Last modified by Eric Nantel on 2025/06/06 07:47

From version < 93.1 >
edited by Coleman Benson
on 2019/01/31 15:51
To version < 64.10 >
edited by RB1
on 2018/11/19 09:30
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Lynxmotion Smart Servo (LSS).WebHome
1 +lynxmotion:LSS - Overview (DEV).WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.CBenson
1 +xwiki:XWiki.RB1
Tags
... ... @@ -1,1 +1,1 @@
1 -LSS|communication|protocol|programming|firmware|control|LSS-Ref
1 +LSS|communication|protocol|programming|firmware|control
Content
... ... @@ -1,14 +4,9 @@
1 -(% class="wikigeneratedid" id="HTableofContents" %)
2 -**Table of Contents**
3 -
4 4  {{toc depth="3"/}}
5 5  
6 -= Serial Protocol Concept =
3 += Protocol concepts =
7 7  
8 -The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable"), while at the same time trying to be compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 RC servo controller and almost everything one might expect to be able to configure for a smart servo motor is available.
5 +The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available.
9 9  
10 -In serial mode, in order to have servos react differently when commands are sent to all servos in a bus, the first step a user should take is to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will take action. There is currently no CRC / checksum implemented as part of the protocol.
11 -
12 12  == Session ==
13 13  
14 14  A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
... ... @@ -15,7 +15,7 @@
15 15  
16 16  == Action Commands ==
17 17  
18 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The type of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page). Action commands are sent serially to the servo's Rx pin and must be set in the following format:
13 +Action commands are sent serially to the servo's Rx pin and must be set in the following format:
19 19  
20 20  1. Start with a number sign # (U+0023)
21 21  1. Servo ID number as an integer
... ... @@ -26,12 +26,16 @@
26 26  (((
27 27  Ex: #5PD1443<cr>
28 28  
29 -This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position of 144.3 degrees. Any servo in the bus which does not have ID 5 will take no action when they receive this command.
24 +Move servo with ID #5 to a position of 144.3 degrees.
30 30  
31 -== Action Modifiers ==
26 +Action commands cannot be combined with query commands, and only one action command can be sent at a time.
32 32  
33 -Only two commands can be used as action modifiers: Timed Move (T) and Speed (S). Action modifiers can only be used with certain action commands. The format to include a modifier is:
28 +Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page).
34 34  
30 +=== Action Modifiers ===
31 +
32 +Two commands can be used as action modifiers only: Timed Move and Speed. The format is:
33 +
35 35  1. Start with a number sign # (U+0023)
36 36  1. Servo ID number as an integer
37 37  1. Action command (one to three letters, no spaces, capital or lower case)
... ... @@ -42,12 +42,14 @@
42 42  
43 43  Ex: #5P1456T1263<cr>
44 44  
45 -This results in the servo with ID #5 rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds. Position in pulses is described below.
44 +Results in the servo rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds.
45 +
46 +Action modifiers can only be used with certain commands.
46 46  )))
47 47  
48 48  == Configuration Commands ==
49 49  
50 -Configuration commands affect a servo's default values whicare written to the servo's EEPROM and are retained in memory after the servo loses power or is reset. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
51 +Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:LSS - Overview (DEV).LSS - RC PWM.WebHome]].
51 51  
52 52  1. Start with a number sign # (U+0023)
53 53  1. Servo ID number as an integer
... ... @@ -57,11 +57,15 @@
57 57  
58 58  Ex: #5CO-50<cr>
59 59  
60 -This assigns an absolute origin offset of -5.0 degrees (with respect to factory origin) to servo with ID #5 and changes the offset for that session to -5.0 degrees. Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.
61 +Assigns an absolute origin offset of -5.0 degrees (with respect to factory origin) to servo #5 and changes the offset for that session to -5.0 degrees.
61 61  
63 +Configuration commands are not cumulative, in that if two configurations are sent at any time, only the last configuration is used and stored.
64 +
65 +*Important Note: the one exception is the baud rate - the servo's current session retains the given baud rate. The new baud rate will only be in place when the servo is power cycled.
66 +
62 62  == Query Commands ==
63 63  
64 -Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. This is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
69 +Query commands are sent serially to the servo's Rx pin and must be set in the following format:
65 65  
66 66  1. Start with a number sign # (U+0023)
67 67  1. Servo ID number as an integer
... ... @@ -73,29 +73,27 @@
73 73  )))
74 74  
75 75  (((
76 -The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
81 +The query will return a value via the Tx pin with the following format:
77 77  
78 -1. Start with an asterisk * (U+002A)
83 +1. Start with an asterisk (U+002A)
79 79  1. Servo ID number as an integer
80 80  1. Query command (one to three letters, no spaces, capital letters)
81 81  1. The reported value in the units described, no decimals.
82 82  1. End with a control / carriage return '<cr>'
83 83  
84 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command.
85 -
86 86  (((
87 87  Ex: *5QD1443<cr>
88 88  )))
89 89  
90 -This reply to the query above indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees).
93 +Indicates that servo #5 is currently at 144.3 degrees.
91 91  
92 92  **Session vs Configuration Query**
93 93  
94 -By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM from the last configuration command.
97 +By default, the query command returns the sessions' value; should no action commands have been sent to change, it will return the value saved in EEPROM from the last configuration command.
95 95  
96 -In order to query the value in EEPROM (configuration), add a '1' to the query command.
99 +In order to query the value in EEPROM, add a '1' to the query command.
97 97  
98 -Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) .
101 +Ex: #5CSR20<cr> sets the maximum speed for servo #5 to 20rpm upon RESET (explained below).
99 99  
100 100  After RESET: #5SR4<cr> sets the session's speed to 4rpm.
101 101  
... ... @@ -103,19 +103,21 @@
103 103  
104 104  #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
105 105  
106 -== Virtual Angular Position ==
109 +=== Virtual Angular Position ===
107 107  
108 -A "virtual position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to 360.0 degrees, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335).
111 +{In progress}
109 109  
113 +A "virtual position" is one which allows for multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to 360.0 degrees.
114 +
110 110  [[image:LSS-servo-positions.jpg]]
111 111  
112 -In this example, the gyre direction (explained below, a.k.a. rotation direction) is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
117 +Example: Gyre direction / rotation is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees.
113 113  
114 -#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
119 +#1D-300<cr> The servo is sent a command to move to -30.0 degrees (green arrow)
115 115  
116 116  #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
117 117  
118 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees,  stopping at an absolute position of 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
123 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees,  stopping at an absolute position of 60.0 degrees (420.0-360.0), with a virtual position of -420.0 degrees.
119 119  
120 120  Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
121 121  
... ... @@ -128,100 +128,85 @@
128 128  
129 129  = Command List =
130 130  
131 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
132 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
133 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
134 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)
135 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds / second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)
136 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
137 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
138 -0
136 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes
137 +| 1|**L**imp| L| | | | ✓| none|
138 +| 2|**H**alt & Hold| H| | | | ✓| none|
139 +| 3|**T**imed move| T| | | | ✓| milliseconds| Modifier only
140 +| 4|**S**peed| S| | | | ✓| microseconds / second| Modifier only
141 +| 5|**M**ove in **D**egrees (relative)| MD| | | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
142 +| 6|**O**rigin Offset| O| QO| CO| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
143 +| 7|**A**ngular **R**ange| AR| QAR| CAR| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
144 +| 8|Position in **P**ulse| P| QP| | | ✓| microseconds|(((
145 +See details below
139 139  )))
140 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
141 -1800
142 -)))
143 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(% style="width:510px" %)(((
144 -Inherited from SSC-32 serial protocol
145 -)))|(% style="text-align:center; width:113px" %)
146 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
147 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
148 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
149 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| ✓| ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)QSD: Add modifier "2" for instantaneous speed|(% style="text-align:center; width:113px" %)Max per servo
150 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓| ✓|rpm|(% style="width:510px" %)QSR: Add modifier "2" for instantaneous speed|(% style="text-align:center; width:113px" %)Max per servo
151 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
152 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0
153 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
154 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none |(% style="width:510px" %) Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 CW
155 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
156 -Limp
157 -)))
158 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)Limp
159 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
160 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)|(% style="width:510px" %) Recommended to determine the model|(% style="text-align:center; width:113px" %)
161 -| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)|(% style="width:510px" %) Returns a raw value representing the three model inputs (36 bit)|(% style="text-align:center; width:113px" %)
162 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
163 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
164 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
165 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
166 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
167 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
168 -| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|(% style="width:510px" %)(((
147 +| 9|Position in **D**egrees| D| QD| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
148 +| 10|**W**heel mode in **D**egrees| WD| QWD| | | ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|
149 +| 11|**W**heel mode in **R**PM| WR| QWR| | | ✓| rpm|
150 +| 12|Max **S**peed in **D**egrees| SD| QSD| CSD| ✓| ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed
151 +| 13|Max **S**peed in **R**PM| SR| QSR| CSR| ✓| ✓| rpm|QSR: Add modifier "2" for instantaneous speed
152 +| 14|**A**ngular **S**tiffness| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4
153 +| 15|**A**ngular **H**olding Stiffness|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0.
154 +|15b|**A**ngular **A**cceleration|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared
155 +|15c|**A**ngular **D**eceleration|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared
156 +|15d|**M**otion **C**ontrol|MC|QMC| | | ✓|none|MC0 to disable motion control, MC1 to enable. Session specific
157 +| 16|**LED** Color| LED| QLED| CLED| ✓| ✓| none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6=MAGENTA, 7=WHITE
158 +| 17|**ID** #| | QID| CID| | ✓| none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to
159 +| 18|**B**aud rate| B| QB| CB| | ✓| none (integer)|
160 +| 19|**G**yre direction (**G**)| G| QG| CG| ✓| ✓| none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)
161 +| 20|**F**irst Position (**P**ulse)| | QFP|CFP | ✓| ✓| none |
162 +| 21|**F**irst Position (**D**egrees)| | QFD|CFD| ✓| ✓| none |
163 +| 22|**T**arget (**D**egree) **P**osition| | QDT| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
164 +| 23|**M**odel **String**| | QMS| | | | none (string)| Recommended to determine the model|
165 +| 23b|**M**odel| | QM| | | | none (integer)| Returns a raw value representing the three model inputs (36 bit)|
166 +| 24|Serial **N**umber| | QN| | | | none (integer)|
167 +| 25|**F**irmware version| | QF| | | | none (integer)|
168 +| 26|**Q**uery (general status)| | Q| | | ✓| none (integer from 1 to 8)| See command description for details
169 +| 27|**V**oltage| | QV| | | ✓| millivolts (ex 5936 = 5936mV = 5.936V)|
170 +| 28|**T**emperature| | QT| | | ✓| tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)
171 +| 29|**C**urrent| | QC| | | ✓| milliamps (ex 200 = 0.2A)|
172 +| 30|**RC** Mode| | |CRC| |✓|none|(((
169 169  CRC: Add modifier "1" for RC-position mode.
170 170  CRC: Add modifier "2" for RC-wheel mode.
171 171  Any other value for the modifier results in staying in smart mode.
172 172  Puts the servo into RC mode. To revert to smart mode, use the button menu.
173 -)))|(% style="text-align:center; width:113px" %)Serial
174 -|31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
175 -|32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
176 -|33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
177 +)))
178 +|31|**RESET**| | | | | ✓|none|Soft reset. See command for details.
179 +|32|**DEFAULT**| | | | |✓|none|Revert to firmware default values. See command for details
180 +|33|**UPDATE**| | | | |✓|none|Update firmware. See command for details.
177 177  
178 -(% class="wikigeneratedid" %)
179 -== Advanced ==
180 -
181 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
182 -| 1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS|CAS| ✓| ✓|none|(% style="width:510px" %)-4 to +4, but suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0
183 -| 2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|(% style="width:510px" %)-10 to +10, with default as 0. |(% style="text-align:center; width:113px" %)1
184 -| 3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
185 -| 4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
186 -| 5|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles|(% style="text-align:center; width:113px" %)
187 -| 6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center; width:113px" %)
188 -| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
189 -
190 190  == Details ==
191 191  
192 -====== __1. Limp (**L**)__ ======
184 +========= __1. Limp (**L**)__ =========
193 193  
194 194  Example: #5L<cr>
195 195  
196 196  This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
197 197  
198 -====== __2. Halt & Hold (**H**)__ ======
190 +__2. Halt & Hold (**H**)__
199 199  
200 200  Example: #5H<cr>
201 201  
202 202  This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position.
203 203  
204 -====== __3. Timed move (**T**)__ ======
196 +__3. Timed move (**T**)__
205 205  
206 206  Example: #5P1500T2500<cr>
207 207  
208 208  Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
209 209  
210 -Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
202 +__4. Speed (**S**)__
211 211  
212 -====== __4. Speed (**S**)__ ======
213 -
214 214  Example: #5P1500S750<cr>
215 215  
216 216  This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
217 217  
218 -====== __5. (Relative) Move in Degrees (**MD**)__ ======
208 +__5. (Relative) Move in Degrees (**MD**)__
219 219  
220 220  Example: #5MD123<cr>
221 221  
222 222  The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
223 223  
224 -====== __6. Origin Offset Action (**O**)__ ======
214 +__6. Origin Offset Action (**O**)__
225 225  
226 226  Example: #5O2400<cr>
227 227  
... ... @@ -245,7 +245,7 @@
245 245  
246 246  This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode.
247 247  
248 -====== __7. Angular Range (**AR**)__ ======
238 +__7. Angular Range (**AR**)__
249 249  
250 250  Example: #5AR1800<cr>
251 251  
... ... @@ -269,7 +269,7 @@
269 269  
270 270  This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
271 271  
272 -====== __8. Position in Pulse (**P**)__ ======
262 +__8. Position in Pulse (**P**)__
273 273  
274 274  Example: #5P2334<cr>
275 275  
... ... @@ -282,7 +282,7 @@
282 282  This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 
283 283  Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
284 284  
285 -====== __9. Position in Degrees (**D**)__ ======
275 +__9. Position in Degrees (**D**)__
286 286  
287 287  Example: #5PD1456<cr>
288 288  
... ... @@ -296,7 +296,7 @@
296 296  
297 297  This means the servo is located at 13.2 degrees.
298 298  
299 -====== __10. Wheel Mode in Degrees (**WD**)__ ======
289 +__10. Wheel Mode in Degrees (**WD**)__
300 300  
301 301  Ex: #5WD900<cr>
302 302  
... ... @@ -308,7 +308,7 @@
308 308  
309 309  The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
310 310  
311 -====== __11. Wheel Mode in RPM (**WR**)__ ======
301 +__11. Wheel Mode in RPM (**WR**)__
312 312  
313 313  Ex: #5WR40<cr>
314 314  
... ... @@ -320,7 +320,7 @@
320 320  
321 321  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
322 322  
323 -====== __12. Speed in Degrees (**SD**)__ ======
313 +__12. Speed in Degrees (**SD**)__
324 324  
325 325  Ex: #5SD1800<cr>
326 326  
... ... @@ -345,7 +345,7 @@
345 345  
346 346  Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
347 347  
348 -====== __13. Speed in RPM (**SR**)__ ======
338 +__13. Speed in RPM (**SR**)__
349 349  
350 350  Ex: #5SD45<cr>
351 351  
... ... @@ -370,7 +370,7 @@
370 370  
371 371  Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
372 372  
373 -====== __14. Angular Stiffness (**AS**)__ ======
363 +__14. Angular Stiffness (**AS**)__
374 374  
375 375  The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
376 376  
... ... @@ -398,7 +398,7 @@
398 398  
399 399  Writes the desired angular stiffness value to memory.
400 400  
401 -====== __15. Angular Hold Stiffness (**AH**)__ ======
391 +__15. Angular Hold Stiffness (**AH**)__
402 402  
403 403  The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
404 404  
... ... @@ -418,19 +418,19 @@
418 418  
419 419  This writes the angular holding stiffness of servo #5 to 2 to EEPROM
420 420  
421 -====== __15b: Angular Acceleration (**AA**)__ ======
411 +__15b: Angular Acceleration (**AA**)__
422 422  
423 423  {More details to come}
424 424  
425 -====== __15c: Angular Deceleration (**AD**)__ ======
415 +__15c: Angular Deceleration (**AD**)__
426 426  
427 427  {More details to come}
428 428  
429 -====== __15d: Motion Control (**EM**)__ ======
419 +__15d: Motion Control (**MC**)__
430 430  
431 431  {More details to come}
432 432  
433 -====== __16. RGB LED (**LED**)__ ======
423 +__16. RGB LED (**LED**)__
434 434  
435 435  Ex: #5LED3<cr>
436 436  
... ... @@ -448,22 +448,8 @@
448 448  
449 449  Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
450 450  
451 -====== __16b. Configure LED Blinking (**CLB**)__ ======
441 +__17. Identification Number__
452 452  
453 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details).
454 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
455 -
456 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
457 -
458 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
459 -Ex: #5CLB1<cr> only blink when limp
460 -Ex: #5CLB2<cr> only blink when holding
461 -Ex: #5CLB12<cr> only blink when accel or decel
462 -Ex: #5CLB48<cr> only blink when free or travel
463 -Ex: #5CLB63<cr> blink in all status
464 -
465 -====== __17. Identification Number__ ======
466 -
467 467  A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
468 468  
469 469  Query Identification (**QID**)
... ... @@ -478,7 +478,7 @@
478 478  
479 479  Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.
480 480  
481 -====== __18. Baud Rate__ ======
457 +__18. Baud Rate__
482 482  
483 483  A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.
484 484  \*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out.
... ... @@ -491,13 +491,11 @@
491 491  
492 492  Configure Baud Rate (**CB**)
493 493  
494 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled.
495 -
496 496  Ex: #5CB9600<cr>
497 497  
498 498  Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
499 499  
500 -====== __19. Gyre Rotation Direction__ ======
474 +__19. Gyre Rotation Direction__
501 501  
502 502  "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
503 503  
... ... @@ -515,7 +515,7 @@
515 515  
516 516  This changes the gyre direction as described above and also writes to EEPROM.
517 517  
518 -====== __20. First / Initial Position (pulse)__ ======
492 +__20. First / Initial Position (pulse)__
519 519  
520 520  In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
521 521  
... ... @@ -531,7 +531,7 @@
531 531  
532 532  This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled).
533 533  
534 -====== __21. First / Initial Position (Degrees)__ ======
508 +__21. First / Initial Position (Degrees)__
535 535  
536 536  In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
537 537  
... ... @@ -547,37 +547,37 @@
547 547  
548 548  This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up.
549 549  
550 -====== __22. Query Target Position in Degrees (**QDT**)__ ======
524 +__22. Query Target Position in Degrees (**QDT**)__
551 551  
552 552  Ex: #5QDT<cr> might return *5QDT6783<cr>
553 553  
554 554  The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
555 555  
556 -====== __23. Query Model String (**QMS**)__ ======
530 +__23. Query Model String (**QMS**)__
557 557  
558 558  Ex: #5QMS<cr> might return *5QMSLSS-HS1cr>
559 559  
560 560  This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
561 561  
562 -====== __23b. Query Model (**QM**)__ ======
536 +__23b. Query Model (**QM**)__
563 563  
564 564  Ex: #5QM<cr> might return *5QM68702699520cr>
565 565  
566 566  This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision.
567 567  
568 -====== __24. Query Serial Number (**QN**)__ ======
542 +__24. Query Serial Number (**QN**)__
569 569  
570 570  Ex: #5QN<cr> might return *5QN~_~_<cr>
571 571  
572 572  The number in the response is the servo's serial number which is set and cannot be changed.
573 573  
574 -====== __25. Query Firmware (**QF**)__ ======
548 +__25. Query Firmware (**QF**)__
575 575  
576 576  Ex: #5QF<cr> might return *5QF11<cr>
577 577  
578 578  The integer in the reply represents the firmware version with one decimal, in this example being 1.1
579 579  
580 -====== __26. Query Status (**Q**)__ ======
554 +__26. Query Status (**Q**)__
581 581  
582 582  Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
583 583  
... ... @@ -587,32 +587,32 @@
587 587  |ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely
588 588  |ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed
589 589  |ex: *5Q4<cr>|Traveling|Moving at a stable speed
590 -|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position.
564 +|ex: *5Q5<cr>|Deccelerating|Decreasing speed towards travel speed towards rest
591 591  |ex: *5Q6<cr>|Holding|Keeping current position
592 592  |ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque
593 -|ex: *5Q8<cr>|Outside limits|{More details coming soon}
567 +|ex: *5Q8<cr>|Outside limits|More details coming soon
594 594  |ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting
595 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
569 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maxiumum duty and still cannot move (i.e.: stalled)
596 596  
597 -====== __27. Query Voltage (**QV**)__ ======
571 +__27. Query Voltage (**QV**)__
598 598  
599 599  Ex: #5QV<cr> might return *5QV11200<cr>
600 600  
601 601  The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
602 602  
603 -====== __28. Query Temperature (**QT**)__ ======
577 +__28. Query Temperature (**QT**)__
604 604  
605 605  Ex: #5QT<cr> might return *5QT564<cr>
606 606  
607 607  The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
608 608  
609 -====== __29. Query Current (**QC**)__ ======
583 +__29. Query Current (**QC**)__
610 610  
611 611  Ex: #5QC<cr> might return *5QC140<cr>
612 612  
613 613  The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
614 614  
615 -====== __30. RC Mode (**CRC**)__ ======
589 +__30. RC Mode (**CRC**)__
616 616  
617 617  This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
618 618  
... ... @@ -624,13 +624,13 @@
624 624  
625 625  EX: #5CRC<cr>
626 626  
627 -====== __31. RESET__ ======
601 +__31. RESET__
628 628  
629 629  Ex: #5RESET<cr> or #5RS<cr>
630 630  
631 631  This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
632 632  
633 -====== __32. DEFAULT & CONFIRM__ ======
607 +__32. DEFAULT & CONFIRM__
634 634  
635 635  Ex: #5DEFAULT<cr>
636 636  
... ... @@ -642,7 +642,7 @@
642 642  
643 643  Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
644 644  
645 -====== __33. UPDATE & CONFIRM__ ======
619 +__33. UPDATE & CONFIRM__
646 646  
647 647  Ex: #5UPDATE<cr>
648 648  
XWiki.XWikiRights[0]
Allow/Deny
... ... @@ -1,1 +1,0 @@
1 -1
Groups
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.XWikiAdminGroup
Levels
... ... @@ -1,1 +1,0 @@
1 -view
XWiki.XWikiRights[1]
Allow/Deny
... ... @@ -1,1 +1,0 @@
1 -1
Groups
... ... @@ -1,1 +1,0 @@
1 -XWiki.XWikiAdminGroup
Levels
... ... @@ -1,1 +1,0 @@
1 -view
XWiki.XWikiRights[2]
Allow/Deny
... ... @@ -1,1 +1,0 @@
1 -1
Groups
... ... @@ -1,1 +1,0 @@
1 -XWiki.Profiles (Lynxmotion).BETA Testers
Levels
... ... @@ -1,1 +1,0 @@
1 -view
Copyright RobotShop 2018