Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2024/11/21 09:43
Change comment: There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Objects (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -xwiki:XWiki. ENantel1 +xwiki:XWiki.CBenson - Content
-
... ... @@ -3,17 +3,21 @@ 3 3 4 4 {{toc depth="3"/}} 5 5 6 -= Protocol Concept s=6 += Serial Protocol Concept = 7 7 8 -The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to staycompact and robust yet highly versatile.Almost everything one might expect to be able to configure for a smart servo motor is available.8 +The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 RC servo controller and almost everything one might expect to be able to configure for a smart servo motor is available. 9 9 10 +In order to have servos react differently when commands are sent to all servos in a serial bus, the first step a user should take is to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol. 11 + 10 10 == Session == 11 11 12 12 A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 13 13 16 +Note that for a given session, the action related to a specific commands overrides the stored value in EEPROM. 17 + 14 14 == Action Commands == 15 15 16 -Action commands are sent serially to the servo's Rx pin and must be set in the following format: 20 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format: 17 17 18 18 1. Start with a number sign # (U+0023) 19 19 1. Servo ID number as an integer ... ... @@ -24,15 +24,11 @@ 24 24 ((( 25 25 Ex: #5PD1443<cr> 26 26 27 - Move servo with ID #5to a position of 144.3 degrees.31 +This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 28 28 29 -Action commands cannot be combined with query commands, and only one action command can be sent at a time. 30 - 31 -Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page). 32 - 33 33 == Action Modifiers == 34 34 35 - Two commands can be used as action modifiersonly: Timed Move and Speed. The format is:35 +Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is: 36 36 37 37 1. Start with a number sign # (U+0023) 38 38 1. Servo ID number as an integer ... ... @@ -44,32 +44,12 @@ 44 44 45 45 Ex: #5P1456T1263<cr> 46 46 47 -Results in the servo rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds. 48 - 49 -Action modifiers can only be used with certain commands. 47 +This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds. 50 50 ))) 51 51 52 -== Configuration Commands == 53 - 54 -Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. 55 - 56 -1. Start with a number sign # (U+0023) 57 -1. Servo ID number as an integer 58 -1. Configuration command (two to three letters, no spaces, capital or lower case) 59 -1. Configuration value in the correct units with no decimal 60 -1. End with a control / carriage return '<cr>' 61 - 62 -Ex: #5CO-50<cr> 63 - 64 -Assigns an absolute origin offset of -5.0 degrees (with respect to factory origin) to servo #5 and changes the offset for that session to -5.0 degrees. 65 - 66 -Configuration commands are not cumulative, in that if two configurations are sent at any time, only the last configuration is used and stored. 67 - 68 -*Important Note: the one exception is the baud rate - the servo's current session retains the given baud rate. The new baud rate will only be in place when the servo is power cycled. 69 - 70 70 == Query Commands == 71 71 72 -Query commands are sent ser ially tothe servo'sRx pin andmustbe set in the following format:52 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format: 73 73 74 74 1. Start with a number sign # (U+0023) 75 75 1. Servo ID number as an integer ... ... @@ -81,49 +81,61 @@ 81 81 ))) 82 82 83 83 ((( 84 -The query will return a value via the Tx pin with the following format:64 +The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format: 85 85 86 -1. Start with an asterisk (U+002A) 66 +1. Start with an asterisk * (U+002A) 87 87 1. Servo ID number as an integer 88 88 1. Query command (one to three letters, no spaces, capital letters) 89 89 1. The reported value in the units described, no decimals. 90 90 1. End with a control / carriage return '<cr>' 91 91 72 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be: 73 + 92 92 ((( 93 93 Ex: *5QD1443<cr> 94 94 ))) 95 95 96 - Indicates that servo #5 is currently at 144.3 degrees.78 +This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees). 97 97 98 - **SessionvsConfigurationQuery**80 +== Configuration Commands == 99 99 100 - Bydefault,thequerycommand returns the sessions'value;should no action commands havebeen sentto change,it willreturn thevaluesaved inEEPROMfromthe last configuration command.82 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 101 101 102 -In order to query the value in EEPROM, add a '1' to the query command. 84 +1. Start with a number sign # (U+0023) 85 +1. Servo ID number as an integer 86 +1. Configuration command (two to three letters, no spaces, capital or lower case) 87 +1. Configuration value in the correct units with no decimal 88 +1. End with a control / carriage return '<cr>' 103 103 104 -Ex: #5C SR20<cr>sets the maximum speed for servo #5 to 20rpm upon RESET (explained below).90 +Ex: #5CO-50<cr> 105 105 106 - AfterRESET:#5SR4<cr>sets the session's speed to4rpm.92 +This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below. 107 107 108 - #5QSR<cr> would return*5QSR4<cr> which representsthevalueforthatsession.94 +**Session vs Configuration Query** 109 109 96 +By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: 97 + 98 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory. 99 + 100 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore: 101 + 102 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas 103 + 110 110 #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 111 111 112 112 == Virtual Angular Position == 113 113 114 - {In progress}108 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset). 115 115 116 -A "virtual position" is one which allows for multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to 360.0 degrees. 117 - 118 118 [[image:LSS-servo-positions.jpg]] 119 119 120 - Example:Gyre direction/rotation is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees.112 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 121 121 122 -#1D-300<cr> The servo is senta command tomove to -30.0 degrees (green arrow)114 +#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow) 123 123 124 124 #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow) 125 125 126 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees ,stopping at an absolute positionof60.0 degrees (420.0-360.0), with a virtual position of -420.0 degrees.118 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees. 127 127 128 128 Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 129 129 ... ... @@ -136,63 +136,72 @@ 136 136 137 137 = Command List = 138 138 139 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes|=(% style="width: 50px;" %)Default 140 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none| |(% style="text-align:center" %) 141 -| 2|[[**H**alt & Hold>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none| |(% style="text-align:center" %) 142 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds| Modifier only (P, D, MD)|(% style="text-align:center" %) 143 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds / second| Modifier only (P)|(% style="text-align:center" %) 144 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %) 145 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %)((( 146 -00 147 - 148 -0.0 degrees 131 +|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 132 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 133 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 134 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %) 135 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 136 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 137 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 138 +0 149 149 ))) 150 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %)((( 151 -1800 152 - 153 -180.0 degrees 140 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 141 +1800 154 154 ))) 155 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|((( 156 -See details below 157 -)))|(% style="text-align:center" %) 158 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %) 159 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center" %) 160 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center" %) 161 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD| CSD| ✓| ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed|(% style="text-align:center" %) 162 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR| CSR| ✓| ✓|rpm|QSR: Add modifier "2" for instantaneous speed|(% style="text-align:center" %) 163 -| 14|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4|(% style="text-align:center" %)0 164 -| 15|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0. |(% style="text-align:center" %) 165 -|15b|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared|(% style="text-align:center" %) 166 -|15c|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared|(% style="text-align:center" %) 167 -|15d|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles|(% style="text-align:center" %) 168 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center" %)7 169 -| 16b|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center" %) 170 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center" %)0 171 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)| |(% style="text-align:center" %)9600 172 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center" %)1 Clowckwise 173 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none | |(% style="text-align:center" %)((( 143 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | | ✓|microseconds|(% style="width:510px" %)((( 144 +Inherited from SSC-32 serial protocol 145 +)))|(% style="text-align:center; width:113px" %) 146 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 147 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 148 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 149 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD|✓| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)((( 150 +QSD: Add modifier "2" for instantaneous speed. 151 + 152 +SD overwrites SR / CSD overwrites CSR and vice-versa. 153 +)))|(% style="text-align:center; width:113px" %)Max per servo 154 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 155 +QSR: Add modifier "2" for instantaneous speed 156 + 157 +SR overwrites SD / CSR overwrites CSD and vice-versa. 158 +)))|(% style="text-align:center; width:113px" %)Max per servo 159 +| 14|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7 160 +| 15|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0 161 +| 16|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600 162 +| 17|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 163 +| 18|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)((( 174 174 Limp 175 175 ))) 176 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none | |(% style="text-align:center" %)Limp 177 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %) 178 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)| Recommended to determine the model|(% style="text-align:center" %) | 179 -| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)| Returns a raw value representing the three model inputs (36 bit)|(% style="text-align:center" %) | 180 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)| |(% style="text-align:center" %) 181 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)| |(% style="text-align:center" %) 182 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)| See command description for details|(% style="text-align:center" %) 183 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)| |(% style="text-align:center" %) 184 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)|(% style="text-align:center" %) 185 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)| |(% style="text-align:center" %) 186 -| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|((( 187 -CRC: Add modifier "1" for RC-position mode. 188 -CRC: Add modifier "2" for RC-wheel mode. 189 -Any other value for the modifier results in staying in smart mode. 190 -Puts the servo into RC mode. To revert to smart mode, use the button menu. 191 -)))|(% style="text-align:center" %)Serial 192 -|31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|Soft reset. See command for details.|(% style="text-align:center" %) 193 -|32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|Revert to firmware default values. See command for details|(% style="text-align:center" %) 194 -|33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|Update firmware. See command for details.|(% style="text-align:center" %) 166 +| 19|[[**F**irst Position (**D**eg)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| | ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 167 +| 20|[[**T**arget (**D**eg) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 168 +| 21|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 169 +| 22|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 170 +| 23|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 171 +| 24|[[**Q**uery (gen. status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 172 +| 25|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 173 +| 26|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 174 +| 27|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 175 +| 28|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1|✓| | ✓|none|(% style="width:510px" %)((( 176 +Change to RC position mode. To revert to smart mode, use the button menu. 177 +)))|(% style="text-align:center; width:113px" %)Serial 178 +| 29|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2|✓| | ✓| |(% style="width:510px" %)Change to RC wheel mode. To revert to smart mode, use the button menu.|(% style="text-align:center; width:113px" %)Serial 179 +| 30|[[**RESET**>>||anchor="H31.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 180 +| 31|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 181 +| 32|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 195 195 183 +== Advanced == 184 + 185 +|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 186 +| A1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS|✓| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0 187 +| A2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH|✓| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1 188 +| A3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 189 +| A4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 190 +| A5|[[**E**nable **M**otion Control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %) 191 +| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| | ✓| |none (integer from 0 to 63)|(% style="width:510px" %)((( 192 +0=No blinking, 63=Always blink; 193 + 194 +Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 195 +)))|(% style="text-align:center; width:113px" %) 196 + 196 196 == Details == 197 197 198 198 ====== __1. Limp (**L**)__ ====== ... ... @@ -205,13 +205,13 @@ 205 205 206 206 Example: #5H<cr> 207 207 208 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position. 209 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position. 209 209 210 210 ====== __3. Timed move (**T**)__ ====== 211 211 212 212 Example: #5P1500T2500<cr> 213 213 214 -Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 215 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 215 215 216 216 Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 217 217 ... ... @@ -231,11 +231,11 @@ 231 231 232 232 Example: #5O2400<cr> 233 233 234 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position. The setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero.Note that for a given session, the O command overrides the CO command.In the first image, the origin at factory offset '0' (centered).235 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 235 235 236 236 [[image:LSS-servo-default.jpg]] 237 237 238 -In the second image, the origin a, aswell asthe angular range (explained below) have been shifted by 240.0 degrees:239 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: 239 239 240 240 [[image:LSS-servo-origin.jpg]] 241 241 ... ... @@ -243,33 +243,33 @@ 243 243 244 244 Example: #5QO<cr> Returns: *5QO-13 245 245 246 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. 247 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero. 247 247 248 248 Configure Origin Offset (**CO**) 249 249 250 250 Example: #5CO-24<cr> 251 251 252 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. 253 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 253 253 254 254 ====== __7. Angular Range (**AR**)__ ====== 255 255 256 256 Example: #5AR1800<cr> 257 257 258 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). In thefirstimage,259 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: 259 259 260 260 [[image:LSS-servo-default.jpg]] 261 261 262 - Here, the angular rangehasbeenrestricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.263 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 263 263 264 264 [[image:LSS-servo-ar.jpg]] 265 265 266 - The angular range action command (ex. #5AR1800<cr>) and origin offset action commandn be used to move both the center and limit the angular range:267 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range: 267 267 268 268 [[image:LSS-servo-ar-o-1.jpg]] 269 269 270 270 Query Angular Range (**QAR**) 271 271 272 -Example: #5QAR<cr> might return *5AR 2756273 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees. 273 273 274 274 Configure Angular Range (**CAR**) 275 275 ... ... @@ -326,22 +326,22 @@ 326 326 327 327 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 328 328 329 -====== __12. Speed in Degrees (**SD**)__ ====== 330 +====== __12. Max Speed in Degrees (**SD**)__ ====== 330 330 331 331 Ex: #5SD1800<cr> 332 332 333 -This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Thereforemaximumspeed foractions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.334 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 334 334 335 335 Query Speed in Degrees (**QSD**) 336 336 337 337 Ex: #5QSD<cr> might return *5QSD1800<cr> 338 338 339 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed. 340 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. 340 340 If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 341 341 342 342 |**Command sent**|**Returned value (1/10 °)** 343 343 |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 344 -|ex: #5QSD1<cr>|Configured maximum speed 345 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 345 345 |ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 346 346 |ex: #5QSD3<cr>|Target travel speed 347 347 ... ... @@ -351,22 +351,22 @@ 351 351 352 352 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 353 353 354 -====== __13. Speed in RPM (**SR**)__ ====== 355 +====== __13. Max Speed in RPM (**SR**)__ ====== 355 355 356 356 Ex: #5SD45<cr> 357 357 358 -This command sets the servo's maximum speed for actionreforemaximumspeed foractions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.359 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 359 359 360 360 Query Speed in Degrees (**QSR**) 361 361 362 362 Ex: #5QSR<cr> might return *5QSR45<cr> 363 363 364 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed. 365 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. 365 365 If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 366 366 367 367 |**Command sent**|**Returned value (1/10 °)** 368 368 |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 369 -|ex: #5QSR1<cr>|Configured maximum speed 370 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 370 370 |ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 371 371 |ex: #5QSR3<cr>|Target travel speed 372 372 ... ... @@ -374,68 +374,10 @@ 374 374 375 375 Ex: #5CSR45<cr> 376 376 377 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 378 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 378 378 379 -====== __14.AngularStiffness (**AS**)__======380 +====== ====== 380 380 381 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 382 - 383 -A positive value of "angular stiffness": 384 - 385 -* The more torque will be applied to try to keep the desired position against external input / changes 386 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 387 - 388 -A negative value on the other hand: 389 - 390 -* Causes a slower acceleration to the travel speed, and a slower deceleration 391 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back 392 - 393 -The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior. 394 - 395 -Ex: #5AS-2<cr> 396 - 397 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 398 - 399 -Ex: #5QAS<cr> 400 - 401 -Queries the value being used. 402 - 403 -Ex: #5CAS<cr> 404 - 405 -Writes the desired angular stiffness value to memory. 406 - 407 -====== __15. Angular Hold Stiffness (**AH**)__ ====== 408 - 409 -The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 410 - 411 -Ex: #5AH3<cr> 412 - 413 -This sets the holding stiffness for servo #5 to 3 for that session. 414 - 415 -Query Angular Hold Stiffness (**QAH**) 416 - 417 -Ex: #5QAH<cr> might return *5QAH3<cr> 418 - 419 -This returns the servo's angular holding stiffness value. 420 - 421 -Configure Angular Hold Stiffness (**CAH**) 422 - 423 -Ex: #5CAH2<cr> 424 - 425 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM 426 - 427 -====== __15b: Angular Acceleration (**AA**)__ ====== 428 - 429 -{More details to come} 430 - 431 -====== __15c: Angular Deceleration (**AD**)__ ====== 432 - 433 -{More details to come} 434 - 435 -====== __15d: Motion Control (**EM**)__ ====== 436 - 437 -{More details to come} 438 - 439 439 ====== __16. RGB LED (**LED**)__ ====== 440 440 441 441 Ex: #5LED3<cr> ... ... @@ -454,20 +454,6 @@ 454 454 455 455 Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 456 456 457 -====== __16b. Configure LED Blinking (**CLB**)__ ====== 458 - 459 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 460 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 461 - 462 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 463 - 464 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 465 -Ex: #5CLB1<cr> only blink when limp 466 -Ex: #5CLB2<cr> only blink when holding 467 -Ex: #5CLB12<cr> only blink when accel or decel 468 -Ex: #5CLB48<cr> only blink when free or travel 469 -Ex: #5CLB63<cr> blink in all status 470 - 471 471 ====== __17. Identification Number__ ====== 472 472 473 473 A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. ... ... @@ -497,6 +497,8 @@ 497 497 498 498 Configure Baud Rate (**CB**) 499 499 429 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled. 430 + 500 500 Ex: #5CB9600<cr> 501 501 502 502 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. ... ... @@ -657,3 +657,77 @@ 657 657 Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 658 658 659 659 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 591 + 592 +====== __A1. Angular Stiffness (**AS**)__ ====== 593 + 594 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 595 + 596 +A positive value of "angular stiffness": 597 + 598 +* The more torque will be applied to try to keep the desired position against external input / changes 599 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 600 + 601 +A negative value on the other hand: 602 + 603 +* Causes a slower acceleration to the travel speed, and a slower deceleration 604 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back 605 + 606 +The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior. 607 + 608 +Ex: #5AS-2<cr> 609 + 610 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 611 + 612 +Ex: #5QAS<cr> 613 + 614 +Queries the value being used. 615 + 616 +Ex: #5CAS<cr> 617 + 618 +Writes the desired angular stiffness value to memory. 619 + 620 +====== __A2. Angular Holding Stiffness (**AH**)__ ====== 621 + 622 +The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 623 + 624 +Ex: #5AH3<cr> 625 + 626 +This sets the holding stiffness for servo #5 to 3 for that session. 627 + 628 +Query Angular Hold Stiffness (**QAH**) 629 + 630 +Ex: #5QAH<cr> might return *5QAH3<cr> 631 + 632 +This returns the servo's angular holding stiffness value. 633 + 634 +Configure Angular Hold Stiffness (**CAH**) 635 + 636 +Ex: #5CAH2<cr> 637 + 638 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM 639 + 640 +====== __A3: Angular Acceleration (**AA**)__ ====== 641 + 642 +{More details to come} 643 + 644 +====== __A4: Angular Deceleration (**AD**)__ ====== 645 + 646 +{More details to come} 647 + 648 +====== __A5: Motion Control (**EM**)__ ====== 649 + 650 +{More details to come} 651 + 652 +====== __A6. Configure LED Blinking (**CLB**)__ ====== 653 + 654 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 655 +You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 656 + 657 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 658 + 659 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 660 +Ex: #5CLB1<cr> only blink when limp 661 +Ex: #5CLB2<cr> only blink when holding 662 +Ex: #5CLB12<cr> only blink when accel or decel 663 +Ex: #5CLB48<cr> only blink when free or travel 664 +Ex: #5CLB63<cr> blink in all status
- XWiki.XWikiRights[2]
-
- Allow/Deny
-
... ... @@ -1,0 +1,1 @@ 1 +Allow - Groups
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Profiles (Lynxmotion).BETA Testers - Levels
-
... ... @@ -1,0 +1,1 @@ 1 +view