Last modified by Eric Nantel on 2025/06/06 07:47

From version < 93.1 >
edited by Coleman Benson
on 2019/01/31 15:51
To version < 215.1 >
edited by Eric Nantel
on 2024/11/21 09:22
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSS - Communication Protocol
1 +LSS Communication Protocol
Parent
... ... @@ -1,1 +1,1 @@
1 -Lynxmotion Smart Servo (LSS).WebHome
1 +ses-v2.lynxmotion-smart-servo.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.CBenson
1 +xwiki:XWiki.ENantel
Content
... ... @@ -1,318 +4,404 @@
1 -(% class="wikigeneratedid" id="HTableofContents" %)
2 -**Table of Contents**
3 -
4 4  {{toc depth="3"/}}
5 5  
6 -= Serial Protocol Concept =
3 += Serial Protocol =
7 7  
8 -The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable"), while at the same time trying to be compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 RC servo controller and almost everything one might expect to be able to configure for a smart servo motor is available.
5 +The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available.
9 9  
10 -In serial mode, in order to have servos react differently when commands are sent to all servos in a bus, the first step a user should take is to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will take action. There is currently no CRC / checksum implemented as part of the protocol.
7 +In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>path:#HIdentificationNumber28ID29]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
11 11  
9 +|(% colspan="2" %)(((
12 12  == Session ==
13 -
11 +)))
12 +|(% style="width:25px" %) |(((
14 14  A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
15 15  
16 -== Action Commands ==
15 +**Note 1:** For a given session, the action related to a specific command overrides the stored value in EEPROM.
17 17  
18 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The type of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page). Action commands are sent serially to the servo's Rx pin and must be set in the following format:
17 +**Note 2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).
19 19  
20 -1. Start with a number sign # (U+0023)
21 -1. Servo ID number as an integer
22 -1. Action command (one to three letters, no spaces, capital or lower case)
23 -1. Action value in the correct units with no decimal
24 -1. End with a control / carriage return '<cr>'
19 +**Note 3:** You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r described below). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays.
20 +)))
25 25  
26 -(((
27 -Ex: #5PD1443<cr>
22 +|(% colspan="2" %)(((
23 +== Action Commands ==
24 +)))
25 +|(% style="width:25px" %) |(((
26 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HVirtualAngularPosition]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
28 28  
29 -This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position of 144.3 degrees. Any servo in the bus which does not have ID 5 will take no action when they receive this command.
28 +1. Start with a number sign **#** (Unicode Character: U+0023)
29 +1. Servo ID number as an integer (assigning an ID described below)
30 +1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
31 +1. Action value in the correct units with no decimal
32 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
30 30  
31 -== Action Modifiers ==
34 +Ex: #5D1800<cr>
32 32  
33 -Only two commands can be used as action modifiers: Timed Move (T) and Speed (S). Action modifiers can only be used with certain action commands. The format to include a modifier is:
36 +This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
37 +)))
34 34  
35 -1. Start with a number sign # (U+0023)
39 +|(% colspan="2" %)(((
40 +== Modifiers ==
41 +)))
42 +|(% style="width:25px" %) |(((
43 +Modifiers can only be used with certain **action commands**. The format to include a modifier is:
44 +
45 +1. Start with a number sign **#** (Unicode Character: U+0023)
36 36  1. Servo ID number as an integer
37 -1. Action command (one to three letters, no spaces, capital or lower case)
47 +1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
38 38  1. Action value in the correct units with no decimal
39 -1. Modifier command (one letter)
49 +1. Modifier command (one or two letters from the list of modifiers below)
40 40  1. Modifier value in the correct units with no decimal
41 -1. End with a control / carriage return '<cr>'
51 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
42 42  
43 -Ex: #5P1456T1263<cr>
53 +Ex: #5D1800T1500<cr>
44 44  
45 -This results in the servo with ID #5 rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds. Position in pulses is described below.
55 +This results in the servo with ID #5 rotating ta position (1800 in tenths of degreesof 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).
46 46  )))
47 47  
48 -== Configuration Commands ==
58 +|(% colspan="2" %)(((
59 +== Query Commands ==
60 +)))
61 +|(% style="width:25px" %) |(((
62 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
49 49  
50 -Configuration commands affect a servo's default values which are written to the servo's EEPROM and are retained in memory after the servo loses power or is reset. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
51 -
52 -1. Start with a number sign # (U+0023)
64 +1. Start with a number sign **#** (Unicode Character: U+0023)
53 53  1. Servo ID number as an integer
54 -1. Configuration command (two to three letters, no spaces, capital or lower case)
55 -1. Configuration value in the correct units with no decimal
56 -1. End with a control / carriage return '<cr>'
66 +1. Query command (one to four letters, no spaces, capital or lower case)
67 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
57 57  
58 -Ex: #5CO-50<cr>
69 +Ex: #5QD<cr> Query the position in (tenth of) degrees for servo with ID #5
59 59  
60 -This assigns an absolute origin offset of -5.0 degrees (with respect to factory origin) to servo with ID #5 and changes the offset for that session to -5.0 degrees. Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.
71 +The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
61 61  
62 -== Query Commands ==
73 +1. Start with an asterisk * (Unicode Character: U+0023)
74 +1. Servo ID number as an integer
75 +1. Query command (one to four letters, no spaces, capital letters)
76 +1. The reported value in the units described, no decimals.
77 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
63 63  
64 -Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. This is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
79 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:
65 65  
66 -1. Start with a number sign # (U+0023)
67 -1. Servo ID number as an integer
68 -1. Query command (one to three letters, no spaces, capital or lower case)
69 -1. End with a control / carriage return '<cr>'
81 +Ex: *5QD1800<cr>
70 70  
71 -(((
72 -Ex: #5QD<cr>Query position in degrees for servo #5
83 +This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees).
73 73  )))
74 74  
75 -(((
76 -The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
86 +|(% colspan="2" %)(((
87 +== Configuration Commands ==
88 +)))
89 +|(% style="width:25px" %) |(((
90 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.
77 77  
78 -1. Start with an asterisk * (U+002A)
79 -1. Servo ID number as an integer
80 -1. Query command (one to three letters, no spaces, capital letters)
81 -1. The reported value in the units described, no decimals.
82 -1. End with a control / carriage return '<cr>'
92 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-radio-control-pwm/]]. Configuration commands are not cumulative. This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.
83 83  
84 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command.
94 +The format to send a configuration command is identical to that of an action command:
85 85  
86 -(((
87 -Ex: *5QD1443<cr>
88 -)))
96 +1. Start with a number sign **#** (Unicode Character: U+0023)
97 +1. Servo ID number as an integer
98 +1. Configuration command (two to four letters, no spaces, capital or lower case)
99 +1. Configuration value in the correct units with no decimal
100 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
89 89  
90 -This reply to the query above indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees).
102 +Ex: #5CO-50<cr>
91 91  
104 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).
105 +
92 92  **Session vs Configuration Query**
93 93  
94 -By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM from the last configuration command.
108 +By default, the query command returns the session'value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
95 95  
96 -In order to query the value in EEPROM (configuration), add a '1' to the query command.
110 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
97 97  
98 -Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) .
112 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
99 99  
100 -After RESET: #5SR4<cr> sets the session's speed to 4rpm.
114 +#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas
101 101  
102 -#5QSR<cr> would return *5QSR4<cr> which represents the value for that session.
103 -
104 104  #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
117 +)))
105 105  
119 +|(% colspan="2" %)(((
106 106  == Virtual Angular Position ==
121 +)))
122 +|(% style="width:25px" %) |(((
123 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
107 107  
108 -A "virtual position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to 360.0 degrees, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335).
125 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
109 109  
110 -[[image:LSS-servo-positions.jpg]]
127 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
111 111  
112 -In this example, the gyre direction (explained below, a.k.a. rotation direction) is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
113 -
114 114  #1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
115 115  
116 116  #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
117 117  
118 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees stopping at an absolute position of 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
133 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
119 119  
120 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
135 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
121 121  
122 -#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
137 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
123 123  
124 124  #1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).
125 125  
126 -If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified).
141 +If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°].
127 127  )))
128 128  
129 129  = Command List =
130 130  
131 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
132 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
133 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
134 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)
135 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds / second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)
136 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
137 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
138 -0
146 +**Latest firmware version currently : 370**
147 +
148 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Communication Setup**>>path:#HCommunicationSetup]]
149 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
150 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Reset**>>path:#HReset]]|RESET| | | |✓| | |Soft reset. See command for details.
151 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Default** Configuration>>path:#HDefault26confirm]]|DEFAULT| | | |✓| | |Revert to firmware default values. See command for details
152 +| |[[Firmware (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Update** Mode>>path:#HUpdate26confirm]]|UPDATE| | | |✓| | |Update firmware. See command for details.
153 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Confirm** Changes>>path:#HConfirm]]|CONFIRM| | | |✓| | |
154 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**hange to **RC**>>path:#HConfigureRCMode28CRC29]]| | |CRC| |✓| | |Change to RC mode 1 (position) or 2 (wheel).
155 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**ID** #>>path:#HIdentificationNumber28ID29]]| |QID|CID| |✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
156 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**B**audrate>>path:#HBaudRate]]| |QB|CB| |✓|115200| |Reset required after change.
157 +
158 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion**>>path:#HMotion]]
159 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
160 +| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**D**egrees>>path:#HPositioninDegrees28D29]]|D|QD/QDT| | |✓| |1/10°|
161 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in **D**egrees (relative)>>path:#H28Relative29MoveinDegrees28MD29]]|MD| | | |✓| |1/10°|
162 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **D**egrees>>path:#HWheelModeinDegrees28WD29]]|WD|QWD/QVT| | |✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation"
163 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **R**PM>>path:#HWheelModeinRPM28WR29]]|WR|QWR| | |✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation"
164 +| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**P**WM>>path:#HPositioninPWM28P29]]|P|QP| | |✓| |us|Inherited from SSC-32 serial protocol
165 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in PWM (relative)>>path:#H28Relative29MoveinPWM28M29]]|M| | | |✓| |us|
166 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**R**aw **D**uty-cycle **M**ove>>path:#HRawDuty-cycleMove28RDM29]]|RDM|QMD| | |✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW
167 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery Status>>path:#HQueryStatus28Q29]]| |Q| | |✓| |1 to 8 integer|See command description for details
168 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**L**imp>>path:#HLimp28L29]]|L| | | |✓| | |
169 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**H**alt & Hold>>path:#HHalt26Hold28H29]]|H| | | |✓| | |
170 +
171 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion Setup**>>path:#HMotionSetup]]
172 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
173 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**E**nable **M**otion Profile>>path:#HEnableMotionProfile28EM29]]|EM|QEM|CEM| |✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile
174 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**ilter **P**osition **C**ount>>path:#HFilterPositionCount28FPC29]]|FPC|QFPC|CFPC|✓|✓|5| |Affects motion only when motion profile is disabled (EM0)
175 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**O**rigin Offset>>path:#HOriginOffset28O29]]|O|QO|CO|✓|✓|0|1/10°|
176 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **R**ange>>path:#HAngularRange28AR29]]|AR|QAR|CAR|✓|✓|1800|1/10°|
177 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **S**tiffness>>path:#HAngularStiffness28AS29]]|AS|QAS|CAS|✓|✓|0|-4 to +4 integer|Suggested values are between 0 to +4
178 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **H**olding Stiffness>>path:#HAngularHoldingStiffness28AH29]]|AH|QAH|CAH|✓|✓|4|-10 to +10 integer|
179 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **A**cceleration>>path:#HAngularAcceleration28AA29]]|AA|QAA|CAA| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
180 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **D**eceleration>>path:#HAngularDeceleration28AD29]]|AD|QAD|CAD| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
181 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**G**yre Direction>>path:#HGyreDirection28G29]]|G|QG|CG|✓|✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
182 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**irst Position (**D**eg)>>path:#HFirstPosition]]| |QFD|CFD|✓|✓|No value|1/10°|Reset required after change.
183 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**aximum **M**otor **D**uty>>path:#HMaximumMotorDuty28MMD29]]|MMD|QMMD| | |✓|1023|255 to 1023 integer|
184 +| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HMaximumSpeedinDegrees28SD29]]|SD|QSD|CSD|✓|✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
185 +| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **R**PM>>path:#HMaximumSpeedinRPM28SR29]]|SR|QSR|CSR|✓|✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
186 +
187 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Modifiers**>>path:#HModifiers]]
188 +| |**Description**|**Modifier**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
189 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed>>path:#HSpeed28S2CSD29modifier]]|S|QS| | |✓| |uS/s |For P action command
190 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HSpeed28S2CSD29modifier]]|SD| | | |✓| |0.1°/s|For D and MD action commands
191 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**T**imed move>>path:#HTimedmove28T29modifier]]|T| | | |✓| |ms|Modifier only for P, D and MD. Time can change based on load
192 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **H**old>>path:#HCurrentHalt26Hold28CH29modifier]]|CH| | | |✓| |mA|Modifier for D, MD, WD and WR
193 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **L**imp>>path:#HCurrentLimp28CL29modifier]]|CL| | | |✓| |mA|Modifier for D, MD, WD and WR
194 +
195 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Telemetry**>>path:#HTelemetry]]
196 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
197 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **V**oltage>>path:#HQueryVoltage28QV29]]| |QV| | |✓| |mV|
198 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **T**emperature>>path:#HQueryTemperature28QT29]]| |QT| | |✓| |1/10°C|
199 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **C**urrent>>path:#HQueryCurrent28QC29]]| |QC| | |✓| |mA|
200 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **M**odel **S**tring>>path:#HQueryModelString28QMS29]]| |QMS| | |✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
201 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **F**irmware Version>>path:#HQueryFirmware28QF29]]| |QF| | |✓| | |
202 +
203 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**RGB LED**>>path:#HRGBLED]]
204 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
205 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**LED** Color>>path:#HLEDColor28LED29]]|LED|QLED|CLED|✓|✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
206 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**onfigure **L**ED **B**linking>>path:#HConfigureLEDBlinking28CLB29]]| | |CLB|✓|✓| |0 to 63 integer|Reset required after change. See command for details.
207 +
208 += Details =
209 +
210 +== Communication Setup ==
211 +
212 +|(% colspan="2" %)(((
213 +====== Reset ======
139 139  )))
140 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
141 -1800
215 +|(% style="width:30px" %) |(((
216 +Ex: #5RESET<cr>
217 +
218 +This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HSession]], note #2 for more details.
142 142  )))
143 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(% style="width:510px" %)(((
144 -Inherited from SSC-32 serial protocol
145 -)))|(% style="text-align:center; width:113px" %)
146 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
147 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
148 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
149 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| ✓| ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)QSD: Add modifier "2" for instantaneous speed|(% style="text-align:center; width:113px" %)Max per servo
150 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓| ✓|rpm|(% style="width:510px" %)QSR: Add modifier "2" for instantaneous speed|(% style="text-align:center; width:113px" %)Max per servo
151 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
152 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0
153 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
154 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none |(% style="width:510px" %) Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 CW
155 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
156 -Limp
220 +
221 +|(% colspan="2" %)(((
222 +====== Default & confirm ======
157 157  )))
158 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)Limp
159 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
160 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)|(% style="width:510px" %) Recommended to determine the model|(% style="text-align:center; width:113px" %)
161 -| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)|(% style="width:510px" %) Returns a raw value representing the three model inputs (36 bit)|(% style="text-align:center; width:113px" %)
162 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
163 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
164 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
165 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
166 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
167 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
168 -| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|(% style="width:510px" %)(((
169 -CRC: Add modifier "1" for RC-position mode.
170 -CRC: Add modifier "2" for RC-wheel mode.
171 -Any other value for the modifier results in staying in smart mode.
172 -Puts the servo into RC mode. To revert to smart mode, use the button menu.
173 -)))|(% style="text-align:center; width:113px" %)Serial
174 -|31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
175 -|32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
176 -|33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
224 +|(% style="width:30px" %) |(((
225 +Ex: #5DEFAULT<cr>
177 177  
178 -(% class="wikigeneratedid" %)
179 -== Advanced ==
227 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
180 180  
181 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
182 -| 1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS|CAS| ✓| ✓|none|(% style="width:510px" %)-4 to +4, but suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0
183 -| 2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|(% style="width:510px" %)-10 to +10, with default as 0. |(% style="text-align:center; width:113px" %)1
184 -| 3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
185 -| 4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
186 -| 5|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles|(% style="text-align:center; width:113px" %)
187 -| 6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center; width:113px" %)
188 -| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
229 +Ex: #5DEFAULT<cr> followed by #5CONFIRM<cr>
189 189  
190 -== Details ==
231 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
191 191  
192 -====== __1. Limp (**L**)__ ======
233 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
234 +)))
193 193  
194 -Example: #5L<cr>
236 +|(% colspan="2" %)(((
237 +====== Update & confirm ======
238 +)))
239 +|(% style="width:30px" %) |(((
240 +Ex: #5UPDATE<cr>
195 195  
196 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
242 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
197 197  
198 -====== __2. Halt & Hold (**H**)__ ======
244 +Ex: #5UPDATE<cr> followed by #5CONFIRM<cr>
199 199  
200 -Example: #5H<cr>
246 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
201 201  
202 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position.
248 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
249 +)))
203 203  
204 -====== __3. Timed move (**T**)__ ======
251 +|(% colspan="2" %)(((
252 +====== Confirm ======
253 +)))
254 +|(% style="width:30px" %) |(((
255 +Ex: #5CONFIRM<cr>
205 205  
206 -Example: #5P1500T2500<cr>
257 +This command is used to confirm changes after a Default or Update command.
207 207  
208 -Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
259 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
260 +)))
209 209  
210 -Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
262 +|(% colspan="2" %)(((
263 +====== Configure RC Mode (**CRC**) ======
264 +)))
265 +|(% style="width:30px" %) |(((
266 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
211 211  
212 -====== __4. Speed (**S**)__ ======
268 +Ex: #5CRC1<cr>
213 213  
214 -Example: #5P1500S750<cr>
270 +Change to RC position mode.
215 215  
216 -This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
272 +Ex: #5CRC2<cr>
217 217  
218 -====== __5. (Relative) Move in Degrees (**MD**)__ ======
274 +Change to RC continuous rotation (wheel) mode.
219 219  
220 -Example: #5MD123<cr>
276 +Ex: #5CRC*<cr>
221 221  
222 -The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
278 +Where * is any value other than 1 or 2 (or no value): stay in smart mode
223 223  
224 -====== __6. Origin Offset Action (**O**)__ ======
280 +Ex: #5CRC2<cr>
225 225  
226 -Example: #5O2400<cr>
282 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.
227 227  
228 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position. The setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. Note that for a given session, the O command overrides the CO command. In the first image, the origin at factory offset '0' (centered).
284 +**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-button-menu/]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.
285 +)))
229 229  
230 -[[image:LSS-servo-default.jpg]]
287 +|(% colspan="2" %)(((
288 +====== Identification Number (**ID**) ======
289 +)))
290 +|(% style="width:30px" %) |(((
291 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
231 231  
232 -In the second image, the origina, as well as the angular range (explained below) have been shifted by 240.0 degrees:
293 +Query Identification (**QID**)
233 233  
234 -[[image:LSS-servo-origin.jpg]]
295 +EX: #254QID<cr> might return *QID5<cr>
235 235  
236 -Origin Offset Query (**QO**)
297 +When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
237 237  
238 -Example: #5QO<cr> Returns: *5QO-13
299 +Configure ID (**CID**)
239 239  
240 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position.
301 +Ex: #4CID5<cr>
241 241  
242 -Configure Origin Offset (**CO**)
303 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.
304 +)))
243 243  
244 -Example: #5CO-24<cr>
306 +|(% colspan="2" %)(((
307 +====== Baud Rate ======
308 +)))
309 +|(% style="width:30px" %) |(((
310 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.
245 245  
246 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode.
312 +Query Baud Rate (**QB**)
247 247  
248 -====== __7. Angular Range (**AR**)__ ======
314 +Ex: #5QB<cr> might return *5QB115200<cr>Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.
249 249  
250 -Example: #5AR1800<cr>
316 +Configure Baud Rate (**CB**)
251 251  
252 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). In the first image,
318 +**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.
253 253  
254 -[[image:LSS-servo-default.jpg]]
320 +Ex: #5CB9600<cr>
255 255  
256 -Here, the angular range has been restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
322 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
323 +)))
257 257  
258 -[[image:LSS-servo-ar.jpg]]
325 +|(% colspan="2" %)(((
326 +====== __Automatic Baud Rate__ ======
327 +)))
328 +|(% style="width:30px" %) |(((
329 +This option allows the LSS to listen to it's serial input and select the right baudrate automatically.
259 259  
260 -The angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) an be used to move both the center and limit the angular range:
331 +Query Automatic Baud Rate (**QABR**)
261 261  
262 -[[image:LSS-servo-ar-o-1.jpg]]
333 +Ex: #5QABR<cr> might return *5ABR0<cr>
263 263  
264 -Query Angular Range (**QAR**)
335 +Enable Baud Rate (**ABR**)
265 265  
266 -Example: #5QAR<cr> might return *5AR2756
337 +Ex: #5QABR1<cr>
267 267  
268 -Configure Angular Range (**CAR**)
339 +Enable baudrate detection on first byte received after power-up.
269 269  
270 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
341 +Ex: #5QABR2,30<cr>Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte.
271 271  
272 -====== __8. Position in Pulse (**P**)__ ======
343 +Warning: ABR doesnt work well with LSS Config at the moment.
344 +)))
273 273  
274 -Example: #5P2334<cr>
346 +== Motion ==
275 275  
276 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected to end points.
348 +|(% colspan="2" %)(((
349 +====== __Position in Degrees (**D**)__ ======
350 +)))
351 +|(% style="width:30px" %) |(((
352 +Ex: #5D1456<cr>
277 277  
278 -Query Position in Pulse (**QP**)
354 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.
279 279  
280 -Example: #5QP<cr> might return *5QP2334
356 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above).
281 281  
282 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 
283 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
358 +Query Position in Degrees (**QD**)
284 284  
285 -====== __9. Position in Degrees (**D**)__ ======
360 +Ex: #5QD<cr> might return *5QD132<cr>
286 286  
287 -Example: #5PD1456<cr>
362 +This means the servo is located at 13.2 degrees.
288 288  
289 -This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction.
364 +Query Target Position in Degrees (**QDT**)
290 290  
291 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position.
366 +Ex: #5QDT<cr> might return *5QDT6783<cr>
292 292  
293 -Query Position in Degrees (**QD**)
368 +The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
369 +)))
294 294  
295 -Example: #5QD<cr> might return *5QD132<cr>
371 +|(% colspan="2" %)(((
372 +====== (Relative) Move in Degrees (**MD**) ======
373 +)))
374 +|(% style="width:30px" %) |(((
375 +Ex: #5MD123<cr>
296 296  
297 -This means the servo is located at 13.2 degrees.
377 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
378 +)))
298 298  
299 -====== __10. Wheel Mode in Degrees (**WD**)__ ======
380 +|(% colspan="2" %)(((
381 +====== Wheel Mode in Degrees (**WD**) ======
382 +)))
383 +|(% style="width:30px" %) |(((
384 +Ex: #5WD90<cr>
300 300  
301 -Ex: #5WD900<cr>
302 -
303 303  This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
304 304  
305 305  Query Wheel Mode in Degrees (**QWD**)
306 306  
307 -Ex: #5QWD<cr> might return *5QWD900<cr>
390 +Ex: #5QWD<cr> might return *5QWD90<cr>
308 308  
309 -The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
392 +The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
393 +)))
310 310  
311 -====== __11. Wheel Mode in RPM (**WR**)__ ======
312 -
395 +|(% colspan="2" %)(((
396 +====== Wheel Mode in RPM (**WR**) ======
397 +)))
398 +|(% style="width:30px" %) |(((
313 313  Ex: #5WR40<cr>
314 314  
315 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
401 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
316 316  
317 317  Query Wheel Mode in RPM (**QWR**)
318 318  
... ... @@ -319,195 +319,321 @@
319 319  Ex: #5QWR<cr> might return *5QWR40<cr>
320 320  
321 321  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
408 +)))
322 322  
323 -====== __12. Speed in Degrees (**SD**)__ ======
410 +|(% colspan="2" %)(((
411 +====== Position in PWM (**P**) ======
412 +)))
413 +|(% style="width:30px" %) |(((
414 +Ex: #5P2334<cr>
324 324  
325 -Ex: #5SD1800<cr>
416 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>url:https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.
326 326  
327 -This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
418 +Query Position in Pulse (**QP**)
328 328  
329 -Query Speed in Degrees (**QSD**)
420 +Ex: #5QP<cr> might return *5QP2334
330 330  
331 -Ex: #5QSD<cr> might return *5QSD1800<cr>
422 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
423 +)))
332 332  
333 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed.
334 -If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
425 +|(% colspan="2" %)(((
426 +====== __(Relative) Move in PWM (**M**)__ ======
427 +)))
428 +|(% style="width:30px" %) |(((
429 +Ex: #5M1500<cr>
335 335  
336 -|**Command sent**|**Returned value (1/10 °)**
337 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
338 -|ex: #5QSD1<cr>|Configured maximum speed  (set by CSD/CSR)
339 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
340 -|ex: #5QSD3<cr>|Target travel speed
431 +The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
432 +)))
341 341  
342 -Configure Speed in Degrees (**CSD**)
434 +|(% colspan="2" %)(((
435 +====== Raw Duty-cycle Move (**RDM**) ======
436 +)))
437 +|(% style="width:30px" %) |(((
438 +Ex: #5RDM512<cr>
343 343  
344 -Ex: #5CSD1800<cr>
440 +The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.
345 345  
346 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
442 +The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).
347 347  
348 -====== __13. Speed in RPM (**SR**)__ ======
444 +Query Move in Duty-cycle (**QMD**)
349 349  
350 -Ex: #5SD45<cr>
446 +Ex: #5QMD<cr> might return *5QMD512
351 351  
352 -This command sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
448 +This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
449 +)))
353 353  
354 -Query Speed in Degrees (**QSR**)
451 +|(% colspan="2" %)(((
452 +====== Query Status (**Q**) ======
453 +)))
454 +|(% style="width:30px" %) |(((
455 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
355 355  
356 -Ex: #5QSR<cr> might return *5QSR45<cr>
457 +Ex: #5Q<cr> might return *5Q6<cr>
357 357  
358 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed.
359 -If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
459 +which indicates the motor is holding a position.
460 +)))
360 360  
361 -|**Command sent**|**Returned value (1/10 °)**
362 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
363 -|ex: #5QSR1<cr>|Configured maximum speed  (set by CSD/CSR)
364 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWR)
365 -|ex: #5QSR3<cr>|Target travel speed
462 +|(% style="width:30px" %) |***Value returned (Q)**|**Status**|**Detailed description**
463 +| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
464 +| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
465 +| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
466 +| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
467 +| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
468 +| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
469 +| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding)
470 +| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
471 +| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
472 +| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
473 +| |ex: *5Q10<cr>|10: Safe Mode|(((
474 +A safety limit has been exceeded (temperature, peak current or extended high current draw).
366 366  
367 -Configure Speed in RPM (**CSR**)
476 +Send a Q1 command to know which limit has been reached (described below).
477 +)))
368 368  
369 -Ex: #5CSR45<cr>
479 +|(% style="width:30px" %) |(% colspan="3" rowspan="1" %)If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
480 +| |***Value returned (Q1)**|**Status**|**Detailed description**
481 +| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
482 +| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
483 +| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
484 +| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
370 370  
371 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
486 +|(% colspan="2" %)(((
487 +====== Limp (**L**) ======
488 +)))
489 +|(% style="width:30px" %) |(((
490 +Ex: #5L<cr>
372 372  
373 -====== __14. Angular Stiffness (**AS**)__ ======
492 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
493 +)))
374 374  
375 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
495 +|(% colspan="2" %)(((
496 +====== Halt & Hold (**H**) ======
497 +)))
498 +|(% style="width:30px" %) |(((
499 +Example: #5H<cr>
376 376  
377 -A positive value of "angular stiffness":
501 +This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
502 +)))
378 378  
379 -* The more torque will be applied to try to keep the desired position against external input / changes
380 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
504 +== Motion Setup ==
381 381  
382 -A negative value on the other hand:
506 +|(% colspan="2" %)(((
507 +====== Enable Motion Profile (**EM**) ======
508 +)))
509 +|(% style="width:30px" %) |(((
510 +EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.
383 383  
384 -* Causes a slower acceleration to the travel speed, and a slower deceleration
385 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back
512 +Ex: #5EM1<cr>
386 386  
387 -The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior.
514 +This command enables a trapezoidal motion profile for servo #5
388 388  
389 -Ex: #5AS-2<cr>
516 +Ex: #5EM0<cr>
390 390  
391 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
518 +This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
392 392  
393 -Ex: #5QAS<cr>
520 +Query Motion Profile (**QEM**)
394 394  
395 -Queries the value being used.
522 +Ex: #5QEM<cr> might return *5QEM1<cr>
396 396  
397 -Ex: #5CAS<cr>
524 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.
398 398  
399 -Writes the desired angular stiffness value to memory.
526 +Configure Motion Profile (**CEM**)
400 400  
401 -====== __15. Angular Hold Stiffness (**AH**)__ ======
528 +Ex: #5CEM0<cr>
402 402  
403 -The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
530 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
531 +)))
404 404  
405 -Ex: #5AH3<cr>
533 +|(% colspan="2" %)(((
534 +====== Filter Position Count (**FPC**) ======
535 +)))
536 +|(% style="width:30px" %) |(((
537 +The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
406 406  
407 -This sets the holding stiffness for servo #5 to 3 for that session.
539 +Ex: #5FPC10<cr>
408 408  
409 -Query Angular Hold Stiffness (**QAH**)
541 +This command allows the user to change the Filter Position Count value for that session.
410 410  
411 -Ex: #5QAH<cr> might return *5QAH3<cr>
543 +Query Filter Position Count (**QFPC**)
412 412  
413 -This returns the servo's angular holding stiffness value.
545 +Ex: #5QFPC<cr> might return *5QFPC10<cr>
414 414  
415 -Configure Angular Hold Stiffness (**CAH**)
547 +This command will query the Filter Position Count value.
416 416  
417 -Ex: #5CAH2<cr>
549 +Configure Filter Position Count (**CFPC**)
418 418  
419 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM
551 +Ex: #5CFPC10<cr>
420 420  
421 -====== __15b: Angular Acceleration (**AA**)__ ======
553 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
554 +)))
422 422  
423 -{More details to come}
556 +|(% colspan="2" %)(((
557 +====== Origin Offset (**O**) ======
558 +)))
559 +|(% style="width:30px" %) |(((
560 +Ex: #5O2400<cr>
424 424  
425 -====== __15c: Angular Deceleration (**AD**)__ ======
562 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
426 426  
427 -{More details to come}
564 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
428 428  
429 -====== __15d: Motion Control (**EM**)__ ======
566 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
430 430  
431 -{More details to come}
568 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
432 432  
433 -====== __16. RGB LED (**LED**)__ ======
570 +Origin Offset Query (**QO**)
434 434  
435 -Ex: #5LED3<cr>
572 +Ex: #5QO<cr> might return *5QO-13
436 436  
437 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
574 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
438 438  
439 -0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE 
576 +Configure Origin Offset (**CO**)
440 440  
441 -Query LED Color (**QLED**)
578 +Ex: #5CO-24<cr>
442 442  
443 -Ex: #5QLED<cr> might return *5QLED5<cr>
580 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
581 +)))
444 444  
445 -This simple query returns the indicated servo's LED color.
583 +|(% colspan="2" %)(((
584 +====== Angular Range (**AR**) ======
585 +)))
586 +|(% style="width:30px" %) |(((
587 +Ex: #5AR1800<cr>
446 446  
447 -Configure LED Color (**CLED**)
589 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
448 448  
449 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
591 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
450 450  
451 -====== __16b. Configure LED Blinking (**CLB**)__ ======
593 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
452 452  
453 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details).
454 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
595 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
455 455  
456 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
597 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
457 457  
458 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
459 -Ex: #5CLB1<cr> only blink when limp
460 -Ex: #5CLB2<cr> only blink when holding
461 -Ex: #5CLB12<cr> only blink when accel or decel
462 -Ex: #5CLB48<cr> only blink when free or travel
463 -Ex: #5CLB63<cr> blink in all status
599 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
464 464  
465 -====== __17. Identification Number__ ======
601 +Query Angular Range (**QAR**)
466 466  
467 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
603 +Ex: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
468 468  
469 -Query Identification (**QID**)
605 +Configure Angular Range (**CAR**)
470 470  
471 -EX: #254QID<cr> might return *QID5<cr>
607 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
608 +)))
472 472  
473 -When using the query ID command, it is best to only have one servo connected and thus receive only one reply using the broadcast command (ID 254). Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
610 +|(% colspan="2" %)(((
611 +====== Angular Stiffness (**AS**) ======
612 +)))
613 +|(% style="width:30px" %) |(((
614 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.
474 474  
475 -Configure ID (**CID**)
616 +A higher value of "angular stiffness":
476 476  
477 -Ex: #4CID5<cr>
618 +* The more torque will be applied to try to keep the desired position against external input / changes
619 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
478 478  
479 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.
621 +A lower value on the other hand:
480 480  
481 -====== __18. Baud Rate__ ======
623 +* Causes a slower acceleration to the travel speed, and a slower deceleration
624 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back
482 482  
483 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.
484 -\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out.
626 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
485 485  
486 -Query Baud Rate (**QB**)
628 +Ex: #5AS-2<cr>
487 487  
488 -Ex: #5QB<cr> might return *5QB9600<cr>
630 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
489 489  
490 -Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled.
632 +Ex: #5QAS<cr>
491 491  
492 -Configure Baud Rate (**CB**)
634 +Queries the value being used.
493 493  
494 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled.
636 +Ex: #5CAS-2<cr>Writes the desired angular stiffness value to EEPROM.
637 +)))
495 495  
496 -Ex: #5CB9600<cr>
639 +|(% colspan="2" %)(((
640 +====== Angular Holding Stiffness (**AH**) ======
641 +)))
642 +|(% style="width:30px" %) |(((
643 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
497 497  
498 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
645 +Ex: #5AH3<cr>
499 499  
500 -====== __19. Gyre Rotation Direction__ ======
647 +This sets the holding stiffness for servo #5 to 3 for that session.
501 501  
502 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
649 +Query Angular Holding Stiffness (**QAH**)
503 503  
504 -{images showing before and after with AR and Origin offset}
651 +Ex: #5QAH<cr> might return *5QAH3<cr>
505 505  
653 +This returns the servo's angular holding stiffness value.
654 +
655 +Configure Angular Holding Stiffness (**CAH**)
656 +
657 +Ex: #5CAH2<cr>
658 +
659 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
660 +)))
661 +
662 +|(% colspan="2" %)(((
663 +====== Angular Acceleration (**AA**) ======
664 +)))
665 +|(% style="width:30px" %) |(((
666 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
667 +
668 +Ex: #5AA30<cr>
669 +
670 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
671 +
672 +Query Angular Acceleration (**QAA**)
673 +
674 +Ex: #5QAA<cr> might return *5QAA30<cr>
675 +
676 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).
677 +
678 +Configure Angular Acceleration (**CAA**)
679 +
680 +Ex: #5CAA30<cr>
681 +
682 +This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
683 +)))
684 +
685 +|(% colspan="2" %)(((
686 +====== Angular Deceleration (**AD**) ======
687 +)))
688 +|(% style="width:30px" %) |(((
689 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
690 +
691 +Ex: #5AD30<cr>
692 +
693 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
694 +
695 +Query Angular Deceleration (**QAD**)
696 +
697 +Ex: #5QAD<cr> might return *5QAD30<cr>
698 +
699 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).
700 +
701 +Configure Angular Deceleration (**CAD**)
702 +
703 +Ex: #5CAD30<cr>
704 +
705 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
706 +)))
707 +
708 +|(% colspan="2" %)(((
709 +====== Gyre Direction (**G**) ======
710 +)))
711 +|(% style="width:30px" %) |(((
712 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.
713 +
714 +Ex: #5G-1<cr>
715 +
716 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
717 +
506 506  Query Gyre Direction (**QG**)
507 507  
508 508  Ex: #5QG<cr> might return *5QG-1<cr>
509 509  
510 -The value returned above means the servo is in a counter-clockwise gyration.
722 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
511 511  
512 512  Configure Gyre (**CG**)
513 513  
... ... @@ -514,142 +514,272 @@
514 514  Ex: #5CG-1<cr>
515 515  
516 516  This changes the gyre direction as described above and also writes to EEPROM.
729 +)))
517 517  
518 -====== __20. First / Initial Position (pulse)__ ======
731 +|(% colspan="2" %)(((
732 +====== First Position ======
733 +)))
734 +|(% style="width:30px" %) |(((
735 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.
519 519  
520 -In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
737 +Query First Position in Degrees (**QFD**)
521 521  
522 -Query First Position in Pulses (**QFP**)
739 +Ex: #5QFD<cr> might return *5QFD900<cr>
523 523  
524 -Ex: #5QFP<cr> might return *5QFP1550<cr>
741 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.
525 525  
526 -The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If no first position has been set, servo will respond with DIS ("disabled").
743 +Configure First Position in Degrees (**CFD**)
527 527  
528 -Configure First Position in Pulses (**CFP**)
745 +Ex: #5CFD900<cr>
529 529  
530 -Ex: #5CP1550<cr>
747 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
748 +)))
531 531  
532 -This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled).
750 +|(% colspan="2" %)(((
751 +====== Maximum Motor Duty (**MMD**) ======
752 +)))
753 +|(% style="width:30px" %) |(((
754 +This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.
533 533  
534 -====== __21. First / Initial Position (Degrees)__ ======
756 +Ex: #5MMD512<cr>
535 535  
536 -In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
758 +This will set the duty-cycle to 512 for servo with ID 5 for that session.
537 537  
538 -Query First Position in Degrees (**QFD**)
760 +Query Maximum Motor Duty (**QMMD**)
539 539  
540 -Ex: #5QFD<cr> might return *5QFD64<cr>
762 +Ex: #5QMMDD<cr> might return *5QMMD512<cr>
541 541  
542 -The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds.
764 +This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
765 +)))
543 543  
544 -Configure First Position in Degrees (**CFD**)
767 +|(% colspan="2" %)(((
768 +====== Maximum Speed in Degrees (**SD**) ======
769 +)))
770 +|(% style="width:30px" %) |(((
771 +Ex: #5SD1800<cr>
545 545  
546 -Ex: #5CD64<cr>
773 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
547 547  
548 -This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up.
775 +Query Speed in Degrees (**QSD**)
549 549  
550 -====== __22. Query Target Position in Degrees (**QDT**)__ ======
777 +Ex: #5QSD<cr> might return *5QSD1800<cr>
551 551  
552 -Ex: #5QDT<cr> might return *5QDT6783<cr>
779 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
780 +)))
553 553  
554 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
782 +|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)**
783 +| |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
784 +| |ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
785 +| |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
786 +| |ex: #5QSD3<cr>|Target travel speed
555 555  
556 -====== __23. Query Model String (**QMS**)__ ======
788 +|(% style="width:30px" %) |(((
789 +Configure Speed in Degrees (**CSD**)
557 557  
558 -Ex: #5QMS<cr> might return *5QMSLSS-HS1cr>
791 +Ex: #5CSD1800<cr>
559 559  
560 -This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
793 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
794 +)))
561 561  
562 -====== __23b. Query Model (**QM**)__ ======
796 +|(% colspan="2" %)(((
797 +====== Maximum Speed in RPM (**SR**) ======
798 +)))
799 +|(% style="width:30px" %) |(((
800 +Ex: #5SR45<cr>
563 563  
564 -Ex: #5QM<cr> might return *5QM68702699520cr>
802 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
565 565  
566 -This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision.
804 +Query Speed in RPM (**QSR**)
567 567  
568 -====== __24. Query Serial Number (**QN**)__ ======
806 +Ex: #5QSR<cr> might return *5QSR45<cr>
569 569  
570 -Ex: #5QN<cr> might return *5QN~_~_<cr>
808 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
809 +)))
571 571  
572 -The number in the response is the servo's serial number which is set and cannot be changed.
811 +|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)**
812 +| |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
813 +| |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
814 +| |ex: #5QSR2<cr>|Instantaneous speed (same as QWD)
815 +| |ex: #5QSR3<cr>|Target travel speed
573 573  
574 -====== __25. Query Firmware (**QF**)__ ======
817 +|(((
818 +Configure Speed in RPM (**CSR**)
575 575  
576 -Ex: #5QF<cr> might return *5QF11<cr>
820 +Ex: #5CSR45<cr>
577 577  
578 -The integer in the reply represents the firmware version with one decimal, in this example being 1.1
822 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
823 +)))|
579 579  
580 -====== __26. Query Status (**Q**)__ ======
825 +== Modifiers ==
581 581  
582 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
827 +|(% colspan="2" %)(((
828 +====== Speed (**S**, **SD**) modifier ======
829 +)))
830 +|(% style="width:30px" %) |(((
831 +Ex: #5P1500S750<cr>
583 583  
584 -|*Value returned|**Status**|**Detailed description**
585 -|ex: *5Q0<cr>|Unknown|LSS is unsure
586 -|ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely
587 -|ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely
588 -|ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed
589 -|ex: *5Q4<cr>|Traveling|Moving at a stable speed
590 -|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position.
591 -|ex: *5Q6<cr>|Holding|Keeping current position
592 -|ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque
593 -|ex: *5Q8<cr>|Outside limits|{More details coming soon}
594 -|ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting
595 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
833 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
596 596  
597 -====== __27. Query Voltage (**QV**)__ ======
835 +Ex: #5D0SD180<cr>
598 598  
599 -Ex: #5QV<cr> might return *5QV11200<cr>
837 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.
600 600  
601 -The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
839 +Query Speed (**QS**)
602 602  
603 -====== __28. Query Temperature (**QT**)__ ======
841 +Ex: #5QS<cr> might return *5QS300<cr>
604 604  
605 -Ex: #5QT<cr> might return *5QT564<cr>
843 +This command queries the current speed in microseconds per second.
844 +)))
606 606  
607 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
846 +|(% colspan="2" %)(((
847 +====== Timed move (**T**) modifier ======
848 +)))
849 +|(% style="width:30px" %) |(((
850 +
608 608  
609 -====== __29. Query Current (**QC**)__ ======
852 +Example: #5P1500T2500<cr>
610 610  
854 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
855 +
856 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
857 +)))
858 +
859 +|(% colspan="2" %)(((
860 +====== Current Halt & Hold (**CH**) modifier ======
861 +)))
862 +|(% style="width:30px" %) |(((
863 +Example: #5D1423CH400<cr>
864 +
865 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.
866 +
867 +This modifier can be added to the following actions: D; MD; WD; WR.
868 +)))
869 +
870 +|(% colspan="2" %)(((
871 +====== Current Limp (**CL**) modifier ======
872 +)))
873 +|(% style="width:30px" %) |(((
874 +Example: #5D1423CL400<cr>
875 +
876 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.
877 +
878 +This modifier can be added to the following actions: D; MD; WD; WR.
879 +)))
880 +
881 +== Telemetry ==
882 +
883 +|(% colspan="2" %)(((
884 +====== Query Voltage (**QV**) ======
885 +)))
886 +|(% style="width:30px" %) |(((
887 +Ex: #5QV<cr> might return *5QV11200<cr>
888 +
889 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.
890 +)))
891 +
892 +|(% colspan="2" %)(((
893 +====== Query Current (**QC**) ======
894 +)))
895 +|(% style="width:30px" %) |(((
896 +
897 +
611 611  Ex: #5QC<cr> might return *5QC140<cr>
612 612  
613 613  The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
901 +)))
614 614  
615 -====== __30. RC Mode (**CRC**)__ ======
903 +|(% colspan="2" %)(((
904 +====== Query Model String (**QMS**) ======
905 +)))
906 +|(% style="width:30px" %) |(((
907 +
616 616  
617 -This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
909 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
618 618  
619 -|**Command sent**|**Note**
620 -|ex: #5CRC<cr>|Stay in smart mode.
621 -|ex: #5CRC1<cr>|Change to RC position mode.
622 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode.
623 -|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode.
911 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
912 +)))
624 624  
625 -EX: #5CRC<cr>
914 +|(% colspan="2" %)(((
915 +====== Query Firmware (**QF**) ======
916 +)))
917 +|(% style="width:30px" %) |(((
918 +Ex: #5QF<cr> might return *5QF368<cr>
626 626  
627 -====== __31. RESET__ ======
920 +The number in the reply represents the firmware version, in this example being 368.
628 628  
629 -Ex: #5RESET<cr> or #5RS<cr>
922 +The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
923 +)))
630 630  
631 -This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
925 +== RGB LED ==
632 632  
633 -====== __32. DEFAULT & CONFIRM__ ======
927 +|(% colspan="2" %)(((
928 +====== LED Color (**LED**) ======
929 +)))
930 +|(% style="width:30px" %) |(((
931 +
634 634  
635 -Ex: #5DEFAULT<cr>
933 +Ex: #5LED3<cr>
636 636  
637 -This command sets in motion the reset all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
935 +This action sets the servo's RGB LED color for that session.
638 638  
639 -EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
937 +The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
640 640  
641 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
939 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;
642 642  
643 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
941 +Query LED Color (**QLED**)
644 644  
645 -====== __33. UPDATE & CONFIRM__ ======
943 +Ex: #5QLED<cr> might return *5QLED5<cr>
646 646  
647 -Ex: #5UPDATE<cr>
945 +This simple query returns the indicated servo's LED color.
648 648  
649 -This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
947 +Configure LED Color (**CLED**)
650 650  
651 -EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
949 +Ex: #5CLED3<cr>
652 652  
653 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
951 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.
952 +)))
654 654  
655 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
954 +|(% colspan="2" %)(((
955 +====== Configure LED Blinking (**CLB**) ======
956 +)))
957 +|(% style="width:30px" %) |(((
958 +
959 +
960 +This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:
961 +)))
962 +
963 +|(% style="width:30px" %) |(% style="width:200px" %)**Blink While:**|(% style="width:50px" %)**#**|
964 +| |No blinking|0|
965 +| |Limp|1|
966 +| |Holding|2|
967 +| |Accelerating|4|
968 +| |Decelerating|8|
969 +| |Free|16|
970 +| |Travelling|32|
971 +| |Always blink|63|
972 +
973 +|(% style="width:30px" %) |(((
974 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
975 +
976 +Ex: #5CLB0 to turn off all blinking (LED always solid)
977 +
978 +Ex: #5CLB1 only blink when limp (1)
979 +
980 +Ex: #5CLB2 only blink when holding (2)
981 +
982 +Ex: #5CLB12 only blink when accel or decel (accel 4 + decel 8 = 12)
983 +
984 +Ex: #5CLB48 only blink when free or travel (free 16 + travel 32 = 48)
985 +
986 +Ex: #5CLB63 blink in all status (1 + 2 + 4 + 8 + 16 + 32)
987 +
988 +RESETTING the servo is needed.
989 +)))
990 +
991 +|(% colspan="2" style="width:30px" %)(((
992 +====== RGB LED Patterns ======
993 +)))
994 +|(% style="width:30px" %) |(((
995 +The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-button-menu/]]
996 +)))
997 +|(% style="width:30px" %) |[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS%20-%20LED%20Patterns.png||alt="LSS - LED Patterns.png"]]
LSS - LED Patterns.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.RB1
Size
... ... @@ -1,0 +1,1 @@
1 +116.3 KB
Content
LSS-Protocol-Backup-2020-05-01.zip
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.ENantel
Size
... ... @@ -1,0 +1,1 @@
1 +47.4 KB
Content
XWiki.XWikiRights[0]
Allow/Deny
... ... @@ -1,1 +1,0 @@
1 -1
Groups
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.XWikiAdminGroup
Levels
... ... @@ -1,1 +1,0 @@
1 -view
XWiki.XWikiRights[1]
Allow/Deny
... ... @@ -1,1 +1,0 @@
1 -1
Groups
... ... @@ -1,1 +1,0 @@
1 -XWiki.XWikiAdminGroup
Levels
... ... @@ -1,1 +1,0 @@
1 -view
XWiki.XWikiRights[2]
Allow/Deny
... ... @@ -1,1 +1,0 @@
1 -1
Groups
... ... @@ -1,1 +1,0 @@
1 -XWiki.Profiles (Lynxmotion).BETA Testers
Levels
... ... @@ -1,1 +1,0 @@
1 -view
XWiki.StyleSheetExtension[0]
Caching policy
... ... @@ -1,0 +1,1 @@
1 +long
Code
... ... @@ -1,0 +1,13 @@
1 +div.cmdcnt
2 +{
3 + display:table-row;
4 +}
5 +div.cmdpad
6 +{
7 + display:table-cell;
8 + padding:16px;
9 +}
10 +div.cmdtxt
11 +{
12 + display:table-cell;
13 +}
Content Type
... ... @@ -1,0 +1,1 @@
1 +CSS
Name
... ... @@ -1,0 +1,1 @@
1 +DivTextIndentation
Parse content
... ... @@ -1,0 +1,1 @@
1 +No
Use this extension
... ... @@ -1,0 +1,1 @@
1 +currentPage
Copyright RobotShop 2018