Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (4 modified, 0 added, 0 removed)
-
Objects (0 modified, 0 added, 2 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 - LynxmotionmartServo(LSS).WebHome1 +lynxmotion:LSS - Overview (DEV).WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -xwiki:XWiki. ENantel1 +xwiki:XWiki.RB1 - Tags
-
... ... @@ -1,1 +1,1 @@ 1 -LSS|communication|protocol|programming|firmware|control |LSS-Ref1 +LSS|communication|protocol|programming|firmware|control - Content
-
... ... @@ -1,9 +4,6 @@ 1 -(% class="wikigeneratedid" id="HTableofContents" %) 2 -**Table of Contents** 3 - 4 4 {{toc depth="3"/}} 5 5 6 -= Protocol Concepts =3 += Protocol concepts = 7 7 8 8 The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available. 9 9 ... ... @@ -30,7 +30,7 @@ 30 30 31 31 Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page). 32 32 33 -== Action Modifiers == 30 +=== Action Modifiers === 34 34 35 35 Two commands can be used as action modifiers only: Timed Move and Speed. The format is: 36 36 ... ... @@ -51,7 +51,7 @@ 51 51 52 52 == Configuration Commands == 53 53 54 -Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:L ynxmotionSmartServo(LSS).LSS - RC PWM.WebHome]].51 +Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:LSS - Overview (DEV).LSS - RC PWM.WebHome]]. 55 55 56 56 1. Start with a number sign # (U+0023) 57 57 1. Servo ID number as an integer ... ... @@ -109,7 +109,7 @@ 109 109 110 110 #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 111 111 112 -== Virtual Angular Position == 109 +=== Virtual Angular Position === 113 113 114 114 {In progress} 115 115 ... ... @@ -136,62 +136,51 @@ 136 136 137 137 = Command List = 138 138 139 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes|=(% style="width: 50px;" %)Default 140 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none| |(% style="text-align:center" %) 141 -| 2|[[**H**alt & Hold>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none| |(% style="text-align:center" %) 142 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds| Modifier only (P, D, MD)|(% style="text-align:center" %) 143 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds / second| Modifier only (P)|(% style="text-align:center" %) 144 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %) 145 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %)((( 146 -00 147 - 148 -0.0 degrees 149 -))) 150 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %)((( 151 -1800 152 - 153 -180.0 degrees 154 -))) 155 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|((( 136 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes 137 +| 1|**L**imp| L| | | | ✓| none| 138 +| 2|**H**alt & Hold| H| | | | ✓| none| 139 +| 3|**T**imed move| T| | | | ✓| milliseconds| Modifier only 140 +| 4|**S**peed| S| | | | ✓| microseconds / second| Modifier only 141 +| 5|**M**ove in **D**egrees (relative)| MD| | | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 142 +| 6|**O**rigin Offset| O| QO| CO| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 143 +| 7|**A**ngular **R**ange| AR| QAR| CAR| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 144 +| 8|Position in **P**ulse| P| QP| | | ✓| microseconds|((( 156 156 See details below 157 -)))|(% style="text-align:center" %) 158 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %) 159 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center" %) 160 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center" %) 161 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD| CSD| ✓| ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed|(% style="text-align:center" %) 162 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR| CSR| ✓| ✓|rpm|QSR: Add modifier "2" for instantaneous speed|(% style="text-align:center" %) 163 -| 14|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4|(% style="text-align:center" %)0 164 -| 15|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0. |(% style="text-align:center" %) 165 -|15b|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared|(% style="text-align:center" %) 166 -|15c|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared|(% style="text-align:center" %) 167 -|15d|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles|(% style="text-align:center" %) 168 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center" %)7 169 -| 16b|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center" %) 170 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center" %)0 171 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)| |(% style="text-align:center" %)9600 172 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center" %)1 Clowckwise 173 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none | |(% style="text-align:center" %)((( 174 -Limp 175 175 ))) 176 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none | |(% style="text-align:center" %)Limp 177 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %) 178 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)| Recommended to determine the model|(% style="text-align:center" %) | 179 -| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)| Returns a raw value representing the three model inputs (36 bit)|(% style="text-align:center" %) | 180 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)| |(% style="text-align:center" %) 181 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)| |(% style="text-align:center" %) 182 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)| See command description for details|(% style="text-align:center" %) 183 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)| |(% style="text-align:center" %) 184 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)|(% style="text-align:center" %) 185 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)| |(% style="text-align:center" %) 186 -| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|((( 147 +| 9|Position in **D**egrees| D| QD| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 148 +| 10|**W**heel mode in **D**egrees| WD| QWD| | | ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)| 149 +| 11|**W**heel mode in **R**PM| WR| QWR| | | ✓| rpm| 150 +| 12|Max **S**peed in **D**egrees| SD| QSD| CSD| ✓| ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed 151 +| 13|Max **S**peed in **R**PM| SR| QSR| CSR| ✓| ✓| rpm|QSR: Add modifier "2" for instantaneous speed 152 +| 14|**A**ngular **S**tiffness| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4 153 +| 15|**A**ngular **H**olding Stiffness|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0. 154 +|15b|**A**ngular **A**cceleration|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared 155 +|15c|**A**ngular **D**eceleration|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared 156 +|15d|**M**otion **C**ontrol|MC|QMC| | | ✓|none|MC0 to disable motion control, MC1 to enable. Session specific 157 +| 16|**LED** Color| LED| QLED| CLED| ✓| ✓| none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6=MAGENTA, 7=WHITE 158 +| 17|**ID** #| | QID| CID| | ✓| none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to 159 +| 18|**B**aud rate| B| QB| CB| | ✓| none (integer)| 160 +| 19|**G**yre direction (**G**)| G| QG| CG| ✓| ✓| none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise) 161 +| 20|**F**irst Position (**P**ulse)| | QFP|CFP | ✓| ✓| none | 162 +| 21|**F**irst Position (**D**egrees)| | QFD|CFD| ✓| ✓| none | 163 +| 22|**T**arget (**D**egree) **P**osition| | QDT| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 164 +| 23|**M**odel **String**| | QMS| | | | none (string)| Recommended to determine the model| 165 +| 23b|**M**odel| | QM| | | | none (integer)| Returns a raw value representing the three model inputs (36 bit)| 166 +| 24|Serial **N**umber| | QN| | | | none (integer)| 167 +| 25|**F**irmware version| | QF| | | | none (integer)| 168 +| 26|**Q**uery (general status)| | Q| | | ✓| none (integer from 1 to 8)| See command description for details 169 +| 27|**V**oltage| | QV| | | ✓| millivolts (ex 5936 = 5936mV = 5.936V)| 170 +| 28|**T**emperature| | QT| | | ✓| tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp) 171 +| 29|**C**urrent| | QC| | | ✓| milliamps (ex 200 = 0.2A)| 172 +| 30|**RC** Mode| | |CRC| |✓|none|((( 187 187 CRC: Add modifier "1" for RC-position mode. 188 188 CRC: Add modifier "2" for RC-wheel mode. 189 189 Any other value for the modifier results in staying in smart mode. 190 190 Puts the servo into RC mode. To revert to smart mode, use the button menu. 191 -))) |(% style="text-align:center" %)Serial192 -|31| [[**RESET**>>||anchor="H31.RESET"]]|| | | | ✓|none|Soft reset. See command for details.|(% style="text-align:center" %)193 -|32| [[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]|| | | |✓|none|Revert to firmware default values. See command for details|(% style="text-align:center" %)194 -|33| [[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]|| | | |✓|none|Update firmware. See command for details.|(% style="text-align:center" %)177 +))) 178 +|31|**RESET**| | | | | ✓|none|Soft reset. See command for details. 179 +|32|**DEFAULT**| | | | |✓|none|Revert to firmware default values. See command for details 180 +|33|**UPDATE**| | | | |✓|none|Update firmware. See command for details. 195 195 196 196 == Details == 197 197 ... ... @@ -201,33 +201,31 @@ 201 201 202 202 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 203 203 204 - ======__2. Halt & Hold (**H**)__======190 +__2. Halt & Hold (**H**)__ 205 205 206 206 Example: #5H<cr> 207 207 208 208 This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position. 209 209 210 - ======__3. Timed move (**T**)__======196 +__3. Timed move (**T**)__ 211 211 212 212 Example: #5P1500T2500<cr> 213 213 214 214 Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 215 215 216 - Note:If the calculated speedat which a servo must rotate for a timed move is greater than its maximum speed(which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.202 +__4. Speed (**S**)__ 217 217 218 -====== __4. Speed (**S**)__ ====== 219 - 220 220 Example: #5P1500S750<cr> 221 221 222 222 This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 223 223 224 - ======__5. (Relative) Move in Degrees (**MD**)__======208 +__5. (Relative) Move in Degrees (**MD**)__ 225 225 226 226 Example: #5MD123<cr> 227 227 228 228 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 229 229 230 - ======__6. Origin Offset Action (**O**)__======214 +__6. Origin Offset Action (**O**)__ 231 231 232 232 Example: #5O2400<cr> 233 233 ... ... @@ -251,7 +251,7 @@ 251 251 252 252 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. 253 253 254 - ======__7. Angular Range (**AR**)__======238 +__7. Angular Range (**AR**)__ 255 255 256 256 Example: #5AR1800<cr> 257 257 ... ... @@ -275,7 +275,7 @@ 275 275 276 276 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 277 277 278 - ======__8. Position in Pulse (**P**)__======262 +__8. Position in Pulse (**P**)__ 279 279 280 280 Example: #5P2334<cr> 281 281 ... ... @@ -288,7 +288,7 @@ 288 288 This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 289 289 Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 290 290 291 - ======__9. Position in Degrees (**D**)__======275 +__9. Position in Degrees (**D**)__ 292 292 293 293 Example: #5PD1456<cr> 294 294 ... ... @@ -302,7 +302,7 @@ 302 302 303 303 This means the servo is located at 13.2 degrees. 304 304 305 - ======__10. Wheel Mode in Degrees (**WD**)__======289 +__10. Wheel Mode in Degrees (**WD**)__ 306 306 307 307 Ex: #5WD900<cr> 308 308 ... ... @@ -314,7 +314,7 @@ 314 314 315 315 The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 316 316 317 - ======__11. Wheel Mode in RPM (**WR**)__======301 +__11. Wheel Mode in RPM (**WR**)__ 318 318 319 319 Ex: #5WR40<cr> 320 320 ... ... @@ -326,7 +326,7 @@ 326 326 327 327 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 328 328 329 - ======__12. Speed in Degrees (**SD**)__======313 +__12. Speed in Degrees (**SD**)__ 330 330 331 331 Ex: #5SD1800<cr> 332 332 ... ... @@ -351,7 +351,7 @@ 351 351 352 352 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 353 353 354 - ======__13. Speed in RPM (**SR**)__======338 +__13. Speed in RPM (**SR**)__ 355 355 356 356 Ex: #5SD45<cr> 357 357 ... ... @@ -376,7 +376,7 @@ 376 376 377 377 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 378 378 379 - ======__14. Angular Stiffness (**AS**)__======363 +__14. Angular Stiffness (**AS**)__ 380 380 381 381 The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 382 382 ... ... @@ -404,7 +404,7 @@ 404 404 405 405 Writes the desired angular stiffness value to memory. 406 406 407 - ======__15. Angular Hold Stiffness (**AH**)__======391 +__15. Angular Hold Stiffness (**AH**)__ 408 408 409 409 The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 410 410 ... ... @@ -424,19 +424,19 @@ 424 424 425 425 This writes the angular holding stiffness of servo #5 to 2 to EEPROM 426 426 427 - ======__15b: Angular Acceleration (**AA**)__======411 +__15b: Angular Acceleration (**AA**)__ 428 428 429 429 {More details to come} 430 430 431 - ======__15c: Angular Deceleration (**AD**)__======415 +__15c: Angular Deceleration (**AD**)__ 432 432 433 433 {More details to come} 434 434 435 - ======__15d: Motion Control (**EM**)__======419 +__15d: Motion Control (**MC**)__ 436 436 437 437 {More details to come} 438 438 439 - ======__16. RGB LED (**LED**)__======423 +__16. RGB LED (**LED**)__ 440 440 441 441 Ex: #5LED3<cr> 442 442 ... ... @@ -454,22 +454,8 @@ 454 454 455 455 Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 456 456 457 - ======__16b.Configure LED Blinking(**CLB**)__======441 +__17. Identification Number__ 458 458 459 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 460 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 461 - 462 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 463 - 464 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 465 -Ex: #5CLB1<cr> only blink when limp 466 -Ex: #5CLB2<cr> only blink when holding 467 -Ex: #5CLB12<cr> only blink when accel or decel 468 -Ex: #5CLB48<cr> only blink when free or travel 469 -Ex: #5CLB63<cr> blink in all status 470 - 471 -====== __17. Identification Number__ ====== 472 - 473 473 A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 474 474 475 475 Query Identification (**QID**) ... ... @@ -484,7 +484,7 @@ 484 484 485 485 Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. 486 486 487 - ======__18. Baud Rate__======457 +__18. Baud Rate__ 488 488 489 489 A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 490 490 \*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. ... ... @@ -501,7 +501,7 @@ 501 501 502 502 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 503 503 504 - ======__19. Gyre Rotation Direction__======474 +__19. Gyre Rotation Direction__ 505 505 506 506 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 507 507 ... ... @@ -519,7 +519,7 @@ 519 519 520 520 This changes the gyre direction as described above and also writes to EEPROM. 521 521 522 - ======__20. First / Initial Position (pulse)__======492 +__20. First / Initial Position (pulse)__ 523 523 524 524 In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 525 525 ... ... @@ -535,7 +535,7 @@ 535 535 536 536 This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 537 537 538 - ======__21. First / Initial Position (Degrees)__======508 +__21. First / Initial Position (Degrees)__ 539 539 540 540 In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 541 541 ... ... @@ -551,37 +551,37 @@ 551 551 552 552 This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up. 553 553 554 - ======__22. Query Target Position in Degrees (**QDT**)__======524 +__22. Query Target Position in Degrees (**QDT**)__ 555 555 556 556 Ex: #5QDT<cr> might return *5QDT6783<cr> 557 557 558 558 The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 559 559 560 - ======__23. Query Model String (**QMS**)__======530 +__23. Query Model String (**QMS**)__ 561 561 562 562 Ex: #5QMS<cr> might return *5QMSLSS-HS1cr> 563 563 564 564 This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 565 565 566 - ======__23b. Query Model (**QM**)__======536 +__23b. Query Model (**QM**)__ 567 567 568 568 Ex: #5QM<cr> might return *5QM68702699520cr> 569 569 570 570 This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision. 571 571 572 - ======__24. Query Serial Number (**QN**)__======542 +__24. Query Serial Number (**QN**)__ 573 573 574 574 Ex: #5QN<cr> might return *5QN~_~_<cr> 575 575 576 576 The number in the response is the servo's serial number which is set and cannot be changed. 577 577 578 - ======__25. Query Firmware (**QF**)__======548 +__25. Query Firmware (**QF**)__ 579 579 580 580 Ex: #5QF<cr> might return *5QF11<cr> 581 581 582 582 The integer in the reply represents the firmware version with one decimal, in this example being 1.1 583 583 584 - ======__26. Query Status (**Q**)__======554 +__26. Query Status (**Q**)__ 585 585 586 586 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 587 587 ... ... @@ -591,32 +591,32 @@ 591 591 |ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 592 592 |ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed 593 593 |ex: *5Q4<cr>|Traveling|Moving at a stable speed 594 -|ex: *5Q5<cr>|Decelerating|Decreasing fromtravel speed towardsfinal position.564 +|ex: *5Q5<cr>|Deccelerating|Decreasing speed towards travel speed towards rest 595 595 |ex: *5Q6<cr>|Holding|Keeping current position 596 596 |ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque 597 -|ex: *5Q8<cr>|Outside limits| {More details coming soon}567 +|ex: *5Q8<cr>|Outside limits|More details coming soon 598 598 |ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 599 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 569 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maxiumum duty and still cannot move (i.e.: stalled) 600 600 601 - ======__27. Query Voltage (**QV**)__======571 +__27. Query Voltage (**QV**)__ 602 602 603 603 Ex: #5QV<cr> might return *5QV11200<cr> 604 604 605 605 The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 606 606 607 - ======__28. Query Temperature (**QT**)__======577 +__28. Query Temperature (**QT**)__ 608 608 609 609 Ex: #5QT<cr> might return *5QT564<cr> 610 610 611 611 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 612 612 613 - ======__29. Query Current (**QC**)__======583 +__29. Query Current (**QC**)__ 614 614 615 615 Ex: #5QC<cr> might return *5QC140<cr> 616 616 617 617 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 618 618 619 - ======__30. RC Mode (**CRC**)__======589 +__30. RC Mode (**CRC**)__ 620 620 621 621 This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 622 622 ... ... @@ -628,13 +628,13 @@ 628 628 629 629 EX: #5CRC<cr> 630 630 631 - ======__31. RESET__======601 +__31. RESET__ 632 632 633 633 Ex: #5RESET<cr> or #5RS<cr> 634 634 635 635 This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 636 636 637 - ======__32. DEFAULT & CONFIRM__======607 +__32. DEFAULT & CONFIRM__ 638 638 639 639 Ex: #5DEFAULT<cr> 640 640 ... ... @@ -646,7 +646,7 @@ 646 646 647 647 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 648 648 649 - ======__33. UPDATE & CONFIRM__======619 +__33. UPDATE & CONFIRM__ 650 650 651 651 Ex: #5UPDATE<cr> 652 652
- XWiki.XWikiRights[0]
-
- Allow/Deny
-
... ... @@ -1,1 +1,0 @@ 1 -1 - Groups
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.XWikiAdminGroup - Levels
-
... ... @@ -1,1 +1,0 @@ 1 -view
- XWiki.XWikiRights[1]
-
- Allow/Deny
-
... ... @@ -1,1 +1,0 @@ 1 -1 - Groups
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.XWikiAdminGroup - Levels
-
... ... @@ -1,1 +1,0 @@ 1 -view