Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 2 added, 0 removed)
-
Objects (0 modified, 1 added, 3 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LSS -Communication Protocol1 +LSS Communication Protocol - Parent
-
... ... @@ -1,1 +1,1 @@ 1 - LynxmotionSmartServo(LSS).WebHome1 +ses-v2.lynxmotion-smart-servo.WebHome - Content
-
... ... @@ -1,517 +1,728 @@ 1 1 (% class="wikigeneratedid" id="HTableofContents" %) 2 -** TableofContents**2 +**Page Contents** 3 3 4 4 {{toc depth="3"/}} 5 5 6 -= Protocol Concepts=6 += Serial Protocol = 7 7 8 -The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time ryingto staycompact and robust yet highly versatile.Almost everything one might expect to be able to configure for a smart servo8 +The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available. 9 9 10 - ==Session==10 +In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>path:#HIdentificationNumber28ID29]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol. 11 11 12 +|(% colspan="2" %)((( 13 +== Session == 14 +))) 15 +|(% style="width:25px" %) |((( 12 12 A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 13 13 18 +**Note 1:** For a given session, the action related to a specific command overrides the stored value in EEPROM. 19 + 20 +**Note 2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s). 21 + 22 +**Note 3:** You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r described below). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays. 23 +))) 24 + 25 +|(% colspan="2" %)((( 14 14 == Action Commands == 27 +))) 28 +|(% style="width:25px" %) |((( 29 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HVirtualAngularPosition]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format: 15 15 16 -Action commands are sent serially to the servo's Rx pin and must be set in the following format: 31 +1. Start with a number sign **#** (Unicode Character: U+0023) 32 +1. Servo ID number as an integer (assigning an ID described below) 33 +1. Action command (one or more letters, no whitespace, capital or lowercase from the list below) 34 +1. Action value in the correct units with no decimal 35 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 17 17 18 -1. Start with a number sign # (U+0023) 37 +Ex: #5D1800<cr> 38 + 39 +This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 40 +))) 41 + 42 +|(% colspan="2" %)((( 43 +== Modifiers == 44 +))) 45 +|(% style="width:25px" %) |((( 46 +Modifiers can only be used with certain **action commands**. The format to include a modifier is: 47 + 48 +1. Start with a number sign **#** (Unicode Character: U+0023) 19 19 1. Servo ID number as an integer 20 -1. Action command (one to three letters, no spaces, capital or lower case) 50 +1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below) 21 21 1. Action value in the correct units with no decimal 22 -1. End with a control / carriage return '<cr>' 52 +1. Modifier command (one or two letters from the list of modifiers below) 53 +1. Modifier value in the correct units with no decimal 54 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 23 23 24 -((( 25 -Ex: #5PD1443<cr> 56 +Ex: #5D1800T1500<cr> 26 26 27 -Move servo with ID #5 to a position of 144.3 degrees. 58 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds). 59 +))) 28 28 29 -Action commands cannot be combined with query commands, and only one action command can be sent at a time. 61 +|(% colspan="2" %)((( 62 +== Query Commands == 63 +))) 64 +|(% style="width:25px" %) |((( 65 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format: 30 30 31 -Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page). 67 +1. Start with a number sign **#** (Unicode Character: U+0023) 68 +1. Servo ID number as an integer 69 +1. Query command (one to four letters, no spaces, capital or lower case) 70 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 32 32 33 - ==ActionModifiers==72 +Ex: #5QD<cr> Query the position in (tenth of) degrees for servo with ID #5 34 34 35 -Tw ocommandscanbe usedasaction modifiersonly:TimedMoveandSpeed.The formatis:74 +The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format: 36 36 37 -1. Start with a umbersign#(U+0023)76 +1. Start with an asterisk * (Unicode Character: U+0023) 38 38 1. Servo ID number as an integer 39 -1. Action command (one to three letters, no spaces, capital or lower case) 40 -1. Action value in the correct units with no decimal 41 -1. Modifier command (one letter) 42 -1. Modifier value in the correct units with no decimal 43 -1. End with a control / carriage return '<cr>' 78 +1. Query command (one to four letters, no spaces, capital letters) 79 +1. The reported value in the units described, no decimals. 80 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 44 44 45 - Ex: #5P1456T1263<cr>82 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be: 46 46 47 - Resultsin the servo rotating from the current angular position to a pulse position of 1456 in1263 milliseconds.84 +Ex: *5QD1800<cr> 48 48 49 - Actionmodifierscanonlybeusedwithcertaincommands.86 +This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees). 50 50 ))) 51 51 89 +|(% colspan="2" %)((( 52 52 == Configuration Commands == 91 +))) 92 +|(% style="width:25px" %) |((( 93 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. 53 53 54 - Configurationcommandsaffectthe servo'scurrentsession*butunlikeactioncommands,configuration commands arewritten toEEPROMand areretainedeven if theservolosespower (thereforeNOTsessionspecific). Not all action commands have a corresponding configuration and vice versa.Certain configurations are retainedforwhenthe servois used inl.More informationcan be found on thedoc:LynxmotionSmartServo(LSS).LSS-RCPWM.WebHome]].95 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-radio-control-pwm/]]. Configuration commands are not cumulative. This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored. 55 55 56 -1. Start with a number sign # (U+0023) 97 +The format to send a configuration command is identical to that of an action command: 98 + 99 +1. Start with a number sign **#** (Unicode Character: U+0023) 57 57 1. Servo ID number as an integer 58 -1. Configuration command (two to threeletters, no spaces, capital or lower case)101 +1. Configuration command (two to four letters, no spaces, capital or lower case) 59 59 1. Configuration value in the correct units with no decimal 60 -1. End with a c ontrol / carriage return'<cr>'103 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 61 61 62 62 Ex: #5CO-50<cr> 63 63 64 - Assigns an absolute origin offset of -5.0 degrees (with respect to factory origin)to servo#5and changes the offset for that session to-5.0degrees.107 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below). 65 65 66 - Configuration commands arenot cumulative, in that if two configurationsaresent at any time,onlythe lastconfigurationisused and stored.109 +**Session vs Configuration Query** 67 67 68 - *ImportantNote:the oneexceptionis thebaudrate-the servo'scurrent sessionretainsthegivenbaudrate.Thenewbaudrate willonly beinplacewhenthe servoispower cycled.111 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: 69 69 70 - ==QueryCommands==113 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory. 71 71 72 - Querycommandsaresenteriallyto the servo'sRxpin and mustbeetin the followingformat:115 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore: 73 73 74 -1. Start with a number sign # (U+0023) 75 -1. Servo ID number as an integer 76 -1. Query command (one to three letters, no spaces, capital or lower case) 77 -1. End with a control / carriage return '<cr>' 117 +#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas 78 78 79 -((( 80 -Ex: #5QD<cr>Query position in degrees for servo #5 119 +#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 81 81 ))) 82 82 83 -((( 84 -The query will return a value via the Tx pin with the following format: 122 +|(% colspan="2" %)((( 123 +== Virtual Angular Position == 124 +))) 125 +|(% style="width:25px" %) |((( 126 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset). 85 85 86 -1. Start with an asterisk (U+002A) 87 -1. Servo ID number as an integer 88 -1. Query command (one to three letters, no spaces, capital letters) 89 -1. The reported value in the units described, no decimals. 90 -1. End with a control / carriage return '<cr>' 128 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]] 91 91 92 -((( 93 -Ex: *5QD1443<cr> 130 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 131 + 132 +#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow) 133 + 134 +#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow) 135 + 136 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees. 137 + 138 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 139 + 140 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 141 + 142 +#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow). 143 + 144 +If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°]. 94 94 ))) 95 95 96 - Indicatesthat servo #5iscurrentlyat 144.3 degrees.147 += Command List = 97 97 98 -** Sessionvs ConfigurationQuery**149 +**Latest firmware version currently : 370** 99 99 100 -By default, the query command returns the sessions' value; should no action commands have been sent to change, it will return the value saved in EEPROM from the last configuration command. 151 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Communication Setup**>>path:#HCommunicationSetup]] 152 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 153 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Reset**>>path:#HReset]]|RESET| | | |✓| | |Soft reset. See command for details. 154 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Default** Configuration>>path:#HDefault26confirm]]|DEFAULT| | | |✓| | |Revert to firmware default values. See command for details 155 +| |[[Firmware (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Update** Mode>>path:#HUpdate26confirm]]|UPDATE| | | |✓| | |Update firmware. See command for details. 156 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Confirm** Changes>>path:#HConfirm]]|CONFIRM| | | |✓| | | 157 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**hange to **RC**>>path:#HConfigureRCMode28CRC29]]| | |CRC| |✓| | |Change to RC mode 1 (position) or 2 (wheel). 158 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**ID** #>>path:#HIdentificationNumber28ID29]]| |QID|CID| |✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 159 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**B**audrate>>path:#HBaudRate]]| |QB|CB| |✓|115200| |Reset required after change. 101 101 102 -In order to query the value in EEPROM, add a '1' to the query command. 161 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion**>>path:#HMotion]] 162 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 163 +| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**D**egrees>>path:#HPositioninDegrees28D29]]|D|QD/QDT| | |✓| |1/10°| 164 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in **D**egrees (relative)>>path:#H28Relative29MoveinDegrees28MD29]]|MD| | | |✓| |1/10°| 165 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **D**egrees>>path:#HWheelModeinDegrees28WD29]]|WD|QWD/QVT| | |✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation" 166 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **R**PM>>path:#HWheelModeinRPM28WR29]]|WR|QWR| | |✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation" 167 +| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**P**WM>>path:#HPositioninPWM28P29]]|P|QP| | |✓| |us|Inherited from SSC-32 serial protocol 168 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in PWM (relative)>>path:#H28Relative29MoveinPWM28M29]]|M| | | |✓| |us| 169 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**R**aw **D**uty-cycle **M**ove>>path:#HRawDuty-cycleMove28RDM29]]|RDM|QMD| | |✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW 170 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery Status>>path:#HQueryStatus28Q29]]| |Q| | |✓| |1 to 8 integer|See command description for details 171 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**L**imp>>path:#HLimp28L29]]|L| | | |✓| | | 172 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**H**alt & Hold>>path:#HHalt26Hold28H29]]|H| | | |✓| | | 103 103 104 -Ex: #5CSR20<cr> sets the maximum speed for servo #5 to 20rpm upon RESET (explained below). 174 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion Setup**>>path:#HMotionSetup]] 175 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 176 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**E**nable **M**otion Profile>>path:#HEnableMotionProfile28EM29]]|EM|QEM|CEM| |✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile 177 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**ilter **P**osition **C**ount>>path:#HFilterPositionCount28FPC29]]|FPC|QFPC|CFPC|✓|✓|5| |Affects motion only when motion profile is disabled (EM0) 178 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**O**rigin Offset>>path:#HOriginOffset28O29]]|O|QO|CO|✓|✓|0|1/10°| 179 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **R**ange>>path:#HAngularRange28AR29]]|AR|QAR|CAR|✓|✓|1800|1/10°| 180 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **S**tiffness>>path:#HAngularStiffness28AS29]]|AS|QAS|CAS|✓|✓|0|-4 to +4 integer|Suggested values are between 0 to +4 181 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **H**olding Stiffness>>path:#HAngularHoldingStiffness28AH29]]|AH|QAH|CAH|✓|✓|4|-10 to +10 integer| 182 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **A**cceleration>>path:#HAngularAcceleration28AA29]]|AA|QAA|CAA| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 183 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **D**eceleration>>path:#HAngularDeceleration28AD29]]|AD|QAD|CAD| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 184 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**G**yre Direction>>path:#HGyreDirection28G29]]|G|QG|CG|✓|✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 185 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**irst Position (**D**eg)>>path:#HFirstPosition]]| |QFD|CFD|✓|✓|No value|1/10°|Reset required after change. 186 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**aximum **M**otor **D**uty>>path:#HMaximumMotorDuty28MMD29]]|MMD|QMMD| | |✓|1023|255 to 1023 integer| 187 +| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HMaximumSpeedinDegrees28SD29]]|SD|QSD|CSD|✓|✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 188 +| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **R**PM>>path:#HMaximumSpeedinRPM28SR29]]|SR|QSR|CSR|✓|✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 105 105 106 -After RESET: #5SR4<cr> sets the session's speed to 4rpm. 190 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Modifiers**>>path:#HModifiers]] 191 +| |**Description**|**Modifier**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 192 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed>>path:#HSpeed28S2CSD29modifier]]|S|QS| | |✓| |uS/s |For P action command 193 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HSpeed28S2CSD29modifier]]|SD| | | |✓| |0.1°/s|For D and MD action commands 194 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**T**imed move>>path:#HTimedmove28T29modifier]]|T| | | |✓| |ms|Modifier only for P, D and MD. Time can change based on load 195 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **H**old>>path:#HCurrentHalt26Hold28CH29modifier]]|CH| | | |✓| |mA|Modifier for D, MD, WD and WR 196 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **L**imp>>path:#HCurrentLimp28CL29modifier]]|CL| | | |✓| |mA|Modifier for D, MD, WD and WR 107 107 108 -#5QSR<cr> would return *5QSR4<cr> which represents the value for that session. 198 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Telemetry**>>path:#HTelemetry]] 199 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 200 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **V**oltage>>path:#HQueryVoltage28QV29]]| |QV| | |✓| |mV| 201 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **T**emperature>>path:#HQueryTemperature28QT29]]| |QT| | |✓| |1/10°C| 202 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **C**urrent>>path:#HQueryCurrent28QC29]]| |QC| | |✓| |mA| 203 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **M**odel **S**tring>>path:#HQueryModelString28QMS29]]| |QMS| | |✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1) 204 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **F**irmware Version>>path:#HQueryFirmware28QF29]]| |QF| | |✓| | | 109 109 110 -#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 206 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**RGB LED**>>path:#HRGBLED]] 207 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 208 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**LED** Color>>path:#HLEDColor28LED29]]|LED|QLED|CLED|✓|✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White 209 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**onfigure **L**ED **B**linking>>path:#HConfigureLEDBlinking28CLB29]]| | |CLB|✓|✓| |0 to 63 integer|Reset required after change. See command for details. 111 111 112 -= =VirtualAngular Position==211 += Details = 113 113 114 - {Inprogress}213 +== Communication Setup == 115 115 116 -A "virtual position" is one which allows for multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to 360.0 degrees. 215 +|(% colspan="2" %)((( 216 +====== Reset ====== 217 +))) 218 +|(% style="width:30px" %) |((( 219 +Ex: #5RESET<cr> 117 117 118 -[[image:LSS-servo-positions.jpg]] 221 +This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HSession]], note #2 for more details. 222 +))) 119 119 120 -Example: Gyre direction / rotation is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. 224 +|(% colspan="2" %)((( 225 +====== Default & confirm ====== 226 +))) 227 +|(% style="width:30px" %) |((( 228 +Ex: #5DEFAULT<cr> 121 121 122 - #1D-300<cr>The servoissent a commandtomove to-30.0degrees(greenarrow)230 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 123 123 124 -# 1D2100<cr>This second position command is sent to the servo,which moves it to 210.0degrees(orangearrow)232 +Ex: #5DEFAULT<cr> followed by #5CONFIRM<cr> 125 125 126 - #1D-4200<cr>Thisnext commandrotatestheservounterclockwisetoaposition of-420degrees(redarrow),whichmeansonefullrotation of360degrees,stoppingatanabsolutepositionof60.0 degrees (420.0-360.0),witha virtualpositionof-420.0degrees.234 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command. 127 127 128 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 236 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET. 237 +))) 129 129 130 -#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 239 +|(% colspan="2" %)((( 240 +====== Update & confirm ====== 241 +))) 242 +|(% style="width:30px" %) |((( 243 +Ex: #5UPDATE<cr> 131 131 132 - #1D3300<cr>wouldcause the servo to rotate from480.0degrees to330.0degrees (yellowarrow).245 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. 133 133 134 -If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). 247 +Ex: #5UPDATE<cr> followed by #5CONFIRM<cr> 248 + 249 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 250 + 251 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET. 135 135 ))) 136 136 137 -= Command List = 254 +|(% colspan="2" %)((( 255 +====== Confirm ====== 256 +))) 257 +|(% style="width:30px" %) |((( 258 +Ex: #5CONFIRM<cr> 138 138 139 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes|=(% style="width: 50px;" %)Default 140 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none| |(% style="text-align:center" %) 141 -| 2|[[**H**alt & Hold>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none| |(% style="text-align:center" %) 142 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds| Modifier only (P, D, MD)|(% style="text-align:center" %) 143 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds / second| Modifier only (P)|(% style="text-align:center" %) 144 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %) 145 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %)((( 146 -00 260 +This command is used to confirm changes after a Default or Update command. 147 147 148 - 0.0 degrees262 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET. 149 149 ))) 150 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %)((( 151 -1800 152 152 153 -180.0 degrees 265 +|(% colspan="2" %)((( 266 +====== Configure RC Mode (**CRC**) ====== 154 154 ))) 155 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]|P|QP|| | ✓|microseconds|(((156 - See details below157 - )))|(% style="text-align:center" %)158 - | 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees (ex325= 32.5 degrees; 91= 9.1 degrees)| |(% style="text-align:center" %)159 - | 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center" %)160 - | 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]|WR|QWR| | | ✓| rpm|A.K.A. "Speed mode" or "Continuousrotation"|(%style="text-align:center" %)161 - | 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD| CSD| ✓| ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed|(% style="text-align:center" %)162 - | 13|[[Max**S**peedin **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓| ✓|rpm|QSR: Add modifier "2" for instantaneous speed|(% style="text-align:center" %)163 - | 14|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4|(% style="text-align:center" %)0164 - | 15|[[**A**ngular**H**oldingStiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|-10to +10,withdefault as 0. |(% style="text-align:center" %)165 - |15b|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared|(% style="text-align:center" %)166 - |15c|[[**A**ngular**D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared|(% style="text-align:center" %)167 - |15d|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles|(% style="text-align:center" %)168 - | 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]|LED|QLED|CLED| ✓| ✓|none(integerfrom 0to 8)|0=Off (black);1=Red2=Green;3=Blue;4=Yellow;5=Cyan;6=Magenta;7=White;|(%style="text-align:center"%)7169 - | 16b|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center" %)170 - |17|[[**ID**#>>||anchor="H17.IdentificationNumber"]]| | QID|CID| | ✓|none (integer from 0 to250)|Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center" %)0171 - | 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)| |(% style="text-align:center" %)9600172 - | 19|[[**G**yre direction(**G**)>>||anchor="H19.GyreRotationDirection"]]|G|QG|CG|✓|✓|none| Gyre/ rotationdirectionwhere1=CW(clockwise)-1=CCW(counter-clockwise)|(%style="text-align:center"%)1Clowckwise173 - | 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none | |(% style="text-align:center" %)(((174 -Limp 268 +|(% style="width:30px" %) |((( 269 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 270 + 271 +Ex: #5CRC1<cr> 272 + 273 +Change to RC position mode. 274 + 275 +Ex: #5CRC2<cr> 276 + 277 +Change to RC continuous rotation (wheel) mode. 278 + 279 +Ex: #5CRC*<cr> 280 + 281 +Where * is any value other than 1 or 2 (or no value): stay in smart mode 282 + 283 +Ex: #5CRC2<cr> 284 + 285 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command. 286 + 287 +**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-button-menu/]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe. 175 175 ))) 176 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none | |(% style="text-align:center" %)Limp 177 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %) 178 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)| Recommended to determine the model|(% style="text-align:center" %) | 179 -| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)| Returns a raw value representing the three model inputs (36 bit)|(% style="text-align:center" %) | 180 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)| |(% style="text-align:center" %) 181 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)| |(% style="text-align:center" %) 182 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)| See command description for details|(% style="text-align:center" %) 183 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)| |(% style="text-align:center" %) 184 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)|(% style="text-align:center" %) 185 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)| |(% style="text-align:center" %) 186 -| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|((( 187 -CRC: Add modifier "1" for RC-position mode. 188 -CRC: Add modifier "2" for RC-wheel mode. 189 -Any other value for the modifier results in staying in smart mode. 190 -Puts the servo into RC mode. To revert to smart mode, use the button menu. 191 -)))|(% style="text-align:center" %)Serial 192 -|31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|Soft reset. See command for details.|(% style="text-align:center" %) 193 -|32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|Revert to firmware default values. See command for details|(% style="text-align:center" %) 194 -|33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|Update firmware. See command for details.|(% style="text-align:center" %) 195 195 196 -== Details == 290 +|(% colspan="2" %)((( 291 +====== Identification Number (**ID**) ====== 292 +))) 293 +|(% style="width:30px" %) |((( 294 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 197 197 198 - ======__1. Limp(**L**)__ ======296 +Query Identification (**QID**) 199 199 200 -E xample: #5L<cr>298 +EX: #254QID<cr> might return *QID5<cr> 201 201 202 - This actioncausesthe servo togo"limp".Themicrocontrollerwillstill bepowered,butthemotorwillnot.Asanemergencysafetyfeature,shouldthe robot notbedoingwhat itissupposedtoor risksdamage, usethe broadcast ID to setall servoslimp#254L<cr>.300 +When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 203 203 204 - ====== __2. Halt & Hold(**H**)__ ======302 +Configure ID (**CID**) 205 205 206 -Ex ample: #5H<cr>304 +Ex: #4CID5<cr> 207 207 208 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position. 306 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect. 307 +))) 209 209 210 -====== __3. Timed move (**T**)__ ====== 309 +|(% colspan="2" %)((( 310 +====== Baud Rate ====== 311 +))) 312 +|(% style="width:30px" %) |((( 313 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200. 211 211 212 - Example:#5P1500T2500<cr>315 +Query Baud Rate (**QB**) 213 213 214 - Timedmovecanbe used only as amodifierfora position(P) action. Theunits arein milliseconds,soatimedmoveof 2500millisecondswould causethe servo torotatefromitscurrentpositionto thedesiredpositionin2.5 seconds. Thiscommandisin placeto ensurebackwardscompatibilitywiththeSSC-32/32U protocol.317 +Ex: #5QB<cr> might return *5QB115200<cr>Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect. 215 215 216 - Note: Ifthe calculated speed at which a servo mustrotateforatimedmove is greaterthan its maximum speed(which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.319 +Configure Baud Rate (**CB**) 217 217 218 - ======__4.Speed(**S**)__======321 +**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET. 219 219 220 -Ex ample: #5P1500S750<cr>323 +Ex: #5CB9600<cr> 221 221 222 -This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 325 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 326 +))) 223 223 224 -====== __5. (Relative) Move in Degrees (**MD**)__ ====== 328 +|(% colspan="2" %)((( 329 +====== __Automatic Baud Rate__ ====== 330 +))) 331 +|(% style="width:30px" %) |((( 332 +This option allows the LSS to listen to it's serial input and select the right baudrate automatically. 225 225 226 - Example:#5MD123<cr>334 +Query Automatic Baud Rate (**QABR**) 227 227 228 - Therelative movecommand causes the servoto read its current position andmove the specified number of tenths of degrees in the corresponding position.Forxample ifthe servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commandswouldcause the servo to rotate in the opposite configured direction.336 +Ex: #5QABR<cr> might return *5ABR0<cr> 229 229 230 - ====== __6. OriginOffsetAction(**O**)__ ======338 +Enable Baud Rate (**ABR**) 231 231 232 -Ex ample: #5O2400<cr>340 +Ex: #5QABR1<cr> 233 233 234 - This commandallowsyouto temporarily changetheorigin of theservo in relation to thefactory zero position.The setting will be lost uponservo reset/ power cycle. Origin offsetcommands arenot cumulative and alwaysrelate to factory zero. Note that for a given session, the O commandoverrides the CO command. In thefirstimage, the originat factory offset '0' (centered).342 +Enable baudrate detection on first byte received after power-up. 235 235 236 - [[image:LSS-servo-default.jpg]]344 +Ex: #5QABR2,30<cr>Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte. 237 237 238 -In the second image, the origina, as well as the angular range (explained below) have been shifted by 240.0 degrees: 346 +Warning: ABR doesnt work well with LSS Config at the moment. 347 +))) 239 239 240 - [[image:LSS-servo-origin.jpg]]349 +== Motion == 241 241 242 -Origin Offset Query (**QO**) 351 +|(% colspan="2" %)((( 352 +====== __Position in Degrees (**D**)__ ====== 353 +))) 354 +|(% style="width:30px" %) |((( 355 +Ex: #5D1456<cr> 243 243 244 - Example:#5QO<cr>Returns:*5QO-13357 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. 245 245 246 - Thisallowsyouto querythe angle(intenths of degrees)ofhe originin relation to thefactoryzeroposition.359 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). 247 247 248 - ConfigureOriginOffset(**CO**)361 +Query Position in Degrees (**QD**) 249 249 250 -Ex ample: #5CO-24<cr>363 +Ex: #5QD<cr> might return *5QD132<cr> 251 251 252 -This command allowsyouto changethe origin of theservo in relation to the factory zero positionin EEPROM. The setting will be saved upon servo reset / powercycle. Origin offset configuration commands arenot cumulative and always relateto factory zero.Thenew origin is also used in RC mode.365 +This means the servo is located at 13.2 degrees. 253 253 254 - ====== __7. AngularRange (**AR**)__ ======367 +Query Target Position in Degrees (**QDT**) 255 255 256 -Ex ample: #5AR1800<cr>369 +Ex: #5QDT<cr> might return *5QDT6783<cr> 257 257 258 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). In the first image, 371 +The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 372 +))) 259 259 260 -[[image:LSS-servo-default.jpg]] 374 +|(% colspan="2" %)((( 375 +====== (Relative) Move in Degrees (**MD**) ====== 376 +))) 377 +|(% style="width:30px" %) |((( 378 +Ex: #5MD123<cr> 261 261 262 -Here, the angular range has been restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 380 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 381 +))) 263 263 264 -[[image:LSS-servo-ar.jpg]] 383 +|(% colspan="2" %)((( 384 +====== Wheel Mode in Degrees (**WD**) ====== 385 +))) 386 +|(% style="width:30px" %) |((( 387 +Ex: #5WD90<cr> 265 265 266 -Th e angular range actioncommand(ex.#5AR1800<cr>)andoriginoffsetactioncommand(ex.#5O-1200<cr>) an beusedtomoveboth thecenterand limittheangularrange:389 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). 267 267 268 - [[image:LSS-servo-ar-o-1.jpg]]391 +Query Wheel Mode in Degrees (**QWD**) 269 269 270 -Q ueryAngularRange(**QAR**)393 +Ex: #5QWD<cr> might return *5QWD90<cr> 271 271 272 -Example: #5QAR<cr> might return *5AR2756 395 +The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 396 +))) 273 273 274 -Configure Angular Range (**CAR**) 398 +|(% colspan="2" %)((( 399 +====== Wheel Mode in RPM (**WR**) ====== 400 +))) 401 +|(% style="width:30px" %) |((( 402 +Ex: #5WR40<cr> 275 275 276 -This command allowsyoutochangethe totalangularrange ofthe servo in tenths ofdegreesinEEPROM. The settingwillbesaveduponservo reset/powercycle.404 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). 277 277 278 - ======__8.Positionin Pulse(**P**)__ ======406 +Query Wheel Mode in RPM (**QWR**) 279 279 280 -Ex ample: #5P2334<cr>408 +Ex: #5QWR<cr> might return *5QWR40<cr> 281 281 282 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected to end points. 410 +The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 411 +))) 283 283 413 +|(% colspan="2" %)((( 414 +====== Position in PWM (**P**) ====== 415 +))) 416 +|(% style="width:30px" %) |((( 417 +Ex: #5P2334<cr> 418 + 419 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>url:https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points. 420 + 284 284 Query Position in Pulse (**QP**) 285 285 286 -Ex ample: #5QP<cr> might return *5QP2334423 +Ex: #5QP<cr> might return *5QP2334 287 287 288 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 289 - Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).425 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 426 +))) 290 290 291 -====== __9. Position in Degrees (**D**)__ ====== 428 +|(% colspan="2" %)((( 429 +====== __(Relative) Move in PWM (**M**)__ ====== 430 +))) 431 +|(% style="width:30px" %) |((( 432 +Ex: #5M1500<cr> 292 292 293 -Example: #5PD1456<cr> 434 +The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 435 +))) 294 294 295 -This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction. 437 +|(% colspan="2" %)((( 438 +====== Raw Duty-cycle Move (**RDM**) ====== 439 +))) 440 +|(% style="width:30px" %) |((( 441 +Ex: #5RDM512<cr> 296 296 297 - Largervaluesarepermittedandallowformulti-turnfunctionality usingthe conceptfvirtualposition.443 +The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor. 298 298 299 - QueryPosition inDegrees(**QD**)445 +The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise). 300 300 301 - Example: #5QD<cr>mightreturn*5QD132<cr>447 +Query Move in Duty-cycle (**QMD**) 302 302 303 - Thismeans the servois locatedat 13.2degrees.449 +Ex: #5QMD<cr> might return *5QMD512 304 304 305 -====== __10. Wheel Mode in Degrees (**WD**)__ ====== 451 +This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 452 +))) 306 306 307 -Ex: #5WD900<cr> 454 +|(% colspan="2" %)((( 455 +====== Query Status (**Q**) ====== 456 +))) 457 +|(% style="width:30px" %) |((( 458 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below. 308 308 309 - Thiscommand sets the servoto wheelmode whereitwillrotateinthe desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per secondclockwise (assuming factory default configurations).460 +Ex: #5Q<cr> might return *5Q6<cr> 310 310 311 -Query Wheel Mode in Degrees (**QWD**) 462 +which indicates the motor is holding a position. 463 +))) 312 312 313 -Ex: #5QWD<cr> might return *5QWD900<cr> 465 +|(% style="width:30px" %) |***Value returned (Q)**|**Status**|**Detailed description** 466 +| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 467 +| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 468 +| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command 469 +| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 470 +| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 471 +| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 472 +| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding) 473 +| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 474 +| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 475 +| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 476 +| |ex: *5Q10<cr>|10: Safe Mode|((( 477 +A safety limit has been exceeded (temperature, peak current or extended high current draw). 314 314 315 -The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 479 +Send a Q1 command to know which limit has been reached (described below). 480 +))) 316 316 317 -====== __11. Wheel Mode in RPM (**WR**)__ ====== 482 +|(% style="width:30px" %) |(% colspan="3" rowspan="1" %)If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 483 +| |***Value returned (Q1)**|**Status**|**Detailed description** 484 +| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 485 +| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 486 +| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 487 +| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 318 318 319 -Ex: #5WR40<cr> 489 +|(% colspan="2" %)((( 490 +====== Limp (**L**) ====== 491 +))) 492 +|(% style="width:30px" %) |((( 493 +Ex: #5L<cr> 320 320 321 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). 495 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 496 +))) 322 322 323 -Query Wheel Mode in RPM (**QWR**) 498 +|(% colspan="2" %)((( 499 +====== Halt & Hold (**H**) ====== 500 +))) 501 +|(% style="width:30px" %) |((( 502 +Example: #5H<cr> 324 324 325 -Ex: #5QWR<cr> might return *5QWR40<cr> 504 +This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 505 +))) 326 326 327 - Theservoreplies with the angular speedinrpm. A negative sign would indicate the oppositedirection (for factory default a negative value would be counter clockwise).507 +== Motion Setup == 328 328 329 -====== __12. Speed in Degrees (**SD**)__ ====== 509 +|(% colspan="2" %)((( 510 +====== Enable Motion Profile (**EM**) ====== 511 +))) 512 +|(% style="width:30px" %) |((( 513 +EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1. 330 330 331 -Ex: #5 SD1800<cr>515 +Ex: #5EM1<cr> 332 332 333 -This command sets the servo's maximum speed for actioncommands in tenths of degrees per second for that session. In the exampleabove, theservo'smaximumspeed forthat session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speedcannot be set higher than its physicallimit at a given voltage. SD overrides CSD (described below) for that session.Uponresetor power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively thesame, but allow the user to specify the speed in either unit. The last command (eitherSR or SD) iswhat theservouses for that session.517 +This command enables a trapezoidal motion profile for servo #5 334 334 335 - QuerySpeed in Degrees (**QSD**)519 +Ex: #5EM0<cr> 336 336 337 - Ex:#5QSD<cr>might return*5QSD1800<cr>521 +This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command). 338 338 339 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed. 340 -If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 523 +Query Motion Profile (**QEM**) 341 341 342 -|**Command sent**|**Returned value (1/10 °)** 343 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 344 -|ex: #5QSD1<cr>|Configured maximum speed (set by CSD/CSR) 345 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 346 -|ex: #5QSD3<cr>|Target travel speed 525 +Ex: #5QEM<cr> might return *5QEM1<cr> 347 347 348 - ConfigureSpeedinDegrees(**CSD**)527 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled. 349 349 350 - Ex: #5CSD1800<cr>529 +Configure Motion Profile (**CEM**) 351 351 352 - Using the CSD command sets the servo's maximumspeed which is saved inEEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.531 +Ex: #5CEM0<cr> 353 353 354 -====== __13. Speed in RPM (**SR**)__ ====== 533 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 534 +))) 355 355 356 -Ex: #5SD45<cr> 536 +|(% colspan="2" %)((( 537 +====== Filter Position Count (**FPC**) ====== 538 +))) 539 +|(% style="width:30px" %) |((( 540 +The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default. 357 357 358 - This command sets the servo's maximumspeed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overridesCSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.542 +Ex: #5FPC10<cr> 359 359 360 - QuerySpeedinDegrees(**QSR**)544 +This command allows the user to change the Filter Position Count value for that session. 361 361 362 - Ex: #5QSR<cr>mightreturn *5QSR45<cr>546 +Query Filter Position Count (**QFPC**) 363 363 364 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed. 365 -If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 548 +Ex: #5QFPC<cr> might return *5QFPC10<cr> 366 366 367 -|**Command sent**|**Returned value (1/10 °)** 368 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 369 -|ex: #5QSR1<cr>|Configured maximum speed (set by CSD/CSR) 370 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 371 -|ex: #5QSR3<cr>|Target travel speed 550 +This command will query the Filter Position Count value. 372 372 373 -Configure SpeedinRPM(**CSR**)552 +Configure Filter Position Count (**CFPC**) 374 374 375 -Ex: #5C SR45<cr>554 +Ex: #5CFPC10<cr> 376 376 377 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 556 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 557 +))) 378 378 379 -====== __14. Angular Stiffness (**AS**)__ ====== 559 +|(% colspan="2" %)((( 560 +====== Origin Offset (**O**) ====== 561 +))) 562 +|(% style="width:30px" %) |((( 563 +Ex: #5O2400<cr> 380 380 381 -Th eservo'srigidity/angularstiffnesscanbe thoughtofas (thoughnotidenticalto)adampedspringin whichthevalueaffects the stiffnessandembodieshowmuch,andhowquickly theservo triedkeepthe requestedposition against changes.565 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 382 382 383 - Apositive"angular stiffness":567 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 384 384 385 -* The more torque will be applied to try to keep the desired position against external input / changes 386 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 569 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: 387 387 388 - A negativeeonhetherhand:571 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]] 389 389 390 -* Causes a slower acceleration to the travel speed, and a slower deceleration 391 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back 573 +Origin Offset Query (**QO**) 392 392 393 - Thedefault value is zero and the effect becomes extremeby -4, +4. There are no units, only integers between-4 to 4. Greater values produce increasinglyerratic behavior.575 +Ex: #5QO<cr> might return *5QO-13 394 394 395 - Ex:#5AS-2<cr>577 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero. 396 396 397 - This reduces the angular stiffness to -2 for that session, allowingthe servo to deviatemore around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring"effect isdesired. Upon reset,the servo will use the value stored in memory, based on the last configuration command.579 +Configure Origin Offset (**CO**) 398 398 399 -Ex: #5 QAS<cr>581 +Ex: #5CO-24<cr> 400 400 401 -Queries the value being used. 583 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 584 +))) 402 402 403 -Ex: #5CAS<cr> 586 +|(% colspan="2" %)Angular Range (**AR**)((( 587 +====== ====== 588 +))) 589 +|(% style="width:30px" %) |((( 590 +Ex: #5AR1800<cr> 404 404 405 - Writes thedesiredangularstiffnessvalue to memory.592 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: 406 406 407 - ====== __15.Angular HoldStiffness(**AH**)__======594 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 408 408 409 - The angularholdingstiffnessdetermineshe servo's ability to hold a desiredpositionunderload. Valuescan be from-10 to10,withthedefault being 0. Notethatnegativevalues meanthe final positioncan beeasilydeflected.596 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 410 410 411 - Ex:#5AH3<cr>598 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]] 412 412 413 - Thissets theholdingstiffnessfor servo #5 to3forthatsession.600 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range: 414 414 415 - QueryAngular HoldStiffness(**QAH**)602 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]] 416 416 417 - Ex: #5QAH<cr>might return *5QAH3<cr>604 +Query Angular Range (**QAR**) 418 418 419 - Thisreturnstheservo'sangularholdingstiffnessvalue.606 +Ex: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees. 420 420 421 -Configure Angular Hold Stiffness(**CAH**)608 +Configure Angular Range (**CAR**) 422 422 423 -Ex: #5CAH2<cr> 610 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 611 +))) 424 424 425 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM 613 +|(% colspan="2" %)((( 614 +====== Angular Stiffness (**AS**) ====== 615 +))) 616 +|(% style="width:30px" %) |((( 617 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units. 426 426 427 - ======__15b:AngularAcceleration(**AA**)__ ======619 +A higher value of "angular stiffness": 428 428 429 -{More details to come} 621 +* The more torque will be applied to try to keep the desired position against external input / changes 622 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 430 430 431 - ====== __15c:AngularDeceleration(**AD**)__======624 +A lower value on the other hand: 432 432 433 -{More details to come} 626 +* Causes a slower acceleration to the travel speed, and a slower deceleration 627 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back 434 434 435 - ======__15d:MotionControl(**EM**)__======629 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 436 436 437 - {Moredetails tocome}631 +Ex: #5AS-2<cr> 438 438 439 - ======__16.RGBLED(**LED**)__======633 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 440 440 441 -Ex: #5 LED3<cr>635 +Ex: #5QAS<cr> 442 442 443 - This action sets theservo's RGB LED color for that session.The LED can beusedfor aesthetics, or (based on user code) to provide visual status updates.Using timing can create patterns.637 +Queries the value being used. 444 444 445 -0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE 639 +Ex: #5CAS-2<cr>Writes the desired angular stiffness value to EEPROM. 640 +))) 446 446 447 -Query LED Color (**QLED**) 642 +|(% colspan="2" %)((( 643 +====== Angular Holding Stiffness (**AH**) ====== 644 +))) 645 +|(% style="width:30px" %) |((( 646 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 448 448 449 -Ex: #5 QLED<cr>might return *5QLED5<cr>648 +Ex: #5AH3<cr> 450 450 451 -This s implequery returns theindicatedservo'sLEDcolor.650 +This sets the holding stiffness for servo #5 to 3 for that session. 452 452 453 - ConfigureLED Color(**CLED**)652 +Query Angular Holding Stiffness (**QAH**) 454 454 455 - Configuring the LEDcolorvia the CLED command setsthestartup colorof the servo after a reset or power cycle. Note that it also changesthe session's LEDcolorimmediately as well.654 +Ex: #5QAH<cr> might return *5QAH3<cr> 456 456 457 - ======__16b.ConfigureLED Blinking(**CLB**)__ ======656 +This returns the servo's angular holding stiffness value. 458 458 459 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 460 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 658 +Configure Angular Holding Stiffness (**CAH**) 461 461 462 - Toset blinking, useCLB with the value of yourchoosing. To activate blinking in multiple status, simply add togetherthe values of the corresponding status. See examples below:660 +Ex: #5CAH2<cr> 463 463 464 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 465 -Ex: #5CLB1<cr> only blink when limp 466 -Ex: #5CLB2<cr> only blink when holding 467 -Ex: #5CLB12<cr> only blink when accel or decel 468 -Ex: #5CLB48<cr> only blink when free or travel 469 -Ex: #5CLB63<cr> blink in all status 662 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 663 +))) 470 470 471 -====== __17. Identification Number__ ====== 665 +|(% colspan="2" %)((( 666 +====== Angular Acceleration (**AA**) ====== 667 +))) 668 +|(% style="width:30px" %) |((( 669 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 472 472 473 - Aservo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.671 +Ex: #5AA30<cr> 474 474 475 - QueryIdentification (**QID**)673 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 476 476 477 - EX: #254QID<cr>mightreturn *QID5<cr>675 +Query Angular Acceleration (**QAA**) 478 478 479 - Whenusing the queryID command,it is best to only have one servo connected and thus receive only one reply usingthe broadcastcommand (ID 254). Alternatively, pushingthe button upon startup andtemporarily setting the servo ID to 255 will stillresult in the servo responding with its "real" ID.677 +Ex: #5QAA<cr> might return *5QAA30<cr> 480 480 481 - ConfigureID(**CID**)679 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^). 482 482 483 - Ex: #4CID5<cr>681 +Configure Angular Acceleration (**CAA**) 484 484 485 - Setting a servo's ID inEEPROMis done via theCID command.All servosconnected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.683 +Ex: #5CAA30<cr> 486 486 487 -====== __18. Baud Rate__ ====== 685 +This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 686 +))) 488 488 489 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 490 -\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. 688 +|(% colspan="2" %)((( 689 +====== Angular Deceleration (**AD**) ====== 690 +))) 691 +|(% style="width:30px" %) |((( 692 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 491 491 492 - QueryBaud Rate (**QB**)694 +Ex: #5AD30<cr> 493 493 494 - Ex:#5QB<cr>might return*5QB9600<cr>696 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 495 495 496 -Query ingthe baud rate is used simply to confirmtheCBconfigurationcommand before the servo is power cycled.698 +Query Angular Deceleration (**QAD**) 497 497 498 - ConfigureBaudRate (**CB**)700 +Ex: #5QAD<cr> might return *5QAD30<cr> 499 499 500 - Ex:#5CB9600<cr>702 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^). 501 501 502 - Sending this command will change the baudrate associated with servo ID 5to 9600 bits per second.704 +Configure Angular Deceleration (**CAD**) 503 503 504 - ======__19. Gyre RotationDirection__ ======706 +Ex: #5CAD30<cr> 505 505 506 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 708 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 709 +))) 507 507 508 -{images showing before and after with AR and Origin offset} 711 +|(% colspan="2" %)((( 712 +====== Gyre Direction (**G**) ====== 713 +))) 714 +|(% style="width:30px" %) |((( 715 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1. 509 509 717 +Ex: #5G-1<cr> 718 + 719 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 720 + 510 510 Query Gyre Direction (**QG**) 511 511 512 512 Ex: #5QG<cr> might return *5QG-1<cr> 513 513 514 -The value returned above means the servo is in a counter-clockwise gyration. 725 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM. 515 515 516 516 Configure Gyre (**CG**) 517 517 ... ... @@ -518,142 +518,272 @@ 518 518 Ex: #5CG-1<cr> 519 519 520 520 This changes the gyre direction as described above and also writes to EEPROM. 732 +))) 521 521 522 -====== __20. First / Initial Position (pulse)__ ====== 734 +|(% colspan="2" %)((( 735 +====== First Position ====== 736 +))) 737 +|(% style="width:30px" %) |((( 738 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. 523 523 524 - In certain cases, ausermight want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factorydefault has no firstposition value stored in EEPROM and therefore upon power up, theservo remains limp until a position(or hold command)is assigned.FP and FDaredifferent in that FP is used for RC mode only, whereas FDis used for smart mode only.740 +Query First Position in Degrees (**QFD**) 525 525 526 -Q ueryFirstPositionin Pulses (**QFP**)742 +Ex: #5QFD<cr> might return *5QFD900<cr> 527 527 528 - Ex:#5QFP<cr>might return*5QFP1550<cr>744 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS. 529 529 530 - The reply above indicates that servo with ID 5 has afirst position pulse of 1550 microseconds.If no firstpositionhas beenset, servo will respondwith DIS("disabled").746 +Configure First Position in Degrees (**CFD**) 531 531 532 - ConfigureFirst Position in Pulses (**CFP**)748 +Ex: #5CFD900<cr> 533 533 534 -Ex: #5CP1550<cr> 750 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 751 +))) 535 535 536 -This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 753 +|(% colspan="2" %)((( 754 +====== Maximum Motor Duty (**MMD**) ====== 755 +))) 756 +|(% style="width:30px" %) |((( 757 +This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance. 537 537 538 - ======__21. First / Initial Position (Degrees)__ ======759 +Ex: #5MMD512<cr> 539 539 540 - In certain cases,a user mightwant to have the servo move to a specific angleupon power up. We refertothis as "first position". Thefactorydefaulthas no first position valuestoredinEEPROM and thereforeupon power up, theservoremains limp until a position (orholdcommand) is assigned. FP and FDaredifferentinthatFP isused for RC mode only, whereasFD isused for smart mode only.761 +This will set the duty-cycle to 512 for servo with ID 5 for that session. 541 541 542 -Query FirstPositioninDegrees(**QFD**)763 +Query Maximum Motor Duty (**QMMD**) 543 543 544 -Ex: #5Q FD<cr> might return *5QFD64<cr>765 +Ex: #5QMMDD<cr> might return *5QMMD512<cr> 545 545 546 -The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. 767 +This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023. 768 +))) 547 547 548 -Configure First Position in Degrees (**CFD**) 770 +|(% colspan="2" %)((( 771 +====== Maximum Speed in Degrees (**SD**) ====== 772 +))) 773 +|(% style="width:30px" %) |((( 774 +Ex: #5SD1800<cr> 549 549 550 - Ex:#5CD64<cr>776 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 551 551 552 - This configuration command means the servo, when set to smart mode, will immediatelymove to 6.4 degrees upon power up. Sendinga CFDcommand without a numberresults in theervoremaining limp upon power up.778 +Query Speed in Degrees (**QSD**) 553 553 554 - ======__22.QueryTargetPositionin Degrees (**QDT**)__ ======780 +Ex: #5QSD<cr> might return *5QSD1800<cr> 555 555 556 -Ex: #5QDT<cr> might return *5QDT6783<cr> 782 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 783 +))) 557 557 558 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 785 +|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)** 786 +| |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 787 +| |ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 788 +| |ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 789 +| |ex: #5QSD3<cr>|Target travel speed 559 559 560 -====== __23. Query Model String (**QMS**)__ ====== 791 +|(% style="width:30px" %) |((( 792 +Configure Speed in Degrees (**CSD**) 561 561 562 -Ex: #5 QMS<cr>might return *5QMSLSS-HS1cr>794 +Ex: #5CSD1800<cr> 563 563 564 -This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 796 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 797 +))) 565 565 566 -====== __23b. Query Model (**QM**)__ ====== 799 +|(% colspan="2" %)((( 800 +====== Maximum Speed in RPM (**SR**) ====== 801 +))) 802 +|(% style="width:30px" %) |((( 803 +Ex: #5SR45<cr> 567 567 568 - Ex:#5QM<cr>might return*5QM68702699520cr>805 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 569 569 570 - This replymeans theservo modelis 0xFFF000000 or 100, meaningahigh speed servo, first revision.807 +Query Speed in RPM (**QSR**) 571 571 572 - ======__24.QuerySerialNumber(**QN**)__ ======809 +Ex: #5QSR<cr> might return *5QSR45<cr> 573 573 574 -Ex: #5QN<cr> might return *5QN~_~_<cr> 811 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 812 +))) 575 575 576 -The number in the response is the servo's serial number which is set and cannot be changed. 814 +|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)** 815 +| |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 816 +| |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 817 +| |ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 818 +| |ex: #5QSR3<cr>|Target travel speed 577 577 578 -====== __25. Query Firmware (**QF**)__ ====== 820 +|((( 821 +Configure Speed in RPM (**CSR**) 579 579 580 -Ex: #5 QF<cr> might return *5QF11<cr>823 +Ex: #5CSR45<cr> 581 581 582 -The integer in the reply represents the firmware version with one decimal, in this example being 1.1 825 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 826 +)))| 583 583 584 -== ====__26. Query Status(**Q**)__======828 +== Modifiers == 585 585 586 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 830 +|(% colspan="2" %)((( 831 +====== Speed (**S**, **SD**) modifier ====== 832 +))) 833 +|(% style="width:30px" %) |((( 834 +Ex: #5P1500S750<cr> 587 587 588 -|*Value returned|**Status**|**Detailed description** 589 -|ex: *5Q0<cr>|Unknown|LSS is unsure 590 -|ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely 591 -|ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 592 -|ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed 593 -|ex: *5Q4<cr>|Traveling|Moving at a stable speed 594 -|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position. 595 -|ex: *5Q6<cr>|Holding|Keeping current position 596 -|ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque 597 -|ex: *5Q8<cr>|Outside limits|{More details coming soon} 598 -|ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 599 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 836 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 600 600 601 - ======__27. Query Voltage (**QV**)__ ======838 +Ex: #5D0SD180<cr> 602 602 603 - Ex:#5QV<cr>might return*5QV11200<cr>840 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second. 604 604 605 - The numberreturnedhas one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V(perhaps a three cell LiPo battery).842 +Query Speed (**QS**) 606 606 607 - ======__28.QueryTemperature(**QT**)__ ======844 +Ex: #5QS<cr> might return *5QS300<cr> 608 608 609 -Ex: #5QT<cr> might return *5QT564<cr> 846 +This command queries the current speed in microseconds per second. 847 +))) 610 610 611 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 849 +|(% colspan="2" %)((( 850 +====== Timed move (**T**) modifier ====== 851 +))) 852 +|(% style="width:30px" %) |((( 853 + 612 612 613 - ======__29. Query Current (**QC**)__ ======855 +Example: #5P1500T2500<cr> 614 614 857 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 858 + 859 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 860 +))) 861 + 862 +|(% colspan="2" %)((( 863 +====== Current Halt & Hold (**CH**) modifier ====== 864 +))) 865 +|(% style="width:30px" %) |((( 866 +Example: #5D1423CH400<cr> 867 + 868 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position. 869 + 870 +This modifier can be added to the following actions: D; MD; WD; WR. 871 +))) 872 + 873 +|(% colspan="2" %)((( 874 +====== Current Limp (**CL**) modifier ====== 875 +))) 876 +|(% style="width:30px" %) |((( 877 +Example: #5D1423CL400<cr> 878 + 879 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp. 880 + 881 +This modifier can be added to the following actions: D; MD; WD; WR. 882 +))) 883 + 884 +== Telemetry == 885 + 886 +|(% colspan="2" %)((( 887 +====== Query Voltage (**QV**) ====== 888 +))) 889 +|(% style="width:30px" %) |((( 890 +Ex: #5QV<cr> might return *5QV11200<cr> 891 + 892 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V. 893 +))) 894 + 895 +|(% colspan="2" %)((( 896 +====== Query Current (**QC**) ====== 897 +))) 898 +|(% style="width:30px" %) |((( 899 + 900 + 615 615 Ex: #5QC<cr> might return *5QC140<cr> 616 616 617 617 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 904 +))) 618 618 619 -====== __30. RC Mode (**CRC**)__ ====== 906 +|(% colspan="2" %)((( 907 +====== Query Model String (**QMS**) ====== 908 +))) 909 +|(% style="width:30px" %) |((( 910 + 620 620 621 - Thiscommand puts the servointo RCmode (position or continuous), where itwill onlyrespondto RC pulses. Note that because this is the case, the servo willnolonger accept serial commands. The servo can be placed back into smart mode by using the button menu.912 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr> 622 622 623 -|**Command sent**|**Note** 624 -|ex: #5CRC<cr>|Stay in smart mode. 625 -|ex: #5CRC1<cr>|Change to RC position mode. 626 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 627 -|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode. 914 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision. 915 +))) 628 628 629 -EX: #5CRC<cr> 917 +|(% colspan="2" %)((( 918 +====== Query Firmware (**QF**) ====== 919 +))) 920 +|(% style="width:30px" %) |((( 921 +Ex: #5QF<cr> might return *5QF368<cr> 630 630 631 - ======__31.RESET__======923 +The number in the reply represents the firmware version, in this example being 368. 632 632 633 -Ex: #5RESET<cr> or #5RS<cr> 925 +The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14 926 +))) 634 634 635 - Thiscommanddoes a "soft reset" (no power cycle required) and reverts all commands to those stored inEEPROM(i.e. configuration commands).928 +== RGB LED == 636 636 637 -====== __32. DEFAULT & CONFIRM__ ====== 930 +|(% colspan="2" %)((( 931 +====== LED Color (**LED**) ====== 932 +))) 933 +|(% style="width:30px" %) |((( 934 + 638 638 639 -Ex: #5 DEFAULT<cr>936 +Ex: #5LED3<cr> 640 640 641 -This command setsin motionthe resetall values to thedefault valuesincluded with the versionofthefirmware installedon that servo. Theservo then waitsfor the CONFIRM command. Any othercommand received will causetheservo to exit the DEFAULT function.938 +This action sets the servo's RGB LED color for that session. 642 642 643 - EX:#5DEFAULT<cr>followedby#5CONFIRM<cr>940 +The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. 644 644 645 - Sinceit it not common to have to restore all configurations, aconfirmationcommand is neededaftera firmwarecommand is sent.Should any command otherthan CONFIRM bereceived by the servoafter the firmwarecommandhas beenreceived, itwill leavethe firmware action.942 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White; 646 646 647 - Notethat aftertheCONFIRM command is sent, the servo will automatically performa RESET.944 +Query LED Color (**QLED**) 648 648 649 - ======__33. UPDATE&CONFIRM__======946 +Ex: #5QLED<cr> might return *5QLED5<cr> 650 650 651 - Ex: #5UPDATE<cr>948 +This simple query returns the indicated servo's LED color. 652 652 653 - This command sets in motion the equivalent ofa longbutton presswhenthe servois not powered in order to enter firmware update mode. This is usefulshould the button be brokenor inaccessible. The servo then waits for theCONFIRM command. Any other command received will cause the servo to exit the UPDATEfunction.950 +Configure LED Color (**CLED**) 654 654 655 -E X: #5UPDATE<cr>followed by #5CONFIRM<cr>952 +Ex: #5CLED3<cr> 656 656 657 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 954 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color. 955 +))) 658 658 659 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 957 +|(% colspan="2" %)((( 958 +====== Configure LED Blinking (**CLB**) ====== 959 +))) 960 +|(% style="width:30px" %) |((( 961 + 962 + 963 +This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value: 964 +))) 965 + 966 +|(% style="width:30px" %) |(% style="width:200px" %)**Blink While:**|(% style="width:50px" %)**#**| 967 +| |No blinking|0| 968 +| |Limp|1| 969 +| |Holding|2| 970 +| |Accelerating|4| 971 +| |Decelerating|8| 972 +| |Free|16| 973 +| |Travelling|32| 974 +| |Always blink|63| 975 + 976 +|(% style="width:30px" %) |((( 977 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 978 + 979 +Ex: #5CLB0 to turn off all blinking (LED always solid) 980 + 981 +Ex: #5CLB1 only blink when limp (1) 982 + 983 +Ex: #5CLB2 only blink when holding (2) 984 + 985 +Ex: #5CLB12 only blink when accel or decel (accel 4 + decel 8 = 12) 986 + 987 +Ex: #5CLB48 only blink when free or travel (free 16 + travel 32 = 48) 988 + 989 +Ex: #5CLB63 blink in all status (1 + 2 + 4 + 8 + 16 + 32) 990 + 991 +RESETTING the servo is needed. 992 +))) 993 + 994 +|(% colspan="2" style="width:30px" %)((( 995 +====== RGB LED Patterns ====== 996 +))) 997 +|(% style="width:30px" %) |((( 998 +The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-button-menu/]] 999 +))) 1000 +|(% style="width:30px" %) |[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS%20-%20LED%20Patterns.png||alt="LSS - LED Patterns.png"]]
- LSS - LED Patterns.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.RB1 - Size
-
... ... @@ -1,0 +1,1 @@ 1 +116.3 KB - Content
- LSS-Protocol-Backup-2020-05-01.zip
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.ENantel - Size
-
... ... @@ -1,0 +1,1 @@ 1 +47.4 KB - Content
- XWiki.XWikiRights[0]
-
- Allow/Deny
-
... ... @@ -1,1 +1,0 @@ 1 -1 - Groups
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.XWikiAdminGroup - Levels
-
... ... @@ -1,1 +1,0 @@ 1 -view
- XWiki.XWikiRights[1]
-
- Allow/Deny
-
... ... @@ -1,1 +1,0 @@ 1 -1 - Groups
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.XWikiAdminGroup - Levels
-
... ... @@ -1,1 +1,0 @@ 1 -view
- XWiki.XWikiRights[2]
-
- Allow/Deny
-
... ... @@ -1,1 +1,0 @@ 1 -1 - Groups
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Profiles (Lynxmotion).BETA Testers - Levels
-
... ... @@ -1,1 +1,0 @@ 1 -view
- XWiki.StyleSheetExtension[0]
-
- Caching policy
-
... ... @@ -1,0 +1,1 @@ 1 +long - Code
-
... ... @@ -1,0 +1,13 @@ 1 +div.cmdcnt 2 +{ 3 + display:table-row; 4 +} 5 +div.cmdpad 6 +{ 7 + display:table-cell; 8 + padding:16px; 9 +} 10 +div.cmdtxt 11 +{ 12 + display:table-cell; 13 +} - Content Type
-
... ... @@ -1,0 +1,1 @@ 1 +CSS - Name
-
... ... @@ -1,0 +1,1 @@ 1 +DivTextIndentation - Parse content
-
... ... @@ -1,0 +1,1 @@ 1 +No - Use this extension
-
... ... @@ -1,0 +1,1 @@ 1 +currentPage