<cr>|Traveling|Moving at a stable speed 584 -|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position. 585 -|ex: *5Q6<cr>|Holding|Keeping current position 586 -|ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque 587 -|ex: *5Q8<cr>|Outside limits|{More details coming soon} 588 -|ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 589 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 716 +Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div> 590 590 591 - ======__27.Query Voltage(**QV**)__======718 +Ex: #5QG<cr> might return *5QG-1<cr><div class="wikimodel-emptyline"></div> 592 592 593 - Ex:#5QV<cr>might return*5QV11200<cr>720 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div> 594 594 595 - Thenumber returnedhas onedecimal,so in thecase above,servowith ID 5 has aninput voltageof 11.2V (perhaps athree cell LiPo battery).722 +Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div> 596 596 597 - ======__28. QueryTemperature(**QT**)__ ======724 +Ex: #5CG-1<cr><div class="wikimodel-emptyline"></div> 598 598 599 -Ex: #5QT<cr> might return *5QT564<cr> 726 +This changes the gyre direction as described above and also writes to EEPROM. 727 +<div class="wikimodel-emptyline"></div></div></div> 728 +{{/html}} 600 600 601 - Theunits are in tenthsof degrees Celcius, so intheexample above, theservo'sinternal temperatureis 56.4 degrees C. Toconvertfrom degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C=133.52F.730 +====== __First Position__ ====== 602 602 603 -====== __29. Query Current (**QC**)__ ====== 732 +{{html wiki="true" clean="false"}} 733 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 734 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div> 604 604 605 - Ex: #5QC<cr>mightreturn *5QC140<cr>736 +Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div> 606 606 607 - Theunitsareinmilliamps,soin thexample above,the servois consuming 140mA, or 0.14A.738 +Ex: #5QFD<cr> might return *5QFD900<cr> <div class="wikimodel-emptyline"></div> 608 608 609 - ======__30.RCMode(**CRC**)__======740 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div> 610 610 611 - This command puts theservointoRC mode (positionor continuous),whereit will only respondto RCpulses. Note that because thisis thecase, theservowill no longer accept serial commands. Theservo can be placed back into smartmode byusing thebutton menu.742 +Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div> 612 612 613 -|**Command sent**|**Note** 614 -|ex: #5CRC<cr>|Stay in smart mode. 615 -|ex: #5CRC1<cr>|Change to RC position mode. 616 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 617 -|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode. 744 +Ex: #5CD900<cr><div class="wikimodel-emptyline"></div> 618 618 619 -EX: #5CRC<cr> 746 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 747 +<div class="wikimodel-emptyline"></div></div></div> 748 +{{/html}} 620 620 621 -====== __ 31.RESET__ ======750 +====== __Maximum Speed in Degrees (**SD**)__ ====== 622 622 623 -Ex: #5RESET<cr> or #5RS<cr> 752 +{{html wiki="true" clean="false"}} 753 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 754 +Ex: #5SD1800<cr><div class="wikimodel-emptyline"></div> 755 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 624 624 625 - This command does a "softreset"(nopower cyclerequired)andrevertsallcommandsto those storedin EEPROM (i.e. configurationcommands).757 +Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div> 626 626 627 - ======__32.DEFAULT&CONFIRM__======759 +Ex: #5QSD<cr> might return *5QSD1800<cr><div class="wikimodel-emptyline"></div> 628 628 629 - Ex:#5DEFAULT<cr>761 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 630 630 631 -This command sets in motion the reset all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 763 +|**Command sent**|**Returned value (1/10 °)** 764 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 765 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 766 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 767 +|ex: #5QSD3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 632 632 633 - EX: #5DEFAULT<cr>followedby#5CONFIRM<cr>769 +Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div> 634 634 635 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 771 +Ex: #5CSD1800<cr><div class="wikimodel-emptyline"></div> 772 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 773 +</div></div> 774 +{{/html}} 636 636 637 - Notethat after the CONFIRMcommandis sent, the servo will automaticallyperformaRESET.776 +====== __Maximum Speed in RPM (**SR**)__ ====== 638 638 639 -====== __33. UPDATE & CONFIRM__ ====== 778 +{{html wiki="true" clean="false"}} 779 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 780 +Ex: #5SR45<cr><div class="wikimodel-emptyline"></div> 781 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 640 640 641 - Ex:#5UPDATE<cr>783 +Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div> 642 642 643 - Thiscommand setsinmotion the equivalentof a long button press whenthe servo isnotpowered in orderto enterfirmware update mode. Thisis usefulshould the button be broken or inaccessible. The servo thenwaits for the CONFIRM command. Anyother commandreceived will causehe servo to exit the UPDATE function.785 +Ex: #5QSR<cr> might return *5QSR45<cr><div class="wikimodel-emptyline"></div> 644 644 645 - EX:#5UPDATE<cr>followedby #5CONFIRM<cr>787 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 646 646 647 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 789 +|**Command sent**|**Returned value (1/10 °)** 790 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 791 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 792 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 793 +|ex: #5QSR3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 648 648 649 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 795 +Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div> 796 + 797 +Ex: #5CSR45<cr><div class="wikimodel-emptyline"></div> 798 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 799 +</div></div> 800 +{{/html}} 801 + 802 +== Modifiers == 803 + 804 +====== __Speed (**S**, **SD**) modifier__ ====== 805 + 806 +{{html wiki="true" clean="false"}} 807 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 808 +Example: #5P1500S750<cr><div class="wikimodel-emptyline"></div> 809 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 810 +Example: #5D0SD180<cr><div class="wikimodel-emptyline"></div> 811 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second.<div class="wikimodel-emptyline"></div> 812 +Query Speed (**QS**)<div class="wikimodel-emptyline"></div> 813 +Example: #5QS<cr> might return *5QS300<cr><div class="wikimodel-emptyline"></div> 814 +This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div> 815 +</div></div> 816 +{{/html}} 817 + 818 +====== __Timed move (**T**) modifier__ ====== 819 + 820 +{{html wiki="true" clean="false"}} 821 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 822 +Example: #5P1500T2500<cr><div class="wikimodel-emptyline"></div> 823 + 824 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 825 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div> 826 +</div></div> 827 +{{/html}} 828 + 829 +====== __Current Halt & Hold (**CH**) modifier__ ====== 830 + 831 +{{html wiki="true" clean="false"}} 832 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 833 +Example: #5D1423CH400<cr><div class="wikimodel-emptyline"></div> 834 + 835 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div> 836 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 837 +</div></div> 838 +{{/html}} 839 + 840 +====== __Current Limp (**CL**) modifier__ ====== 841 + 842 +{{html wiki="true" clean="false"}} 843 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 844 +Example: #5D1423CL400<cr><div class="wikimodel-emptyline"></div> 845 + 846 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div> 847 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 848 +</div></div> 849 +{{/html}} 850 + 851 +== Telemetry == 852 + 853 +====== __Query Voltage (**QV**)__ ====== 854 + 855 +{{html wiki="true" clean="false"}} 856 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 857 +Ex: #5QV<cr> might return *5QV11200<cr><div class="wikimodel-emptyline"></div> 858 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div> 859 +</div></div> 860 +{{/html}} 861 + 862 +====== __Query Temperature (**QT**)__ ====== 863 + 864 +{{html wiki="true" clean="false"}} 865 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 866 +Ex: #5QT<cr> might return *5QT564<cr><div class="wikimodel-emptyline"></div> 867 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div> 868 +</div></div> 869 +{{/html}} 870 + 871 +====== __Query Current (**QC**)__ ====== 872 + 873 +{{html wiki="true" clean="false"}} 874 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 875 +Ex: #5QC<cr> might return *5QC140<cr><div class="wikimodel-emptyline"></div> 876 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div> 877 +</div></div> 878 +{{/html}} 879 + 880 +====== __Query Model String (**QMS**)__ ====== 881 + 882 +{{html wiki="true" clean="false"}} 883 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 884 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr><div class="wikimodel-emptyline"></div> 885 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div> 886 +</div></div> 887 +{{/html}} 888 + 889 +====== __Query Firmware (**QF**)__ ====== 890 + 891 +{{html wiki="true" clean="false"}} 892 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 893 +Ex: #5QF<cr> might return *5QF368<cr><div class="wikimodel-emptyline"></div> 894 +The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div> 895 +The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div> 896 +</div></div> 897 +{{/html}} 898 + 899 +====== __Query Serial Number (**QN**)__ ====== 900 + 901 +{{html wiki="true" clean="false"}} 902 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 903 +Ex: #5QN<cr> might return *5QN12345678<cr><div class="wikimodel-emptyline"></div> 904 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div> 905 +</div></div> 906 +{{/html}} 907 + 908 +== RGB LED == 909 + 910 +====== __LED Color (**LED**)__ ====== 911 + 912 +{{html wiki="true" clean="false"}} 913 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 914 +Ex: #5LED3<cr><div class="wikimodel-emptyline"></div> 915 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div> 916 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div> 917 +Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div> 918 +Ex: #5QLED<cr> might return *5QLED5<cr><div class="wikimodel-emptyline"></div> 919 +This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div> 920 +Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div> 921 +Ex: #5CLED3<cr><div class="wikimodel-emptyline"></div> 922 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div> 923 +</div></div> 924 +{{/html}} 925 + 926 +====== __Configure LED Blinking (**CLB**)__ ====== 927 + 928 +{{html wiki="true" clean="false"}} 929 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 930 +This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div> 931 + 932 +(% style="width:195px" %) 933 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 934 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 935 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1 936 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2 937 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 938 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 939 +|(% style="width:134px" %)Free|(% style="width:58px" %)16 940 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 941 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div> 942 + 943 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div> 944 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div> 945 +Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div> 946 +Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div> 947 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div> 948 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div> 949 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div> 950 +RESETTING the servo is needed.<div class="wikimodel-emptyline"></div> 951 +</div></div> 952 +{{/html}} 953 + 954 += RGB LED Patterns = 955 + 956 +The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] 957 + 958 +[[image:LSS - LED Patterns.png]]
- LSS - LED Patterns.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.RB1 - Size
-
... ... @@ -1,0 +1,1 @@ 1 +116.3 KB - Content