Last modified by Eric Nantel on 2025/06/06 07:47

From version < 94.1 >
edited by Coleman Benson
on 2019/02/01 12:00
To version < 64.12 >
edited by RB1
on 2018/11/19 09:30
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Lynxmotion Smart Servo (LSS).WebHome
1 +lynxmotion:LSS - Overview (DEV).WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.CBenson
1 +xwiki:XWiki.RB1
Tags
... ... @@ -1,1 +1,1 @@
1 -LSS|communication|protocol|programming|firmware|control|LSS-Ref
1 +LSS|communication|protocol|programming|firmware|control
Content
... ... @@ -1,14 +4,9 @@
1 -(% class="wikigeneratedid" id="HTableofContents" %)
2 -**Table of Contents**
3 -
4 4  {{toc depth="3"/}}
5 5  
6 -= Serial Protocol Concept =
3 += Protocol concepts =
7 7  
8 -The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 RC servo controller and almost everything one might expect to be able to configure for a smart servo motor is available.
5 +The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available.
9 9  
10 -In order to have servos react differently when commands are sent to all servos in a serial bus, the first step a user should take is to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol.
11 -
12 12  == Session ==
13 13  
14 14  A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
... ... @@ -15,7 +15,7 @@
15 15  
16 16  == Action Commands ==
17 17  
18 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
13 +Action commands are sent serially to the servo's Rx pin and must be set in the following format:
19 19  
20 20  1. Start with a number sign # (U+0023)
21 21  1. Servo ID number as an integer
... ... @@ -26,12 +26,16 @@
26 26  (((
27 27  Ex: #5PD1443<cr>
28 28  
29 -This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
24 +Move servo with ID #5 to a position of 144.3 degrees.
30 30  
31 -== Action Modifiers ==
26 +Action commands cannot be combined with query commands, and only one action command can be sent at a time.
32 32  
33 -Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is:
28 +Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page).
34 34  
30 +=== Action Modifiers ===
31 +
32 +Two commands can be used as action modifiers only: Timed Move and Speed. The format is:
33 +
35 35  1. Start with a number sign # (U+0023)
36 36  1. Servo ID number as an integer
37 37  1. Action command (one to three letters, no spaces, capital or lower case)
... ... @@ -42,12 +42,14 @@
42 42  
43 43  Ex: #5P1456T1263<cr>
44 44  
45 -This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds.
44 +Results in the servo rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds.
45 +
46 +Action modifiers can only be used with certain commands.
46 46  )))
47 47  
48 48  == Configuration Commands ==
49 49  
50 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
51 +Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:LSS - Overview (DEV).LSS - RC PWM.WebHome]].
51 51  
52 52  1. Start with a number sign # (U+0023)
53 53  1. Servo ID number as an integer
... ... @@ -57,11 +57,15 @@
57 57  
58 58  Ex: #5CO-50<cr>
59 59  
60 -This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.
61 +Assigns an absolute origin offset of -5.0 degrees (with respect to factory origin) to servo #5 and changes the offset for that session to -5.0 degrees.
61 61  
63 +Configuration commands are not cumulative, in that if two configurations are sent at any time, only the last configuration is used and stored.
64 +
65 +*Important Note: the one exception is the baud rate - the servo's current session retains the given baud rate. The new baud rate will only be in place when the servo is power cycled.
66 +
62 62  == Query Commands ==
63 63  
64 -Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
69 +Query commands are sent serially to the servo's Rx pin and must be set in the following format:
65 65  
66 66  1. Start with a number sign # (U+0023)
67 67  1. Servo ID number as an integer
... ... @@ -73,47 +73,49 @@
73 73  )))
74 74  
75 75  (((
76 -The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
81 +The query will return a value via the Tx pin with the following format:
77 77  
78 -1. Start with an asterisk * (U+002A)
83 +1. Start with an asterisk (U+002A)
79 79  1. Servo ID number as an integer
80 80  1. Query command (one to three letters, no spaces, capital letters)
81 81  1. The reported value in the units described, no decimals.
82 82  1. End with a control / carriage return '<cr>'
83 83  
84 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be:
85 -
86 86  (((
87 87  Ex: *5QD1443<cr>
88 88  )))
89 89  
90 -This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees).
93 +Indicates that servo #5 is currently at 144.3 degrees.
91 91  
92 92  **Session vs Configuration Query**
93 93  
94 -By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
97 +By default, the query command returns the sessions' value; should no action commands have been sent to change, it will return the value saved in EEPROM from the last configuration command.
95 95  
96 -Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
99 +In order to query the value in EEPROM, add a '1' to the query command.
97 97  
98 -After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
101 +Ex: #5CSR20<cr> sets the maximum speed for servo #5 to 20rpm upon RESET (explained below).
99 99  
100 -#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas
103 +After RESET: #5SR4<cr> sets the session's speed to 4rpm.
101 101  
105 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session.
106 +
102 102  #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
103 103  
104 -== Virtual Angular Position ==
109 +=== Virtual Angular Position ===
105 105  
106 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
111 +{In progress}
107 107  
113 +A "virtual position" is one which allows for multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to 360.0 degrees.
114 +
108 108  [[image:LSS-servo-positions.jpg]]
109 109  
110 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
117 +Example: Gyre direction / rotation is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees.
111 111  
112 -#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
119 +#1D-300<cr> The servo is sent a command to move to -30.0 degrees (green arrow)
113 113  
114 114  #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
115 115  
116 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
123 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees stopping at an absolute position of 60.0 degrees (420.0-360.0), with a virtual position of -420.0 degrees.
117 117  
118 118  Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
119 119  
... ... @@ -126,107 +126,85 @@
126 126  
127 127  = Command List =
128 128  
129 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
130 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
131 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
132 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)
133 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds / second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)
134 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
135 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
136 -0
136 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes
137 +| 1|**L**imp| L| | | | ✓| none|
138 +| 2|**H**alt & Hold| H| | | | ✓| none|
139 +| 3|**T**imed move| T| | | | ✓| milliseconds| Modifier only
140 +| 4|**S**peed| S| | | | ✓| microseconds / second| Modifier only
141 +| 5|**M**ove in **D**egrees (relative)| MD| | | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
142 +| 6|**O**rigin Offset| O| QO| CO| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
143 +| 7|**A**ngular **R**ange| AR| QAR| CAR| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
144 +| 8|Position in **P**ulse| P| QP| | | ✓| microseconds|(((
145 +See details below
137 137  )))
138 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
139 -1800
140 -)))
141 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(% style="width:510px" %)(((
142 -Inherited from SSC-32 serial protocol
143 -)))|(% style="text-align:center; width:113px" %)
144 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
145 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
146 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
147 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)(((
148 -QSD: Add modifier "2" for instantaneous speed.
149 -
150 -SD overwrites SR / CSD overwrites CSR and vice-versa.
151 -)))|(% style="text-align:center; width:113px" %)Max per servo
152 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓| ✓|rpm|(% style="width:510px" %)(((
153 -QSR: Add modifier "2" for instantaneous speed
154 -
155 -SR overwrites SD / CSR overwrites CSD and vice-versa.
156 -)))|(% style="text-align:center; width:113px" %)Max per servo
157 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
158 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0
159 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
160 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
161 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((
162 -Limp
163 -)))
164 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp
165 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
166 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)|(% style="width:510px" %) Recommended to determine the model|(% style="text-align:center; width:113px" %)
167 -| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)|(% style="width:510px" %) Returns a raw value representing the three model inputs (36 bit)|(% style="text-align:center; width:113px" %)
168 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
169 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
170 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
171 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
172 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
173 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
174 -| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|(% style="width:510px" %)(((
147 +| 9|Position in **D**egrees| D| QD| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
148 +| 10|**W**heel mode in **D**egrees| WD| QWD| | | ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|
149 +| 11|**W**heel mode in **R**PM| WR| QWR| | | ✓| rpm|
150 +| 12|Max **S**peed in **D**egrees| SD| QSD| CSD| ✓| ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed
151 +| 13|Max **S**peed in **R**PM| SR| QSR| CSR| ✓| ✓| rpm|QSR: Add modifier "2" for instantaneous speed
152 +| 14|**A**ngular **S**tiffness| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4
153 +| 15|**A**ngular **H**olding Stiffness|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0.
154 +|15b|**A**ngular **A**cceleration|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared
155 +|15c|**A**ngular **D**eceleration|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared
156 +|15d|**M**otion **C**ontrol|MC|QMC| | | ✓|none|MC0 to disable motion control, MC1 to enable. Session specific
157 +| 16|**LED** Color| LED| QLED| CLED| ✓| ✓| none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6=MAGENTA, 7=WHITE
158 +| 17|**ID** #| | QID| CID| | ✓| none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to
159 +| 18|**B**aud rate| B| QB| CB| | ✓| none (integer)|
160 +| 19|**G**yre direction (**G**)| G| QG| CG| ✓| ✓| none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)
161 +| 20|**F**irst Position (**P**ulse)| | QFP|CFP | ✓| ✓| none |
162 +| 21|**F**irst Position (**D**egrees)| | QFD|CFD| ✓| ✓| none |
163 +| 22|**T**arget (**D**egree) **P**osition| | QDT| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
164 +| 23|**M**odel **String**| | QMS| | | | none (string)| Recommended to determine the model|
165 +| 23b|**M**odel| | QM| | | | none (integer)| Returns a raw value representing the three model inputs (36 bit)|
166 +| 24|Serial **N**umber| | QN| | | | none (integer)|
167 +| 25|**F**irmware version| | QF| | | | none (integer)|
168 +| 26|**Q**uery (general status)| | Q| | | ✓| none (integer from 1 to 8)| See command description for details
169 +| 27|**V**oltage| | QV| | | ✓| millivolts (ex 5936 = 5936mV = 5.936V)|
170 +| 28|**T**emperature| | QT| | | ✓| tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)
171 +| 29|**C**urrent| | QC| | | ✓| milliamps (ex 200 = 0.2A)|
172 +| 30|**RC** Mode| | |CRC| |✓|none|(((
175 175  CRC: Add modifier "1" for RC-position mode.
176 176  CRC: Add modifier "2" for RC-wheel mode.
177 177  Any other value for the modifier results in staying in smart mode.
178 178  Puts the servo into RC mode. To revert to smart mode, use the button menu.
179 -)))|(% style="text-align:center; width:113px" %)Serial
180 -|31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
181 -|32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
182 -|33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
177 +)))
178 +|31|**RESET**| | | | | ✓|none|Soft reset. See command for details.
179 +|32|**DEFAULT**| | | | |✓|none|Revert to firmware default values. See command for details
180 +|33|**UPDATE**| | | | |✓|none|Update firmware. See command for details.
183 183  
184 -== Advanced ==
185 -
186 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
187 -| 1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS|CAS| ✓| ✓|none|(% style="width:510px" %)-4 to +4, but suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0
188 -| 2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|(% style="width:510px" %)-10 to +10, with default as 0. |(% style="text-align:center; width:113px" %)1
189 -| 3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
190 -| 4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
191 -| 5|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles|(% style="text-align:center; width:113px" %)
192 -| 6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center; width:113px" %)
193 -| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
194 -
195 195  == Details ==
196 196  
197 -====== __1. Limp (**L**)__ ======
184 +======= __1. Limp (**L**)__ =======
198 198  
199 199  Example: #5L<cr>
200 200  
201 201  This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
202 202  
203 -====== __2. Halt & Hold (**H**)__ ======
190 +__2. Halt & Hold (**H**)__
204 204  
205 205  Example: #5H<cr>
206 206  
207 207  This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position.
208 208  
209 -====== __3. Timed move (**T**)__ ======
196 +__3. Timed move (**T**)__
210 210  
211 211  Example: #5P1500T2500<cr>
212 212  
213 213  Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
214 214  
215 -Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
202 +__4. Speed (**S**)__
216 216  
217 -====== __4. Speed (**S**)__ ======
218 -
219 219  Example: #5P1500S750<cr>
220 220  
221 221  This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
222 222  
223 -====== __5. (Relative) Move in Degrees (**MD**)__ ======
208 +__5. (Relative) Move in Degrees (**MD**)__
224 224  
225 225  Example: #5MD123<cr>
226 226  
227 227  The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
228 228  
229 -====== __6. Origin Offset Action (**O**)__ ======
214 +__6. Origin Offset Action (**O**)__
230 230  
231 231  Example: #5O2400<cr>
232 232  
... ... @@ -250,7 +250,7 @@
250 250  
251 251  This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode.
252 252  
253 -====== __7. Angular Range (**AR**)__ ======
238 +__7. Angular Range (**AR**)__
254 254  
255 255  Example: #5AR1800<cr>
256 256  
... ... @@ -274,7 +274,7 @@
274 274  
275 275  This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
276 276  
277 -====== __8. Position in Pulse (**P**)__ ======
262 +__8. Position in Pulse (**P**)__
278 278  
279 279  Example: #5P2334<cr>
280 280  
... ... @@ -287,7 +287,7 @@
287 287  This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 
288 288  Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
289 289  
290 -====== __9. Position in Degrees (**D**)__ ======
275 +__9. Position in Degrees (**D**)__
291 291  
292 292  Example: #5PD1456<cr>
293 293  
... ... @@ -301,7 +301,7 @@
301 301  
302 302  This means the servo is located at 13.2 degrees.
303 303  
304 -====== __10. Wheel Mode in Degrees (**WD**)__ ======
289 +__10. Wheel Mode in Degrees (**WD**)__
305 305  
306 306  Ex: #5WD900<cr>
307 307  
... ... @@ -313,7 +313,7 @@
313 313  
314 314  The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
315 315  
316 -====== __11. Wheel Mode in RPM (**WR**)__ ======
301 +__11. Wheel Mode in RPM (**WR**)__
317 317  
318 318  Ex: #5WR40<cr>
319 319  
... ... @@ -325,7 +325,7 @@
325 325  
326 326  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
327 327  
328 -====== __12. Speed in Degrees (**SD**)__ ======
313 +__12. Speed in Degrees (**SD**)__
329 329  
330 330  Ex: #5SD1800<cr>
331 331  
... ... @@ -350,7 +350,7 @@
350 350  
351 351  Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
352 352  
353 -====== __13. Speed in RPM (**SR**)__ ======
338 +__13. Speed in RPM (**SR**)__
354 354  
355 355  Ex: #5SD45<cr>
356 356  
... ... @@ -375,7 +375,7 @@
375 375  
376 376  Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
377 377  
378 -====== __14. Angular Stiffness (**AS**)__ ======
363 +__14. Angular Stiffness (**AS**)__
379 379  
380 380  The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
381 381  
... ... @@ -403,7 +403,7 @@
403 403  
404 404  Writes the desired angular stiffness value to memory.
405 405  
406 -====== __15. Angular Hold Stiffness (**AH**)__ ======
391 +__15. Angular Hold Stiffness (**AH**)__
407 407  
408 408  The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
409 409  
... ... @@ -423,19 +423,19 @@
423 423  
424 424  This writes the angular holding stiffness of servo #5 to 2 to EEPROM
425 425  
426 -====== __15b: Angular Acceleration (**AA**)__ ======
411 +__15b: Angular Acceleration (**AA**)__
427 427  
428 428  {More details to come}
429 429  
430 -====== __15c: Angular Deceleration (**AD**)__ ======
415 +__15c: Angular Deceleration (**AD**)__
431 431  
432 432  {More details to come}
433 433  
434 -====== __15d: Motion Control (**EM**)__ ======
419 +__15d: Motion Control (**MC**)__
435 435  
436 436  {More details to come}
437 437  
438 -====== __16. RGB LED (**LED**)__ ======
423 +__16. RGB LED (**LED**)__
439 439  
440 440  Ex: #5LED3<cr>
441 441  
... ... @@ -453,22 +453,8 @@
453 453  
454 454  Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
455 455  
456 -====== __16b. Configure LED Blinking (**CLB**)__ ======
441 +__17. Identification Number__
457 457  
458 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details).
459 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
460 -
461 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
462 -
463 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
464 -Ex: #5CLB1<cr> only blink when limp
465 -Ex: #5CLB2<cr> only blink when holding
466 -Ex: #5CLB12<cr> only blink when accel or decel
467 -Ex: #5CLB48<cr> only blink when free or travel
468 -Ex: #5CLB63<cr> blink in all status
469 -
470 -====== __17. Identification Number__ ======
471 -
472 472  A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
473 473  
474 474  Query Identification (**QID**)
... ... @@ -483,7 +483,7 @@
483 483  
484 484  Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.
485 485  
486 -====== __18. Baud Rate__ ======
457 +__18. Baud Rate__
487 487  
488 488  A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.
489 489  \*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out.
... ... @@ -496,13 +496,11 @@
496 496  
497 497  Configure Baud Rate (**CB**)
498 498  
499 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled.
500 -
501 501  Ex: #5CB9600<cr>
502 502  
503 503  Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
504 504  
505 -====== __19. Gyre Rotation Direction__ ======
474 +__19. Gyre Rotation Direction__
506 506  
507 507  "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
508 508  
... ... @@ -520,7 +520,7 @@
520 520  
521 521  This changes the gyre direction as described above and also writes to EEPROM.
522 522  
523 -====== __20. First / Initial Position (pulse)__ ======
492 +__20. First / Initial Position (pulse)__
524 524  
525 525  In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
526 526  
... ... @@ -536,7 +536,7 @@
536 536  
537 537  This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled).
538 538  
539 -====== __21. First / Initial Position (Degrees)__ ======
508 +__21. First / Initial Position (Degrees)__
540 540  
541 541  In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
542 542  
... ... @@ -552,37 +552,37 @@
552 552  
553 553  This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up.
554 554  
555 -====== __22. Query Target Position in Degrees (**QDT**)__ ======
524 +__22. Query Target Position in Degrees (**QDT**)__
556 556  
557 557  Ex: #5QDT<cr> might return *5QDT6783<cr>
558 558  
559 559  The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
560 560  
561 -====== __23. Query Model String (**QMS**)__ ======
530 +__23. Query Model String (**QMS**)__
562 562  
563 563  Ex: #5QMS<cr> might return *5QMSLSS-HS1cr>
564 564  
565 565  This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
566 566  
567 -====== __23b. Query Model (**QM**)__ ======
536 +__23b. Query Model (**QM**)__
568 568  
569 569  Ex: #5QM<cr> might return *5QM68702699520cr>
570 570  
571 571  This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision.
572 572  
573 -====== __24. Query Serial Number (**QN**)__ ======
542 +__24. Query Serial Number (**QN**)__
574 574  
575 575  Ex: #5QN<cr> might return *5QN~_~_<cr>
576 576  
577 577  The number in the response is the servo's serial number which is set and cannot be changed.
578 578  
579 -====== __25. Query Firmware (**QF**)__ ======
548 +__25. Query Firmware (**QF**)__
580 580  
581 581  Ex: #5QF<cr> might return *5QF11<cr>
582 582  
583 583  The integer in the reply represents the firmware version with one decimal, in this example being 1.1
584 584  
585 -====== __26. Query Status (**Q**)__ ======
554 +__26. Query Status (**Q**)__
586 586  
587 587  Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
588 588  
... ... @@ -592,32 +592,32 @@
592 592  |ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely
593 593  |ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed
594 594  |ex: *5Q4<cr>|Traveling|Moving at a stable speed
595 -|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position.
564 +|ex: *5Q5<cr>|Deccelerating|Decreasing speed towards travel speed towards rest
596 596  |ex: *5Q6<cr>|Holding|Keeping current position
597 597  |ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque
598 -|ex: *5Q8<cr>|Outside limits|{More details coming soon}
567 +|ex: *5Q8<cr>|Outside limits|More details coming soon
599 599  |ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting
600 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
569 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maxiumum duty and still cannot move (i.e.: stalled)
601 601  
602 -====== __27. Query Voltage (**QV**)__ ======
571 +__27. Query Voltage (**QV**)__
603 603  
604 604  Ex: #5QV<cr> might return *5QV11200<cr>
605 605  
606 606  The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
607 607  
608 -====== __28. Query Temperature (**QT**)__ ======
577 +__28. Query Temperature (**QT**)__
609 609  
610 610  Ex: #5QT<cr> might return *5QT564<cr>
611 611  
612 612  The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
613 613  
614 -====== __29. Query Current (**QC**)__ ======
583 +__29. Query Current (**QC**)__
615 615  
616 616  Ex: #5QC<cr> might return *5QC140<cr>
617 617  
618 618  The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
619 619  
620 -====== __30. RC Mode (**CRC**)__ ======
589 +__30. RC Mode (**CRC**)__
621 621  
622 622  This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
623 623  
... ... @@ -629,13 +629,13 @@
629 629  
630 630  EX: #5CRC<cr>
631 631  
632 -====== __31. RESET__ ======
601 +__31. RESET__
633 633  
634 634  Ex: #5RESET<cr> or #5RS<cr>
635 635  
636 636  This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
637 637  
638 -====== __32. DEFAULT & CONFIRM__ ======
607 +__32. DEFAULT & CONFIRM__
639 639  
640 640  Ex: #5DEFAULT<cr>
641 641  
... ... @@ -647,7 +647,7 @@
647 647  
648 648  Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
649 649  
650 -====== __33. UPDATE & CONFIRM__ ======
619 +__33. UPDATE & CONFIRM__
651 651  
652 652  Ex: #5UPDATE<cr>
653 653  
XWiki.XWikiRights[0]
Allow/Deny
... ... @@ -1,1 +1,0 @@
1 -1
Groups
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.XWikiAdminGroup
Levels
... ... @@ -1,1 +1,0 @@
1 -view
XWiki.XWikiRights[1]
Allow/Deny
... ... @@ -1,1 +1,0 @@
1 -1
Groups
... ... @@ -1,1 +1,0 @@
1 -XWiki.XWikiAdminGroup
Levels
... ... @@ -1,1 +1,0 @@
1 -view
XWiki.XWikiRights[2]
Allow/Deny
... ... @@ -1,1 +1,0 @@
1 -1
Groups
... ... @@ -1,1 +1,0 @@
1 -XWiki.Profiles (Lynxmotion).BETA Testers
Levels
... ... @@ -1,1 +1,0 @@
1 -view
Copyright RobotShop 2018