Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% class="wikigeneratedid" id="HTableofContents" %) 2 -** TableofContents**2 +**Page Contents** 3 3 4 4 {{toc depth="3"/}} 5 5 ... ... @@ -13,6 +13,8 @@ 13 13 14 14 A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 15 15 16 +Note that for a given session, the action related to a specific commands overrides the stored value in EEPROM. 17 + 16 16 == Action Commands == 17 17 18 18 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format: ... ... @@ -45,20 +45,6 @@ 45 45 This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds. 46 46 ))) 47 47 48 -== Configuration Commands == 49 - 50 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 51 - 52 -1. Start with a number sign # (U+0023) 53 -1. Servo ID number as an integer 54 -1. Configuration command (two to three letters, no spaces, capital or lower case) 55 -1. Configuration value in the correct units with no decimal 56 -1. End with a control / carriage return '<cr>' 57 - 58 -Ex: #5CO-50<cr> 59 - 60 -This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below. 61 - 62 62 == Query Commands == 63 63 64 64 Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format: ... ... @@ -89,6 +89,20 @@ 89 89 90 90 This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees). 91 91 80 +== Configuration Commands == 81 + 82 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 83 + 84 +1. Start with a number sign # (U+0023) 85 +1. Servo ID number as an integer 86 +1. Configuration command (two to three letters, no spaces, capital or lower case) 87 +1. Configuration value in the correct units with no decimal 88 +1. End with a control / carriage return '<cr>' 89 + 90 +Ex: #5CO-50<cr> 91 + 92 +This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below. 93 + 92 92 **Session vs Configuration Query** 93 93 94 94 By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: ... ... @@ -126,69 +126,72 @@ 126 126 127 127 = Command List = 128 128 129 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 130 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 131 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 132 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %) 133 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 134 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 135 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 131 +== Regular == 132 + 133 +|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 134 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 135 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 136 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %) 137 +| 4|[[**S**peed>>||anchor="H4.Speed28S29modifier"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 138 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 139 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 136 136 0 137 137 ))) 138 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 142 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 139 139 1800 140 140 ))) 141 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(% style="width:510px" %)((( 145 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | | ✓|microseconds|(% style="width:510px" %)((( 142 142 Inherited from SSC-32 serial protocol 143 143 )))|(% style="text-align:center; width:113px" %) 144 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 145 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 146 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 147 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| tenthsofdegrees per second |(% style="width:510px" %)(((148 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 149 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 150 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 151 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)((( 148 148 QSD: Add modifier "2" for instantaneous speed. 149 149 150 150 SD overwrites SR / CSD overwrites CSR and vice-versa. 151 151 )))|(% style="text-align:center; width:113px" %)Max per servo 152 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 156 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 153 153 QSR: Add modifier "2" for instantaneous speed 154 154 155 155 SR overwrites SD / CSR overwrites CSD and vice-versa. 156 156 )))|(% style="text-align:center; width:113px" %)Max per servo 157 -| 1 6|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7158 -| 1 7|[[**ID**#>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none(integer from 0 to 250)|(% style="width:510px" %)Note:ID254 is a "broadcast"whichallservosrespondto|(% style="text-align:center; width:113px" %)0159 -| 1 8|[[**B**audrate>>||anchor="H18.BaudRate"]]|B| QB| CB| | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600160 -| 1 9|[[**G**yredirection (**G**)>>||anchor="H19.GyreRotationDirection"]]|G| QG| CG|✓| ✓|none |(% style="width:510px" %)Gyre/ rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1161 -| 20|[[**F**irst Position(**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| |QFP|CFP|✓|✓|none|(% style="width:510px" %)CFPoverwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((162 - Limp161 +| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7 162 +| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 163 +| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0 164 +| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600 165 +| 18|//{coming soon}//| | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 166 + 163 163 ))) 164 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 165 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 166 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 167 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 168 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 169 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 170 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 171 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 172 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 173 -| 30a|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1| | ✓|none|(% style="width:510px" %)((( 174 -Puts the servo into RC mode. To revert to smart mode, use the button menu. 168 +| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstPosition28Degrees2928FD29"]]| | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 169 +| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 170 +| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 171 +| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 172 +| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 173 +| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 174 +| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 175 +| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 176 +| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | |CRC|✓| | ✓|none|(% style="width:510px" %)((( 177 +Change to RC mode 1 (position) or 2 (wheel). 175 175 )))|(% style="text-align:center; width:113px" %)Serial 176 -| 30b|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2| | ✓| |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 177 -| 31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 178 -| 32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 179 -| 33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 179 +| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 180 +| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 181 +| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 180 180 181 181 == Advanced == 182 182 183 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes |=(% style="width: 113px;" %)Default Value184 -| 1|[[**A**ngular **S**tiffness>>||anchor="H1 4.AngularStiffness28AS29"]]||(% style="text-align:center; width:113px" %)0185 -| 2|[[**A**ngular **H**olding Stiffness>>||anchor="H 15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none (integer -10 to +10)|(% style="width:510px" %)|(%style="text-align:center; width:113px"%)1186 -| 3|[[**A**ngular **A**cceleration>>||anchor="H 15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)187 -| 4|[[**A**ngular **D**eceleration>>||anchor="H 15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)188 -| 5|[[**E**nable **M**otion Control>>||anchor="H 15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %)189 -| 6|[[**C**onfigure **L**ED **B**linking>>||anchor="H 16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center; width:113px" %)190 - || | | | | | | |(% style="width:510px"%)|(% style="text-align:center;width:113px" %)185 +|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes 186 +| A1|[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|AS|QAS|CAS|✓| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4 187 +| A2|[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|AH|QAH|CAH|✓| | ✓|none (integer -10 to +10)|(% style="width:510px" %)Effect is different between serial and RC 188 +| A3|[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared 189 +| A4|[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared 190 +| A5|[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|EM|QEM| | | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable 191 +| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]| | | CLB| | ✓| |none (integer from 0 to 63)|(% style="width:510px" %)((( 192 +0=No blinking, 63=Always blink; 191 191 194 +Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 195 +))) 196 + 192 192 == Details == 193 193 194 194 ====== __1. Limp (**L**)__ ====== ... ... @@ -201,17 +201,17 @@ 201 201 202 202 Example: #5H<cr> 203 203 204 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position. 209 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position. 205 205 206 -====== __3. Timed move (**T**)__ ====== 211 +====== __3. Timed move (**T**) modifier__ ====== 207 207 208 208 Example: #5P1500T2500<cr> 209 209 210 -Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 215 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 211 211 212 212 Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 213 213 214 -====== __4. Speed (**S**)__ ====== 219 +====== __4. Speed (**S**) modifier__ ====== 215 215 216 216 Example: #5P1500S750<cr> 217 217 ... ... @@ -227,11 +227,11 @@ 227 227 228 228 Example: #5O2400<cr> 229 229 230 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position. The setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero.Note that for a given session, the O command overrides the CO command.In the first image, the origin at factory offset '0' (centered).235 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 231 231 232 232 [[image:LSS-servo-default.jpg]] 233 233 234 -In the second image, the origin a, aswell asthe angular range (explained below) have been shifted by 240.0 degrees:239 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: 235 235 236 236 [[image:LSS-servo-origin.jpg]] 237 237 ... ... @@ -239,33 +239,33 @@ 239 239 240 240 Example: #5QO<cr> Returns: *5QO-13 241 241 242 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. 247 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero. 243 243 244 244 Configure Origin Offset (**CO**) 245 245 246 246 Example: #5CO-24<cr> 247 247 248 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. 253 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 249 249 250 250 ====== __7. Angular Range (**AR**)__ ====== 251 251 252 252 Example: #5AR1800<cr> 253 253 254 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). In thefirstimage,259 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: 255 255 256 256 [[image:LSS-servo-default.jpg]] 257 257 258 - Here, the angular rangehasbeenrestricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.263 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 259 259 260 260 [[image:LSS-servo-ar.jpg]] 261 261 262 - The angular range action command (ex. #5AR1800<cr>) and origin offset action commandn be used to move both the center and limit the angular range:267 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range: 263 263 264 264 [[image:LSS-servo-ar-o-1.jpg]] 265 265 266 266 Query Angular Range (**QAR**) 267 267 268 -Example: #5QAR<cr> might return *5AR 2756273 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees. 269 269 270 270 Configure Angular Range (**CAR**) 271 271 ... ... @@ -275,7 +275,7 @@ 275 275 276 276 Example: #5P2334<cr> 277 277 278 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected to end points. 283 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points. 279 279 280 280 Query Position in Pulse (**QP**) 281 281 ... ... @@ -298,6 +298,13 @@ 298 298 299 299 This means the servo is located at 13.2 degrees. 300 300 306 +(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 307 +Query Target Position in Degrees (**QDT**) 308 + 309 +Ex: #5QDT<cr> might return *5QDT6783<cr> 310 + 311 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 312 + 301 301 ====== __10. Wheel Mode in Degrees (**WD**)__ ====== 302 302 303 303 Ex: #5WD900<cr> ... ... @@ -322,22 +322,22 @@ 322 322 323 323 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 324 324 325 -====== __12. Speed in Degrees (**SD**)__ ====== 337 +====== __12. Max Speed in Degrees (**SD**)__ ====== 326 326 327 327 Ex: #5SD1800<cr> 328 328 329 -This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Thereforemaximumspeed foractions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.341 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 330 330 331 331 Query Speed in Degrees (**QSD**) 332 332 333 333 Ex: #5QSD<cr> might return *5QSD1800<cr> 334 334 335 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed. 347 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. 336 336 If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 337 337 338 338 |**Command sent**|**Returned value (1/10 °)** 339 339 |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 340 -|ex: #5QSD1<cr>|Configured maximum speed 352 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 341 341 |ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 342 342 |ex: #5QSD3<cr>|Target travel speed 343 343 ... ... @@ -347,22 +347,22 @@ 347 347 348 348 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 349 349 350 -====== __13. Speed in RPM (**SR**)__ ====== 362 +====== __13. Max Speed in RPM (**SR**)__ ====== 351 351 352 352 Ex: #5SD45<cr> 353 353 354 -This command sets the servo's maximum speed for actionreforemaximumspeed foractions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.366 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 355 355 356 356 Query Speed in Degrees (**QSR**) 357 357 358 358 Ex: #5QSR<cr> might return *5QSR45<cr> 359 359 360 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed. 372 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. 361 361 If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 362 362 363 363 |**Command sent**|**Returned value (1/10 °)** 364 364 |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 365 -|ex: #5QSR1<cr>|Configured maximum speed 377 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 366 366 |ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 367 367 |ex: #5QSR3<cr>|Target travel speed 368 368 ... ... @@ -370,288 +370,319 @@ 370 370 371 371 Ex: #5CSR45<cr> 372 372 373 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 385 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 374 374 375 -====== __14. AngularStiffness(**AS**)__ ======387 +====== __14. LED Color (**LED**)__ ====== 376 376 377 - Theservo's rigidity / angular stiffnesscan be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.389 +Ex: #5LED3<cr> 378 378 379 - Apositivealueof"angularstiffness":391 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. 380 380 381 -* The more torque will be applied to try to keep the desired position against external input / changes 382 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 393 +0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE 383 383 384 - A negative valueontheotherhand:395 +Query LED Color (**QLED**) 385 385 386 -* Causes a slower acceleration to the travel speed, and a slower deceleration 387 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back 397 +Ex: #5QLED<cr> might return *5QLED5<cr> 388 388 389 -Th e default valueiszero and the effect becomesextreme by-4, +4. Thereareno units,only integersbetween-4 to 4. Greatervaluesproduceincreasinglyerraticbehavior.399 +This simple query returns the indicated servo's LED color. 390 390 391 -E x:#5AS-2<cr>401 +Configure LED Color (**CLED**) 392 392 393 - This reducestheangularstiffnessto-2for thatsession,allowingthe servoto deviatemorearoundthedesired position.This can be beneficial in many situationssuchasimpacts(leggedrobots)wheremoreofa"spring" effectisdesired. Uponreset,the servo will usethevalue storedinmemory, basedonthetconfiguration command.403 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 394 394 395 - Ex:#5QAS<cr>405 +====== __15. Gyre Rotation Direction (**G**)__ ====== 396 396 397 - Queriesthevaluebeing used.407 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 398 398 399 -Ex: #5 CAS<cr>409 +Ex: #5G-1<cr> 400 400 401 - Writes the desired angular stiffnessmory.411 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 402 402 403 - ====== __15. AngularHoldStiffness(**AH**)__ ======413 +Query Gyre Direction (**QG**) 404 404 405 - Theangularholding stiffness determines the servo's abilityto hold a desired positionunderload. Values canbe from-10 to 10, with the default being 0. Note that negative values mean the final positioncan be easily deflected.415 +Ex: #5QG<cr> might return *5QG-1<cr> 406 406 407 - Ex:#5AH3<cr>417 +The value returned above means the servo is in a counter-clockwise gyration. 408 408 409 - This sets the holding stiffness forservo#5 to 3 forthat session.419 +Configure Gyre (**CG**) 410 410 411 - QueryAngularHold Stiffness (**QAH**)421 +Ex: #5CG-1<cr> 412 412 413 - Ex:#5QAH<cr> might return*5QAH3<cr>423 +This changes the gyre direction as described above and also writes to EEPROM. 414 414 415 - Thisreturnstheservo's angular holding stiffnessvalue.425 +====== __16. Identification Number (**ID**)__ ====== 416 416 417 - ConfigureAngularHoldStiffness (**CAH**)427 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate). 418 418 419 - Ex:#5CAH2<cr>429 +Query Identification (**QID**) 420 420 421 - Thiswritestheangularholdingstiffness of servo #5to 2 to EEPROM431 +EX: #254QID<cr> might return *QID5<cr> 422 422 423 - ======__15b: AngularAcceleration (**AA**)__======433 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 424 424 425 - {Moredetailsto come}435 +Configure ID (**CID**) 426 426 427 - ====== __15c:AngularDeceleration (**AD**)__ ======437 +Ex: #4CID5<cr> 428 428 429 - {More details to come}439 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect. 430 430 431 -====== __1 5d:Motion Control (**EM**)__ ======441 +====== __17. Baud Rate__ ====== 432 432 433 - {More details to come}443 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 434 434 435 - ======__16.RGBLED(**LED**)__ ======445 +Query Baud Rate (**QB**) 436 436 437 -Ex: #5 LED3<cr>447 +Ex: #5QB<cr> might return *5QB9600<cr> 438 438 439 - This actionsetstheservo'sRGBLED colorforthatsession.TheLEDcan be usedforaesthetics,or(basedonusercode)toprovide visualstatus updates.Usingtiming cancreatepatterns.449 +Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect. 440 440 441 - 0=OFF1=RED2=GREEN3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE451 +Configure Baud Rate (**CB**) 442 442 443 - QueryLEDColor(**QLED**)453 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET. 444 444 445 -Ex: #5 QLED<cr>might return *5QLED5<cr>455 +Ex: #5CB9600<cr> 446 446 447 - Thissimplequeryreturnstheindicated servo'sLEDcolor.457 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 448 448 449 -Co nfigureLED Color(**CLED**)459 +====== __18. {//Coming soon//}__ ====== 450 450 451 -Co nfiguring the LED color via the CLED commandsets the startupcolor of the servo after a reset or power cycle. Note thatit also changesthesession's LED color immediately as well.461 +Command coming soon.... 452 452 453 -====== __1 6b.Configure LED Blinking (**CLB**)__ ======463 +====== __19. First Position (Degrees) (**FD**)__ ====== 454 454 455 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 456 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 465 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 457 457 458 - To set blinking,useCLB withthe valueof your choosing. To activate blinkinginmultiplestatus, simply add togetherthevaluesof the corresponding status. See examples below:467 +Query First Position in Degrees (**QFD**) 459 459 460 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 461 -Ex: #5CLB1<cr> only blink when limp 462 -Ex: #5CLB2<cr> only blink when holding 463 -Ex: #5CLB12<cr> only blink when accel or decel 464 -Ex: #5CLB48<cr> only blink when free or travel 465 -Ex: #5CLB63<cr> blink in all status 469 +Ex: #5QFD<cr> might return *5QFD64<cr> 466 466 467 - ======__17.IdentificationNumber__======471 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. 468 468 469 - A servo's identification number cannot be set "on the fly" and must be configuredvia the CID command described below. The factory default ID number for allservos is 0. Since smartservosareintended to be daisy chained, inorder to responddifferentlyfrom one another, the user must set different identification numbers. Servos with the same IDand baud ratewill allreceive and react to thesamecommands.473 +Configure First Position in Degrees (**CFD**) 470 470 471 - QueryIdentification (**QID**)475 +Ex: #5CD64<cr> 472 472 473 - EX:#254QID<cr>might return*QID5<cr>477 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. 474 474 475 - Whenusingthe queryID command, it is best to onlyhave one servo connected and thusreceive only one reply usingthe broadcast command(ID 254).Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.479 +====== __20. Query Model String (**QMS**)__ ====== 476 476 477 - ConfigureID (**CID**)481 +Ex: #5QMS<cr> might return *5QMSLSS-HS1cr> 478 478 479 - Ex:#4CID5<cr>483 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 480 480 481 - Settinga servo's ID in EEPROM is done via the CID command.All servos connected to the same serial bus will beassigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individuallyto theserialbus and receive a unique CID number.It is best to do this before the servos are added to an assembly.Numberedstickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.485 +====== __21. Query Serial Number (**QN**)__ ====== 482 482 483 - ======__18.Baud Rate__======487 +Ex: #5QN<cr> might return *5QN12345678<cr> 484 484 485 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 486 -\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. 489 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user. 487 487 488 -Query Baud Rate (**QB**)491 +====== __22. Query Firmware (**QF**)__ ====== 489 489 490 -Ex: #5Q B<cr> might return *5QB9600<cr>493 +Ex: #5QF<cr> might return *5QF411<cr> 491 491 492 - Queryingthebaudrateis used simply toconfirmtheCB configuration command beforetheservo is powercycled.495 +The number in the reply represents the firmware version, in this example being 411. 493 493 494 - ConfigureBaudRate(**CB**)497 +====== __23. Query Status (**Q**)__ ====== 495 495 496 - ImportantNote:the servo's currentsession retains theivenbaudrateand thenewbaudratewillonlybeinplacewhen theservoispower cycled.499 +The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses. 497 497 498 -Ex: #5 CB9600<cr>501 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 499 499 500 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 503 +|***Value returned (Q)**|**Status**|**Detailed description** 504 +|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 505 +|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 506 +|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely 507 +|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 508 +|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 509 +|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 510 +|ex: *5Q6<cr>|6: Holding|Keeping current position 511 +|ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 512 +|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 513 +|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 514 +|ex: *5Q10<cr>|10: Safe Mode|((( 515 +A safety limit has been exceeded (temperature, peak current or extended high current draw). 501 501 502 -====== __19. Gyre Rotation Direction__ ====== 517 +Send a Q1 command to know which limit has been reached (described below). 518 +))) 503 503 504 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 520 +(% class="wikigeneratedid" %) 521 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 505 505 506 -{images showing before and after with AR and Origin offset} 523 +|***Value returned (Q1)**|**Status**|**Detailed description** 524 +|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 525 +|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 526 +|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 527 +|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 507 507 508 -Query GyreDirection(**QG**)529 +====== __24. Query Voltage (**QV**)__ ====== 509 509 510 -Ex: #5Q G<cr> might return *5QG-1<cr>531 +Ex: #5QV<cr> might return *5QV11200<cr> 511 511 512 -The value returned abovemeans the servo is in acounter-clockwisegyration.533 +The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 513 513 514 - ConfigureGyre (**CG**)535 +====== __25. Query Temperature (**QT**)__ ====== 515 515 516 -Ex: #5 CG-1<cr>537 +Ex: #5QT<cr> might return *5QT564<cr> 517 517 518 -This changesthe gyredirection asdescribedaboveandalsowrites toEEPROM.539 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 519 519 520 -====== __2 0.First/ InitialPosition(pulse)__ ======541 +====== __26. Query Current (**QC**)__ ====== 521 521 522 - Incertaincases, a usermightwant to have the servo moveo a specific angleupon powerup. We refer to this as "first position".The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.543 +Ex: #5QC<cr> might return *5QC140<cr> 523 523 524 - QueryFirstPositioninPulses(**QFP**)545 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 525 525 526 - Ex:#5QFP<cr>might return*5QFP1550<cr>547 +====== __27. Configure RC Mode (**CRC**)__ ====== 527 527 528 -Th ereply above indicates thatservowithID5has a firstpositionpulseof1550 microseconds.If nofirstpositionhasbeenset, servo will respondwithDIS("disabled").549 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 529 529 530 -Configure First Position in Pulses (**CFP**) 551 +|**Command sent**|**Note** 552 +|ex: #5CRC1<cr>|Change to RC position mode. 553 +|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 554 +|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode. 531 531 532 -E x: #5CP1550<cr>556 +EX: #5CRC2<cr> 533 533 534 -This co nfiguration commandmeansthe servo,whenset toRCmode,will immediatelymove toanangleequivalentto havingreceivedanRCpulse of1550microsecondsupon powerup. SendingaCFPcommand withouta numberresultsinthe servo remaininglimpupon powerup (i.e.disabled).558 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command. 535 535 536 - ======__21.First/InitialPosition (Degrees)__======560 +Important note:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:Lynxmotion Smart Servo (LSS).LSS - Button Menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe. 537 537 538 - Incertain cases, a user might want to have the servo move to a specific angle upon power up.We refer to this as "first position". The factory default has no first position value stored inEEPROMand therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.562 +====== __28. **RESET**__ ====== 539 539 540 - QueryFirstPosition in Degrees(**QFD**)564 +Ex: #5RESET<cr> or #5RS<cr> 541 541 542 - Ex:#5QFD<cr>might return*5QFD64<cr>566 +This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 543 543 544 - Thereplyaboveindicates that servo withID5 has a first position pulse of 1550 microseconds.568 +====== __29. **DEFAULT** & CONFIRM__ ====== 545 545 546 - ConfigureFirst Position inDegrees (**CFD**)570 +Ex: #5DEFAULT<cr> 547 547 548 - Ex:#5CD64<cr>572 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 549 549 550 - Thisconfigurationcommand means the servo, when set to smart mode, willimmediately move to 6.4 degrees upon power up. SendingaCFDcommand without a numberresults in the servo remaining limp upon power up.574 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 551 551 552 - ======__22.QueryTargetPosition inDegrees(**QDT**)__======576 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command. 553 553 554 - Ex:#5QDT<cr>mightreturn*5QDT6783<cr>578 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 555 555 556 - Thequery target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3degrees.Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex:*5QDT<cr>).580 +====== __30. **UPDATE** & CONFIRM__ ====== 557 557 558 - ======__23. Query Model String (**QMS**)__ ======582 +Ex: #5UPDATE<cr> 559 559 560 - Ex:#5QMS<cr>might return*5QMSLSS-HS1cr>584 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. 561 561 562 - Thisreplymeans the servomodel is LSS-HS1, meaning a high speedservo,first revision.586 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr> 563 563 564 - ======__23b.Query Model(**QM**)__======588 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 565 565 566 - Ex:#5QM<cr>mightreturn*5QM68702699520cr>590 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 567 567 568 - Thisreply means the servo model is 0xFFF000000 or 100, meaning a high speedservo, first revision.592 += Advanced = 569 569 570 - ======__24.QuerySerialNumber(**QN**)__======594 +The motion controller used in serial mode is not the same as the motion controller use in RC mode. RC mode is intended to add functionality to what would be considered "normal" RC behavior based on PWM input. 571 571 572 - Ex:#5QN<cr>might return *5QN~_~_<cr>596 +====== __A1. Angular Stiffness (**AS**)__ ====== 573 573 574 -The number intheresponseis theservo'sserialnumber whichisset and cannotbe changed.598 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units. 575 575 576 - ======__25. QueryFirmware(**QF**)__ ======600 +A positive value of "angular stiffness": 577 577 578 -Ex: #5QF<cr> might return *5QF11<cr> 602 +* The more torque will be applied to try to keep the desired position against external input / changes 603 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 579 579 580 - Theinteger inthereply representsthefirmware version withonedecimal, in this example being 1.1605 +A negative value on the other hand: 581 581 582 -====== __26. Query Status (**Q**)__ ====== 607 +* Causes a slower acceleration to the travel speed, and a slower deceleration 608 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back 583 583 584 - Ex:#5Q<cr>might return*5Q6<cr>,whichicates thetorisholdingaposition.610 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 585 585 586 -|*Value returned|**Status**|**Detailed description** 587 -|ex: *5Q0<cr>|Unknown|LSS is unsure 588 -|ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely 589 -|ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 590 -|ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed 591 -|ex: *5Q4<cr>|Traveling|Moving at a stable speed 592 -|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position. 593 -|ex: *5Q6<cr>|Holding|Keeping current position 594 -|ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque 595 -|ex: *5Q8<cr>|Outside limits|{More details coming soon} 596 -|ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 597 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 612 +Ex: #5AS-2<cr> 598 598 599 - ======__27.QueryVoltage(**QV**)__======614 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 600 600 601 -Ex: #5Q V<cr>might return *5QV11200<cr>616 +Ex: #5QAS<cr> 602 602 603 - The numberreturned hasone decimal, so inthecaseabove, servo with ID 5 has aninput voltageof 11.2V (perhapsa three cell LiPo battery).618 +Queries the value being used. 604 604 605 - ======__28. Query Temperature (**QT**)__ ======620 +Ex: #5CAS<cr> 606 606 607 - Ex: #5QT<cr> might return*5QT564<cr>622 +Writes the desired angular stiffness value to memory. 608 608 609 - Theunitsare intenths of degrees Celcius, so in the exampleabove, the servo'sinternaltemperatureis 56.4 degrees C. To convert from degreesCelciustodegrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C=133.52F.624 +====== __A2. Angular Holding Stiffness (**AH**)__ ====== 610 610 611 - ======__29.QueryCurrent(**QC**)__======626 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when considering altering a stiffness value, the end effect depends on the mode being tested. 612 612 613 -Ex: #5 QC<cr>might return *5QC140<cr>628 +Ex: #5AH3<cr> 614 614 615 -Th e unitsare inmilliamps,sointheexampleabove,theservo isconsuming 140mA,or 0.14A.630 +This sets the holding stiffness for servo #5 to 3 for that session. 616 616 617 - ======__30.RC Mode (**CRC**)__ ======632 +Query Angular Hold Stiffness (**QAH**) 618 618 619 - Thiscommand puts the servointo RCmode (position or continuous), where itwill onlyrespondto RC pulses. Note that because this is the case, the servo willnolonger accept serial commands. The servo can be placed back into smart mode by using the button menu.634 +Ex: #5QAH<cr> might return *5QAH3<cr> 620 620 621 -|**Command sent**|**Note** 622 -|ex: #5CRC<cr>|Stay in smart mode. 623 -|ex: #5CRC1<cr>|Change to RC position mode. 624 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 625 -|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode. 636 +This returns the servo's angular holding stiffness value. 626 626 627 - EX: #5CRC<cr>638 +Configure Angular Hold Stiffness (**CAH**) 628 628 629 - ====== __31. RESET__======640 +Ex: #5CAH2<cr> 630 630 631 - Ex: #5RESET<cr>or #5RS<cr>642 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. Note that when considering altering a stiffness value, the end effect depends on the mode being tested. 632 632 633 - Thiscommanddoesa"softreset"(no powercyclerequired) and reverts all commands to thosestored in EEPROM (i.e. configurationcommands).644 +====== __A3: Angular Acceleration (**AA**)__ ====== 634 634 635 - ======__32.DEFAULT &CONFIRM__======646 +The default value for angular acceleration is 100, which is the same as the maximum deceleration. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 636 636 637 -Ex: #5 DEFAULT<cr>648 +Ex: #5AA30<cr> 638 638 639 - This command sets in motion the reset all values to the default values included with the versionof the firmware installed on that servo. Theservo then waits for the CONFIRM command.Any othercommand received will causethe servoto exit the DEFAULT function.650 +Query Angular Acceleration (**QAD**) 640 640 641 -E X: #5DEFAULT<cr>followedby #5CONFIRM<cr>652 +Ex: #5QA<cr> might return *5QA30<cr> 642 642 643 - Since it it not commonto have to restore all configurations, a confirmation command is neededafter a firmware command is sent. Shouldany command otherthan CONFIRM be received by the servo after the firmwarecommand has been received, it will leave the firmware action.654 +Configure Angular Acceleration (**CAD**) 644 644 645 - Notethat after theCONFIRMcommand is sent, the servo will automatically perform a RESET.656 +Ex: #5CA30<cr> 646 646 647 -====== __ 33.UPDATE &CONFIRM__ ======658 +====== __A4: Angular Deceleration (**AD**)__ ====== 648 648 649 - Ex:#5UPDATE<cr>660 +The default value for angular deceleration is 100, which is the same as the maximum acceleration. Values between 1 and 15 have the greatest impact. 650 650 651 - This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exitthe UPDATE function.662 +Ex: #5AD8<cr> 652 652 653 - EX:#5UPDATE<cr>followed by #5CONFIRM<cr>664 +Query Angular Deceleration (**QAD**) 654 654 655 - Sinceit it notcommon to have to update firmware,a confirmation command is needed after an UPDATE command is sent. Should any command otherthan CONFIRM bereceived bythe servo after the firmware commandhas been received, it will leave the firmware action.666 +Ex: #5QD<cr> might return *5QD8<cr> 656 656 657 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 668 +Configure Angular Deceleration (**CAD**) 669 + 670 +Ex: #5CD8<cr> 671 + 672 +====== __A5: Motion Control (**EM**)__ ====== 673 + 674 +{More details to come} 675 + 676 +====== __A6. Configure LED Blinking (**CLB**)__ ====== 677 + 678 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value: 679 + 680 +(% style="width:195px" %) 681 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 682 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 683 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1 684 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2 685 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 686 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 687 +|(% style="width:134px" %)Free|(% style="width:58px" %)16 688 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 689 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63 690 + 691 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 692 + 693 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 694 +Ex: #5CLB1<cr> only blink when limp (1) 695 +Ex: #5CLB2<cr> only blink when holding (2) 696 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12) 697 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48) 698 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32) 699 + 700 +RESETTING the servo is needed.