Last modified by Eric Nantel on 2024/11/21 09:43

From version < 91.1 >
edited by Eric Nantel
on 2019/01/24 14:40
To version < 98.2 >
edited by Coleman Benson
on 2019/02/05 11:13
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.ENantel
1 +xwiki:XWiki.CBenson
Hidden
... ... @@ -1,1 +1,1 @@
1 -true
1 +false
Content
... ... @@ -3,17 +3,21 @@
3 3  
4 4  {{toc depth="3"/}}
5 5  
6 -= Protocol Concepts =
6 += Serial Protocol Concept =
7 7  
8 -The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available.
8 +The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 RC servo controller and almost everything one might expect to be able to configure for a smart servo motor is available.
9 9  
10 +In order to have servos react differently when commands are sent to all servos in a serial bus, the first step a user should take is to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol.
11 +
10 10  == Session ==
11 11  
12 12  A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
13 13  
16 +Note that for a given session, the action related to a specific commands overrides the stored value in EEPROM.
17 +
14 14  == Action Commands ==
15 15  
16 -Action commands are sent serially to the servo's Rx pin and must be set in the following format:
20 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
17 17  
18 18  1. Start with a number sign # (U+0023)
19 19  1. Servo ID number as an integer
... ... @@ -24,15 +24,11 @@
24 24  (((
25 25  Ex: #5PD1443<cr>
26 26  
27 -Move servo with ID #5 to a position of 144.3 degrees.
31 +This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
28 28  
29 -Action commands cannot be combined with query commands, and only one action command can be sent at a time.
30 -
31 -Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page).
32 -
33 33  == Action Modifiers ==
34 34  
35 -Two commands can be used as action modifiers only: Timed Move and Speed. The format is:
35 +Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is:
36 36  
37 37  1. Start with a number sign # (U+0023)
38 38  1. Servo ID number as an integer
... ... @@ -44,32 +44,12 @@
44 44  
45 45  Ex: #5P1456T1263<cr>
46 46  
47 -Results in the servo rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds.
48 -
49 -Action modifiers can only be used with certain commands.
47 +This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds.
50 50  )))
51 51  
52 -== Configuration Commands ==
53 -
54 -Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]].
55 -
56 -1. Start with a number sign # (U+0023)
57 -1. Servo ID number as an integer
58 -1. Configuration command (two to three letters, no spaces, capital or lower case)
59 -1. Configuration value in the correct units with no decimal
60 -1. End with a control / carriage return '<cr>'
61 -
62 -Ex: #5CO-50<cr>
63 -
64 -Assigns an absolute origin offset of -5.0 degrees (with respect to factory origin) to servo #5 and changes the offset for that session to -5.0 degrees.
65 -
66 -Configuration commands are not cumulative, in that if two configurations are sent at any time, only the last configuration is used and stored.
67 -
68 -*Important Note: the one exception is the baud rate - the servo's current session retains the given baud rate. The new baud rate will only be in place when the servo is power cycled.
69 -
70 70  == Query Commands ==
71 71  
72 -Query commands are sent serially to the servo's Rx pin and must be set in the following format:
52 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
73 73  
74 74  1. Start with a number sign # (U+0023)
75 75  1. Servo ID number as an integer
... ... @@ -81,49 +81,61 @@
81 81  )))
82 82  
83 83  (((
84 -The query will return a value via the Tx pin with the following format:
64 +The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
85 85  
86 -1. Start with an asterisk (U+002A)
66 +1. Start with an asterisk * (U+002A)
87 87  1. Servo ID number as an integer
88 88  1. Query command (one to three letters, no spaces, capital letters)
89 89  1. The reported value in the units described, no decimals.
90 90  1. End with a control / carriage return '<cr>'
91 91  
72 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be:
73 +
92 92  (((
93 93  Ex: *5QD1443<cr>
94 94  )))
95 95  
96 -Indicates that servo #5 is currently at 144.3 degrees.
78 +This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees).
97 97  
98 -**Session vs Configuration Query**
80 +== Configuration Commands ==
99 99  
100 -By default, the query command returns the sessions' value; should no action commands have been sent to change, it will return the value saved in EEPROM from the last configuration command.
82 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory aftethe servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
101 101  
102 -In order to query the value in EEPROM, add a '1' to the query command.
84 +1. Start with a number sign # (U+0023)
85 +1. Servo ID number as an integer
86 +1. Configuration command (two to three letters, no spaces, capital or lower case)
87 +1. Configuration value in the correct units with no decimal
88 +1. End with a control / carriage return '<cr>'
103 103  
104 -Ex: #5CSR20<cr> sets the maximum speed for servo #5 to 20rpm upon RESET (explained below).
90 +Ex: #5CO-50<cr>
105 105  
106 -After RESET: #5SR4<cr> sets the session's speed to 4rpm.
92 +This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.
107 107  
108 -#5QSR<cr> would return *5QSR4<cr> which represents the value for that session.
94 +**Session vs Configuration Query**
109 109  
96 +By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
97 +
98 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
99 +
100 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
101 +
102 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas
103 +
110 110  #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
111 111  
112 112  == Virtual Angular Position ==
113 113  
114 -{In progress}
108 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
115 115  
116 -A "virtual position" is one which allows for multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to 360.0 degrees.
117 -
118 118  [[image:LSS-servo-positions.jpg]]
119 119  
120 -Example: Gyre direction / rotation is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees.
112 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
121 121  
122 -#1D-300<cr> The servo is sent a command to move to -30.0 degrees (green arrow)
114 +#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
123 123  
124 124  #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
125 125  
126 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees stopping at an absolute position of 60.0 degrees (420.0-360.0), with a virtual position of -420.0 degrees.
118 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
127 127  
128 128  Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
129 129  
... ... @@ -136,53 +136,72 @@
136 136  
137 137  = Command List =
138 138  
139 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes|=(% style="width: 50px;" %)
140 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none| |
141 -| 2|[[**H**alt & Hold>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none| |
142 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds| Modifier only (P, D, MD)|
143 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds / second| Modifier only (P)|
144 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |
145 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |
146 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |
147 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(((
148 -See details below
149 -)))|
150 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |
151 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|A.K.A. "Speed mode" or "Continuous rotation"|
152 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|A.K.A. "Speed mode" or "Continuous rotation"|
153 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD| CSD| ✓| ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed|
154 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR| CSR| ✓| ✓|rpm|QSR: Add modifier "2" for instantaneous speed|
155 -| 14|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4|
156 -| 15|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0. |
157 -|15b|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared|
158 -|15c|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared|
159 -|15d|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles|
160 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|7
161 -| 16b|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|
162 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to|
163 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)| |
164 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|
165 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none | |
166 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none | |
167 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |
168 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)| Recommended to determine the model| |
169 -| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)| Returns a raw value representing the three model inputs (36 bit)| |
170 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)| |
171 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)| |
172 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)| See command description for details|
173 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)| |
174 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)|
175 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)| |
176 -| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|(((
177 -CRC: Add modifier "1" for RC-position mode.
178 -CRC: Add modifier "2" for RC-wheel mode.
179 -Any other value for the modifier results in staying in smart mode.
180 -Puts the servo into RC mode. To revert to smart mode, use the button menu.
181 -)))|
182 -|31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|Soft reset. See command for details.|
183 -|32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|Revert to firmware default values. See command for details|
184 -|33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|Update firmware. See command for details.|
131 +|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
132 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
133 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
134 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)
135 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)
136 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
137 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
138 +0
139 +)))
140 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
141 +1800
142 +)))
143 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | | ✓|microseconds|(% style="width:510px" %)(((
144 +Inherited from SSC-32 serial protocol
145 +)))|(% style="text-align:center; width:113px" %)
146 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
147 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
148 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
149 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD|✓| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)(((
150 +QSD: Add modifier "2" for instantaneous speed.
185 185  
152 +SD overwrites SR / CSD overwrites CSR and vice-versa.
153 +)))|(% style="text-align:center; width:113px" %)Max per servo
154 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
155 +QSR: Add modifier "2" for instantaneous speed
156 +
157 +SR overwrites SD / CSR overwrites CSD and vice-versa.
158 +)))|(% style="text-align:center; width:113px" %)Max per servo
159 +| 14|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
160 +| 15|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0
161 +| 16|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
162 +| 17|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
163 +| 18|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((
164 +Limp
165 +)))
166 +| 19|[[**F**irst Position (**D**eg)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| | ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp
167 +| 20|[[**T**arget (**D**eg) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
168 +| 21|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %)
169 +| 22|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
170 +| 23|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
171 +| 24|[[**Q**uery (gen. status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
172 +| 25|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
173 +| 26|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
174 +| 27|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
175 +| 28|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1|✓| | ✓|none|(% style="width:510px" %)(((
176 +Change to RC position mode. To revert to smart mode, use the button menu.
177 +)))|(% style="text-align:center; width:113px" %)Serial
178 +| 29|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2|✓| | ✓| |(% style="width:510px" %)Change to RC wheel mode. To revert to smart mode, use the button menu.|(% style="text-align:center; width:113px" %)Serial
179 +| 30|[[**RESET**>>||anchor="H31.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
180 +| 31|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
181 +| 32|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
182 +
183 +== Advanced ==
184 +
185 +|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
186 +| A1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS|✓| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0
187 +| A2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH|✓| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1
188 +| A3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
189 +| A4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
190 +| A5|[[**E**nable **M**otion Control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %)
191 +| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| | ✓| |none (integer from 0 to 63)|(% style="width:510px" %)(((
192 +0=No blinking, 63=Always blink;
193 +
194 +Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
195 +)))|(% style="text-align:center; width:113px" %)
196 +
186 186  == Details ==
187 187  
188 188  ====== __1. Limp (**L**)__ ======
... ... @@ -195,13 +195,13 @@
195 195  
196 196  Example: #5H<cr>
197 197  
198 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position.
209 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position.
199 199  
200 200  ====== __3. Timed move (**T**)__ ======
201 201  
202 202  Example: #5P1500T2500<cr>
203 203  
204 -Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
215 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
205 205  
206 206  Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
207 207  
... ... @@ -221,11 +221,11 @@
221 221  
222 222  Example: #5O2400<cr>
223 223  
224 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position. The setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. Note that for a given session, the O command overrides the CO command. In the first image, the origin at factory offset '0' (centered).
235 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
225 225  
226 226  [[image:LSS-servo-default.jpg]]
227 227  
228 -In the second image, the origina, as well as the angular range (explained below) have been shifted by 240.0 degrees:
239 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
229 229  
230 230  [[image:LSS-servo-origin.jpg]]
231 231  
... ... @@ -233,33 +233,33 @@
233 233  
234 234  Example: #5QO<cr> Returns: *5QO-13
235 235  
236 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position.
247 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
237 237  
238 238  Configure Origin Offset (**CO**)
239 239  
240 240  Example: #5CO-24<cr>
241 241  
242 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode.
253 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
243 243  
244 244  ====== __7. Angular Range (**AR**)__ ======
245 245  
246 246  Example: #5AR1800<cr>
247 247  
248 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). In the first image,
259 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
249 249  
250 250  [[image:LSS-servo-default.jpg]]
251 251  
252 -Here, the angular range has been restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
263 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
253 253  
254 254  [[image:LSS-servo-ar.jpg]]
255 255  
256 -The angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) an be used to move both the center and limit the angular range:
267 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
257 257  
258 258  [[image:LSS-servo-ar-o-1.jpg]]
259 259  
260 260  Query Angular Range (**QAR**)
261 261  
262 -Example: #5QAR<cr> might return *5AR2756
273 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
263 263  
264 264  Configure Angular Range (**CAR**)
265 265  
... ... @@ -316,22 +316,22 @@
316 316  
317 317  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
318 318  
319 -====== __12. Speed in Degrees (**SD**)__ ======
330 +====== __12. Max Speed in Degrees (**SD**)__ ======
320 320  
321 321  Ex: #5SD1800<cr>
322 322  
323 -This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
334 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
324 324  
325 325  Query Speed in Degrees (**QSD**)
326 326  
327 327  Ex: #5QSD<cr> might return *5QSD1800<cr>
328 328  
329 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed.
340 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed.
330 330  If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
331 331  
332 332  |**Command sent**|**Returned value (1/10 °)**
333 333  |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
334 -|ex: #5QSD1<cr>|Configured maximum speed  (set by CSD/CSR)
345 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
335 335  |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
336 336  |ex: #5QSD3<cr>|Target travel speed
337 337  
... ... @@ -341,22 +341,22 @@
341 341  
342 342  Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
343 343  
344 -====== __13. Speed in RPM (**SR**)__ ======
355 +====== __13. Max Speed in RPM (**SR**)__ ======
345 345  
346 346  Ex: #5SD45<cr>
347 347  
348 -This command sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
359 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
349 349  
350 350  Query Speed in Degrees (**QSR**)
351 351  
352 352  Ex: #5QSR<cr> might return *5QSR45<cr>
353 353  
354 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed.
365 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed.
355 355  If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
356 356  
357 357  |**Command sent**|**Returned value (1/10 °)**
358 358  |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
359 -|ex: #5QSR1<cr>|Configured maximum speed  (set by CSD/CSR)
370 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
360 360  |ex: #5QSR2<cr>|Instantaneous speed (same as QWR)
361 361  |ex: #5QSR3<cr>|Target travel speed
362 362  
... ... @@ -364,68 +364,10 @@
364 364  
365 365  Ex: #5CSR45<cr>
366 366  
367 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
378 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
368 368  
369 -====== __14. Angular Stiffness (**AS**)__ ======
380 +====== ======
370 370  
371 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
372 -
373 -A positive value of "angular stiffness":
374 -
375 -* The more torque will be applied to try to keep the desired position against external input / changes
376 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
377 -
378 -A negative value on the other hand:
379 -
380 -* Causes a slower acceleration to the travel speed, and a slower deceleration
381 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back
382 -
383 -The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior.
384 -
385 -Ex: #5AS-2<cr>
386 -
387 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
388 -
389 -Ex: #5QAS<cr>
390 -
391 -Queries the value being used.
392 -
393 -Ex: #5CAS<cr>
394 -
395 -Writes the desired angular stiffness value to memory.
396 -
397 -====== __15. Angular Hold Stiffness (**AH**)__ ======
398 -
399 -The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
400 -
401 -Ex: #5AH3<cr>
402 -
403 -This sets the holding stiffness for servo #5 to 3 for that session.
404 -
405 -Query Angular Hold Stiffness (**QAH**)
406 -
407 -Ex: #5QAH<cr> might return *5QAH3<cr>
408 -
409 -This returns the servo's angular holding stiffness value.
410 -
411 -Configure Angular Hold Stiffness (**CAH**)
412 -
413 -Ex: #5CAH2<cr>
414 -
415 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM
416 -
417 -====== __15b: Angular Acceleration (**AA**)__ ======
418 -
419 -{More details to come}
420 -
421 -====== __15c: Angular Deceleration (**AD**)__ ======
422 -
423 -{More details to come}
424 -
425 -====== __15d: Motion Control (**EM**)__ ======
426 -
427 -{More details to come}
428 -
429 429  ====== __16. RGB LED (**LED**)__ ======
430 430  
431 431  Ex: #5LED3<cr>
... ... @@ -444,20 +444,6 @@
444 444  
445 445  Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
446 446  
447 -====== __16b. Configure LED Blinking (**CLB**)__ ======
448 -
449 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details).
450 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
451 -
452 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
453 -
454 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
455 -Ex: #5CLB1<cr> only blink when limp
456 -Ex: #5CLB2<cr> only blink when holding
457 -Ex: #5CLB12<cr> only blink when accel or decel
458 -Ex: #5CLB48<cr> only blink when free or travel
459 -Ex: #5CLB63<cr> blink in all status
460 -
461 461  ====== __17. Identification Number__ ======
462 462  
463 463  A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
... ... @@ -487,6 +487,8 @@
487 487  
488 488  Configure Baud Rate (**CB**)
489 489  
429 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled.
430 +
490 490  Ex: #5CB9600<cr>
491 491  
492 492  Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
... ... @@ -647,3 +647,77 @@
647 647  Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
648 648  
649 649  Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
591 +
592 +====== __A1. Angular Stiffness (**AS**)__ ======
593 +
594 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
595 +
596 +A positive value of "angular stiffness":
597 +
598 +* The more torque will be applied to try to keep the desired position against external input / changes
599 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
600 +
601 +A negative value on the other hand:
602 +
603 +* Causes a slower acceleration to the travel speed, and a slower deceleration
604 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back
605 +
606 +The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior.
607 +
608 +Ex: #5AS-2<cr>
609 +
610 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
611 +
612 +Ex: #5QAS<cr>
613 +
614 +Queries the value being used.
615 +
616 +Ex: #5CAS<cr>
617 +
618 +Writes the desired angular stiffness value to memory.
619 +
620 +====== __A2. Angular Holding Stiffness (**AH**)__ ======
621 +
622 +The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
623 +
624 +Ex: #5AH3<cr>
625 +
626 +This sets the holding stiffness for servo #5 to 3 for that session.
627 +
628 +Query Angular Hold Stiffness (**QAH**)
629 +
630 +Ex: #5QAH<cr> might return *5QAH3<cr>
631 +
632 +This returns the servo's angular holding stiffness value.
633 +
634 +Configure Angular Hold Stiffness (**CAH**)
635 +
636 +Ex: #5CAH2<cr>
637 +
638 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM
639 +
640 +====== __A3: Angular Acceleration (**AA**)__ ======
641 +
642 +{More details to come}
643 +
644 +====== __A4: Angular Deceleration (**AD**)__ ======
645 +
646 +{More details to come}
647 +
648 +====== __A5: Motion Control (**EM**)__ ======
649 +
650 +{More details to come}
651 +
652 +====== __A6. Configure LED Blinking (**CLB**)__ ======
653 +
654 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details).
655 +You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
656 +
657 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
658 +
659 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
660 +Ex: #5CLB1<cr> only blink when limp
661 +Ex: #5CLB2<cr> only blink when holding
662 +Ex: #5CLB12<cr> only blink when accel or decel
663 +Ex: #5CLB48<cr> only blink when free or travel
664 +Ex: #5CLB63<cr> blink in all status
XWiki.XWikiRights[0]
Allow/Deny
... ... @@ -1,0 +1,1 @@
1 +Allow
Groups
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.XWikiAdminGroup
Levels
... ... @@ -1,0 +1,1 @@
1 +view
XWiki.XWikiRights[1]
Allow/Deny
... ... @@ -1,0 +1,1 @@
1 +Allow
Groups
... ... @@ -1,0 +1,1 @@
1 +XWiki.XWikiAdminGroup
Levels
... ... @@ -1,0 +1,1 @@
1 +view
XWiki.XWikiRights[2]
Allow/Deny
... ... @@ -1,0 +1,1 @@
1 +Allow
Groups
... ... @@ -1,0 +1,1 @@
1 +XWiki.Profiles (Lynxmotion).BETA Testers
Levels
... ... @@ -1,0 +1,1 @@
1 +view
Copyright RobotShop 2018