Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (4 modified, 0 added, 0 removed)
-
Attachments (0 modified, 2 added, 0 removed)
-
Objects (0 modified, 1 added, 3 removed)
Details
- Page properties
-
- Title
-
... ... @@ -1,1 +1,1 @@ 1 -LSS -Communication Protocol1 +LSS Communication Protocol - Parent
-
... ... @@ -1,1 +1,1 @@ 1 - LynxmotionSmartServo(LSS).WebHome1 +ses-v2.lynxmotion-smart-servo.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -xwiki:XWiki. CBenson1 +xwiki:XWiki.ENantel - Content
-
... ... @@ -1,112 +1,132 @@ 1 1 (% class="wikigeneratedid" id="HTableofContents" %) 2 -** TableofContents**2 +**Page Contents** 3 3 4 4 {{toc depth="3"/}} 5 5 6 -= Serial Protocol Concept=6 += Serial Protocol = 7 7 8 -The customLynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 RC servo controller and almost everything one might expect to be able to configure for a smart servo8 +The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available. 9 9 10 -In order to haveservosreactdifferently whencommandsare sent to all servos in a serial bus, the first stepa user shouldtakeisto assign a different ID number to each servo (explainedbelow).Oncethishasbeendone,only the servo(s) which have beenassigned tothe IDsentas part ofthecommandwillfollowthatcommand. There is currently no CRC/checksum implemented as part of10 +In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>path:#HIdentificationNumber28ID29]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol. 11 11 12 +|(% colspan="2" %)((( 12 12 == Session == 13 - 14 +))) 15 +|(% style="width:25px" %) |((( 14 14 A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 15 15 16 - ==ActionCommands==18 +**Note 1:** For a given session, the action related to a specific command overrides the stored value in EEPROM. 17 17 18 - Action commandstellthe servo, withinthat session, to do something(i.e. "take an action"). Thetypesof actioncommandswhich can bentare described below, and theycannot becombined withother commandssuchas queries orconfigurations. Onlyone actioncommandcan besentat a time. Action commandsare session-specific, thereforeoncea servo is power cycled, it willnot have any "memory" of previous actions or virtualpositions(described below onthis page). Action commands aresentserially to the servo's Rx pin and must be sent in the following format:20 +**Note 2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s). 19 19 20 -1. Start with a number sign # (U+0023) 21 -1. Servo ID number as an integer 22 -1. Action command (one to three letters, no spaces, capital or lower case) 23 -1. Action value in the correct units with no decimal 24 -1. End with a control / carriage return '<cr>' 22 +**Note 3:** You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r described below). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays. 23 +))) 25 25 26 -((( 27 -Ex: #5PD1443<cr> 25 +|(% colspan="2" %)((( 26 +== Action Commands == 27 +))) 28 +|(% style="width:25px" %) |((( 29 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HVirtualAngularPosition]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format: 28 28 29 -This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 31 +1. Start with a number sign **#** (Unicode Character: U+0023) 32 +1. Servo ID number as an integer (assigning an ID described below) 33 +1. Action command (one or more letters, no whitespace, capital or lowercase from the list below) 34 +1. Action value in the correct units with no decimal 35 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 30 30 31 - ==Action Modifiers ==37 +Ex: #5D1800<cr> 32 32 33 -Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is: 39 +This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 40 +))) 34 34 35 -1. Start with a number sign # (U+0023) 42 +|(% colspan="2" %)((( 43 +== Modifiers == 44 +))) 45 +|(% style="width:25px" %) |((( 46 +Modifiers can only be used with certain **action commands**. The format to include a modifier is: 47 + 48 +1. Start with a number sign **#** (Unicode Character: U+0023) 36 36 1. Servo ID number as an integer 37 -1. Action command (one to three letters, no spaces, capital or lower case) 50 +1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below) 38 38 1. Action value in the correct units with no decimal 39 -1. Modifier command (one letter) 52 +1. Modifier command (one or two letters from the list of modifiers below) 40 40 1. Modifier value in the correct units with no decimal 41 -1. End with a c ontrol / carriage return'<cr>'54 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 42 42 43 -Ex: #5 P1456T1263<cr>56 +Ex: #5D1800T1500<cr> 44 44 45 -This results in the servo with ID #5 rotating fromthe currentangularpositiontoapulseposition("P")456in a time ("T") of 1263milliseconds.58 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds). 46 46 ))) 47 47 48 -== Configuration Commands == 49 - 50 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 51 - 52 -1. Start with a number sign # (U+0023) 53 -1. Servo ID number as an integer 54 -1. Configuration command (two to three letters, no spaces, capital or lower case) 55 -1. Configuration value in the correct units with no decimal 56 -1. End with a control / carriage return '<cr>' 57 - 58 -Ex: #5CO-50<cr> 59 - 60 -This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below. 61 - 61 +|(% colspan="2" %)((( 62 62 == Query Commands == 63 - 63 +))) 64 +|(% style="width:25px" %) |((( 64 64 Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format: 65 65 66 -1. Start with a number sign 67 +1. Start with a number sign **#** (Unicode Character: U+0023) 67 67 1. Servo ID number as an integer 68 -1. Query command (one to threeletters, no spaces, capital or lower case)69 -1. End with a c ontrol / carriage return'<cr>'69 +1. Query command (one to four letters, no spaces, capital or lower case) 70 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 70 70 71 -((( 72 -Ex: #5QD<cr>Query position in degrees for servo #5 73 -))) 72 +Ex: #5QD<cr> Query the position in (tenth of) degrees for servo with ID #5 74 74 75 -((( 76 76 The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format: 77 77 78 -1. Start with an asterisk * (U+002 A)76 +1. Start with an asterisk * (Unicode Character: U+0023) 79 79 1. Servo ID number as an integer 80 -1. Query command (one to threeletters, no spaces, capital letters)78 +1. Query command (one to four letters, no spaces, capital letters) 81 81 1. The reported value in the units described, no decimals. 82 -1. End with a c ontrol / carriage return'<cr>'80 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 83 83 84 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be: 82 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be: 85 85 86 -((( 87 -Ex: *5QD1443<cr> 84 +Ex: *5QD1800<cr> 85 + 86 +This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees). 88 88 ))) 89 89 90 -This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees). 89 +|(% colspan="2" %)((( 90 +== Configuration Commands == 91 +))) 92 +|(% style="width:25px" %) |((( 93 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. 91 91 95 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-radio-control-pwm/]]. Configuration commands are not cumulative. This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored. 96 + 97 +The format to send a configuration command is identical to that of an action command: 98 + 99 +1. Start with a number sign **#** (Unicode Character: U+0023) 100 +1. Servo ID number as an integer 101 +1. Configuration command (two to four letters, no spaces, capital or lower case) 102 +1. Configuration value in the correct units with no decimal 103 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 104 + 105 +Ex: #5CO-50<cr> 106 + 107 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below). 108 + 92 92 **Session vs Configuration Query** 93 93 94 -By default, the query command returns the session s'111 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: 95 95 96 -Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory. 113 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory. 97 97 98 98 After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore: 99 99 100 -#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas 117 +#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas 101 101 102 102 #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 120 +))) 103 103 122 +|(% colspan="2" %)((( 104 104 == Virtual Angular Position == 124 +))) 125 +|(% style="width:25px" %) |((( 126 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset). 105 105 106 - The abilitytostore a "virtualangular position"is afeaturewhich allows for rotationbeyond360 degrees, permittingmultiple rotationsof the output horn,movingthecenterposition andmore. Invirtual positionmode, the "absoluteposition" would be the angle of the output shaft with respect toa 360.0 degree circle, and canbeobtained by taking themodulus (with respect to 360 degrees) of thevalue. For example if the virtual positionisreported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935=15335) astheabsoluteposition(assuming no origin offset).128 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]] 107 107 108 -[[image:LSS-servo-positions.jpg]] 109 - 110 110 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 111 111 112 112 #1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow) ... ... @@ -113,208 +113,275 @@ 113 113 114 114 #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow) 115 115 116 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees. 136 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees. 117 117 118 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 138 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 119 119 120 -#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 140 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 121 121 122 122 #1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow). 123 123 124 -If / oncethe servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified).144 +If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°]. 125 125 ))) 126 126 127 127 = Command List = 128 128 129 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 130 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 131 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 132 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %) 133 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 134 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 135 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 136 -0 137 -))) 138 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 139 -1800 140 -))) 141 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(% style="width:510px" %)((( 142 -Inherited from SSC-32 serial protocol 143 -)))|(% style="text-align:center; width:113px" %) 144 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 145 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 146 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 147 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)((( 148 -QSD: Add modifier "2" for instantaneous speed. 149 +**Latest firmware version currently : 370** 149 149 150 -SD overwrites SR / CSD overwrites CSR and vice-versa. 151 -)))|(% style="text-align:center; width:113px" %)Max per servo 152 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 153 -QSR: Add modifier "2" for instantaneous speed 151 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Communication Setup**>>path:#HCommunicationSetup]] 152 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 153 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Reset**>>path:#HReset]]|RESET| | | |✓| | |Soft reset. See command for details. 154 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Default** Configuration>>path:#HDefault26confirm]]|DEFAULT| | | |✓| | |Revert to firmware default values. See command for details 155 +| |[[Firmware (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Update** Mode>>path:#HUpdate26confirm]]|UPDATE| | | |✓| | |Update firmware. See command for details. 156 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Confirm** Changes>>path:#HConfirm]]|CONFIRM| | | |✓| | | 157 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**hange to **RC**>>path:#HConfigureRCMode28CRC29]]| | |CRC| |✓| | |Change to RC mode 1 (position) or 2 (wheel). 158 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**ID** #>>path:#HIdentificationNumber28ID29]]| |QID|CID| |✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 159 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**B**audrate>>path:#HBaudRate]]| |QB|CB| |✓|115200| |Reset required after change. 154 154 155 -SR overwrites SD / CSR overwrites CSD and vice-versa. 156 -)))|(% style="text-align:center; width:113px" %)Max per servo 157 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7 158 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0 159 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600 160 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 161 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)((( 162 -Limp 163 -))) 164 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 165 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 166 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 167 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 168 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 169 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 170 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 171 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 172 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 173 -| 30a|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1| | ✓|none|(% style="width:510px" %)((( 174 -Puts the servo into RC mode. To revert to smart mode, use the button menu. 175 -)))|(% style="text-align:center; width:113px" %)Serial 176 -| 30b|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2| | ✓| |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 177 -| 31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 178 -| 32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 179 -| 33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 161 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion**>>path:#HMotion]] 162 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 163 +| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**D**egrees>>path:#HPositioninDegrees28D29]]|D|QD/QDT| | |✓| |1/10°| 164 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in **D**egrees (relative)>>path:#H28Relative29MoveinDegrees28MD29]]|MD| | | |✓| |1/10°| 165 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **D**egrees>>path:#HWheelModeinDegrees28WD29]]|WD|QWD/QVT| | |✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation" 166 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **R**PM>>path:#HWheelModeinRPM28WR29]]|WR|QWR| | |✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation" 167 +| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**P**WM>>path:#HPositioninPWM28P29]]|P|QP| | |✓| |us|Inherited from SSC-32 serial protocol 168 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in PWM (relative)>>path:#H28Relative29MoveinPWM28M29]]|M| | | |✓| |us| 169 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**R**aw **D**uty-cycle **M**ove>>path:#HRawDuty-cycleMove28RDM29]]|RDM|QMD| | |✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW 170 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery Status>>path:#HQueryStatus28Q29]]| |Q| | |✓| |1 to 8 integer|See command description for details 171 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**L**imp>>path:#HLimp28L29]]|L| | | |✓| | | 172 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**H**alt & Hold>>path:#HHalt26Hold28H29]]|H| | | |✓| | | 180 180 181 -== Advanced == 174 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion Setup**>>path:#HMotionSetup]] 175 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 176 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**E**nable **M**otion Profile>>path:#HEnableMotionProfile28EM29]]|EM|QEM|CEM| |✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile 177 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**ilter **P**osition **C**ount>>path:#HFilterPositionCount28FPC29]]|FPC|QFPC|CFPC|✓|✓|5| |Affects motion only when motion profile is disabled (EM0) 178 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**O**rigin Offset>>path:#HOriginOffset28O29]]|O|QO|CO|✓|✓|0|1/10°| 179 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **R**ange>>path:#HAngularRange28AR29]]|AR|QAR|CAR|✓|✓|1800|1/10°| 180 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **S**tiffness>>path:#HAngularStiffness28AS29]]|AS|QAS|CAS|✓|✓|0|-4 to +4 integer|Suggested values are between 0 to +4 181 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **H**olding Stiffness>>path:#HAngularHoldingStiffness28AH29]]|AH|QAH|CAH|✓|✓|4|-10 to +10 integer| 182 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **A**cceleration>>path:#HAngularAcceleration28AA29]]|AA|QAA|CAA| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 183 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **D**eceleration>>path:#HAngularDeceleration28AD29]]|AD|QAD|CAD| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 184 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**G**yre Direction>>path:#HGyreDirection28G29]]|G|QG|CG|✓|✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 185 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**irst Position (**D**eg)>>path:#HFirstPosition]]| |QFD|CFD|✓|✓|No value|1/10°|Reset required after change. 186 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**aximum **M**otor **D**uty>>path:#HMaximumMotorDuty28MMD29]]|MMD|QMMD| | |✓|1023|255 to 1023 integer| 187 +| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HMaximumSpeedinDegrees28SD29]]|SD|QSD|CSD|✓|✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 188 +| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **R**PM>>path:#HMaximumSpeedinRPM28SR29]]|SR|QSR|CSR|✓|✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 182 182 183 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 184 -| 1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0 185 -| 2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1 186 -| 3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 187 -| 4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 188 -| 5|[[**E**nable **M**otion Control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %) 189 -| 6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center; width:113px" %) 190 -| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 190 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Modifiers**>>path:#HModifiers]] 191 +| |**Description**|**Modifier**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 192 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed>>path:#HSpeed28S2CSD29modifier]]|S|QS| | |✓| |uS/s |For P action command 193 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HSpeed28S2CSD29modifier]]|SD| | | |✓| |0.1°/s|For D and MD action commands 194 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**T**imed move>>path:#HTimedmove28T29modifier]]|T| | | |✓| |ms|Modifier only for P, D and MD. Time can change based on load 195 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **H**old>>path:#HCurrentHalt26Hold28CH29modifier]]|CH| | | |✓| |mA|Modifier for D, MD, WD and WR 196 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **L**imp>>path:#HCurrentLimp28CL29modifier]]|CL| | | |✓| |mA|Modifier for D, MD, WD and WR 191 191 192 -== Details == 198 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Telemetry**>>path:#HTelemetry]] 199 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 200 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **V**oltage>>path:#HQueryVoltage28QV29]]| |QV| | |✓| |mV| 201 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **T**emperature>>path:#HQueryTemperature28QT29]]| |QT| | |✓| |1/10°C| 202 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **C**urrent>>path:#HQueryCurrent28QC29]]| |QC| | |✓| |mA| 203 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **M**odel **S**tring>>path:#HQueryModelString28QMS29]]| |QMS| | |✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1) 204 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **F**irmware Version>>path:#HQueryFirmware28QF29]]| |QF| | |✓| | | 193 193 194 -====== __1. Limp (**L**)__ ====== 206 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**RGB LED**>>path:#HRGBLED]] 207 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes** 208 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**LED** Color>>path:#HLEDColor28LED29]]|LED|QLED|CLED|✓|✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White 209 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**onfigure **L**ED **B**linking>>path:#HConfigureLEDBlinking28CLB29]]| | |CLB|✓|✓| |0 to 63 integer|Reset required after change. See command for details. 195 195 196 - Example:#5L<cr>211 += Details = 197 197 198 - Thisaction causes the servo to go "limp". Themicrocontroller will still be powered, but the motor willnot. As an emergency safety feature, should the robotnotbedoing whatit is supposedto or risks damage, use the broadcast ID to set all servos limp #254L<cr>.213 +== Communication Setup == 199 199 200 -====== __2. Halt & Hold (**H**)__ ====== 215 +|(% colspan="2" %)((( 216 +====== Reset ====== 217 +))) 218 +|(% style="width:30px" %) |((( 219 +Ex: #5RESET<cr> 201 201 202 -Example: #5H<cr> 221 +This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HSession]], note #2 for more details. 222 +))) 203 203 204 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position. 224 +|(% colspan="2" %)((( 225 +====== Default & confirm ====== 226 +))) 227 +|(% style="width:30px" %) |((( 228 +Ex: #5DEFAULT<cr> 205 205 206 - ======__3.Timed move(**T**)__======230 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 207 207 208 -Ex ample: #5P1500T2500<cr>232 +Ex: #5DEFAULT<cr> followed by #5CONFIRM<cr> 209 209 210 - Timedmovecanbeusedonlyas amodifierforaposition(P)action. The units areinmilliseconds,soa timedmoveof2500millisecondswould causetheservoto rotatefromitscurrent positiontothedesiredpositionin 2.5 seconds.Thiscommandisin placetoensurebackwardscompatibilitywiththeSSC-32 / 32U protocol.234 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command. 211 211 212 -Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 236 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET. 237 +))) 213 213 214 -====== __4. Speed (**S**)__ ====== 239 +|(% colspan="2" %)((( 240 +====== Update & confirm ====== 241 +))) 242 +|(% style="width:30px" %) |((( 243 +Ex: #5UPDATE<cr> 215 215 216 - Example:#5P1500S750<cr>245 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. 217 217 218 - Thiscommand is a modifier only for a position (P) action and determines the speed of the move in microseconds per second.Aspeed of 750 microsecondswould cause the servo to rotatefrom its current position to the desired position at a speed of 750 microseconds per second. This command is in place toensure backwardscompatibilitywith the SSC-32 / 32U protocol.247 +Ex: #5UPDATE<cr> followed by #5CONFIRM<cr> 219 219 220 - ======__5.(Relative)Move inDegrees(**MD**)__======249 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 221 221 222 -Example: #5MD123<cr> 251 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET. 252 +))) 223 223 224 -The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 254 +|(% colspan="2" %)((( 255 +====== Confirm ====== 256 +))) 257 +|(% style="width:30px" %) |((( 258 +Ex: #5CONFIRM<cr> 225 225 226 - ======__6.OriginOffsetAction(**O**)__======260 +This command is used to confirm changes after a Default or Update command. 227 227 228 -Example: #5O2400<cr> 262 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET. 263 +))) 229 229 230 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position. The setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. Note that for a given session, the O command overrides the CO command. In the first image, the origin at factory offset '0' (centered). 265 +|(% colspan="2" %)((( 266 +====== Configure RC Mode (**CRC**) ====== 267 +))) 268 +|(% style="width:30px" %) |((( 269 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 231 231 232 - [[image:LSS-servo-default.jpg]]271 +Ex: #5CRC1<cr> 233 233 234 - In the second image,theorigina,aswell ashe angular range (explained below) have beenshiftedby 240.0 degrees:273 +Change to RC position mode. 235 235 236 - [[image:LSS-servo-origin.jpg]]275 +Ex: #5CRC2<cr> 237 237 238 - OriginOffsetQuery(**QO**)277 +Change to RC continuous rotation (wheel) mode. 239 239 240 -Ex ample: #5QO<cr>Returns: *5QO-13279 +Ex: #5CRC*<cr> 241 241 242 - This allowsyouto querythe angle(intenthsof degrees)oftheorigininrelationto thefactoryzeroposition.281 +Where * is any value other than 1 or 2 (or no value): stay in smart mode 243 243 244 - ConfigureOrigin Offset (**CO**)283 +Ex: #5CRC2<cr> 245 245 246 -E xample:#5CO-24<cr>285 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command. 247 247 248 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. 287 +**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-button-menu/]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe. 288 +))) 249 249 250 -====== __7. Angular Range (**AR**)__ ====== 290 +|(% colspan="2" %)((( 291 +====== Identification Number (**ID**) ====== 292 +))) 293 +|(% style="width:30px" %) |((( 294 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 251 251 252 - Example:#5AR1800<cr>296 +Query Identification (**QID**) 253 253 254 - Thiscommandallows you to temporarily change thetotalangularrangeofthe servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for(P) andRC mode is 1800 (180.0 degrees total, or ±90.0 degrees).In the first image,298 +EX: #254QID<cr> might return *QID5<cr> 255 255 256 - [[image:LSS-servo-default.jpg]]300 +When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 257 257 258 - Here, the angularrangehasbeen restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.302 +Configure ID (**CID**) 259 259 260 - [[image:LSS-servo-ar.jpg]]304 +Ex: #4CID5<cr> 261 261 262 -The angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) an be used to move both the center and limit the angular range: 306 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect. 307 +))) 263 263 264 -[[image:LSS-servo-ar-o-1.jpg]] 309 +|(% colspan="2" %)((( 310 +====== Baud Rate ====== 311 +))) 312 +|(% style="width:30px" %) |((( 313 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200. 265 265 266 -Query AngularRange (**QAR**)315 +Query Baud Rate (**QB**) 267 267 268 -Ex ample: #5QAR<cr> might return *5AR2756317 +Ex: #5QB<cr> might return *5QB115200<cr>Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect. 269 269 270 -Configure AngularRange (**CAR**)319 +Configure Baud Rate (**CB**) 271 271 272 - This commandallows youto changetotalangularangeoftheservo in tenthsofdegreesinEEPROM. Thesettingwillbesavedupon servoreset/power cycle.321 +**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET. 273 273 274 - ======__8. Position in Pulse (**P**)__ ======323 +Ex: #5CB9600<cr> 275 275 276 -Example: #5P2334<cr> 325 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 326 +))) 277 277 278 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected to end points. 328 +|(% colspan="2" %)((( 329 +====== __Automatic Baud Rate__ ====== 330 +))) 331 +|(% style="width:30px" %) |((( 332 +This option allows the LSS to listen to it's serial input and select the right baudrate automatically. 279 279 280 -Query Positionin Pulse (**QP**)334 +Query Automatic Baud Rate (**QABR**) 281 281 282 -Ex ample: #5QP<cr> might return *5QP2334336 +Ex: #5QABR<cr> might return *5ABR0<cr> 283 283 284 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 285 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 338 +Enable Baud Rate (**ABR**) 286 286 287 - ======__9. Position in Degrees (**D**)__ ======340 +Ex: #5QABR1<cr> 288 288 289 -E xample:#5PD1456<cr>342 +Enable baudrate detection on first byte received after power-up. 290 290 291 - Thismoves the servo to anngleof 145.6degrees,wheretheenter (0) position iscentered. Negativevalues (ex. -176 representing -17.6 degrees)aresed.Afullcircle wouldbefrom-1800to1800degrees.A valueof 2700 wouldbehesameangleas -900, except the servowould move ina differentdirection.344 +Ex: #5QABR2,30<cr>Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte. 292 292 293 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position. 346 +Warning: ABR doesnt work well with LSS Config at the moment. 347 +))) 294 294 349 +== Motion == 350 + 351 +|(% colspan="2" %)((( 352 +====== __Position in Degrees (**D**)__ ====== 353 +))) 354 +|(% style="width:30px" %) |((( 355 +Ex: #5D1456<cr> 356 + 357 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. 358 + 359 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). 360 + 295 295 Query Position in Degrees (**QD**) 296 296 297 -Ex ample: #5QD<cr> might return *5QD132<cr>363 +Ex: #5QD<cr> might return *5QD132<cr> 298 298 299 -This means the servo is located at 13.2 365 +This means the servo is located at 13.2 degrees. 300 300 301 - ======__10. WheelModein Degrees (**WD**)__ ======367 +Query Target Position in Degrees (**QDT**) 302 302 303 -Ex: #5 WD900<cr>369 +Ex: #5QDT<cr> might return *5QDT6783<cr> 304 304 371 +The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 372 +))) 373 + 374 +|(% colspan="2" %)((( 375 +====== (Relative) Move in Degrees (**MD**) ====== 376 +))) 377 +|(% style="width:30px" %) |((( 378 +Ex: #5MD123<cr> 379 + 380 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 381 +))) 382 + 383 +|(% colspan="2" %)((( 384 +====== Wheel Mode in Degrees (**WD**) ====== 385 +))) 386 +|(% style="width:30px" %) |((( 387 +Ex: #5WD90<cr> 388 + 305 305 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). 306 306 307 307 Query Wheel Mode in Degrees (**QWD**) 308 308 309 -Ex: #5QWD<cr> might return *5QWD90 0<cr>393 +Ex: #5QWD<cr> might return *5QWD90<cr> 310 310 311 -The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 395 +The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 396 +))) 312 312 313 -====== __11. Wheel Mode in RPM (**WR**)__ ====== 314 - 398 +|(% colspan="2" %)((( 399 +====== Wheel Mode in RPM (**WR**) ====== 400 +))) 401 +|(% style="width:30px" %) |((( 315 315 Ex: #5WR40<cr> 316 316 317 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. 404 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). 318 318 319 319 Query Wheel Mode in RPM (**QWR**) 320 320 ... ... @@ -321,195 +321,321 @@ 321 321 Ex: #5QWR<cr> might return *5QWR40<cr> 322 322 323 323 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 411 +))) 324 324 325 -====== __12. Speed in Degrees (**SD**)__ ====== 413 +|(% colspan="2" %)((( 414 +====== Position in PWM (**P**) ====== 415 +))) 416 +|(% style="width:30px" %) |((( 417 +Ex: #5P2334<cr> 326 326 327 - Ex:#5SD1800<cr>419 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>url:https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points. 328 328 329 - This command sets the servo's maximum speed foraction commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly".The servo'smaximum speed cannotbe set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session.Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD andSR (described below) are effectively the same, but allow the userto specify the speed in either unit. The last command(either SR or SD)is what the servo uses for that session.421 +Query Position in Pulse (**QP**) 330 330 331 -Q uerySpeedin Degrees(**QSD**)423 +Ex: #5QP<cr> might return *5QP2334 332 332 333 -Ex: #5QSD<cr> might return *5QSD1800<cr> 425 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 426 +))) 334 334 335 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed. 336 -If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 428 +|(% colspan="2" %)((( 429 +====== __(Relative) Move in PWM (**M**)__ ====== 430 +))) 431 +|(% style="width:30px" %) |((( 432 +Ex: #5M1500<cr> 337 337 338 -|**Command sent**|**Returned value (1/10 °)** 339 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 340 -|ex: #5QSD1<cr>|Configured maximum speed (set by CSD/CSR) 341 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 342 -|ex: #5QSD3<cr>|Target travel speed 434 +The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 435 +))) 343 343 344 -Configure Speed in Degrees (**CSD**) 437 +|(% colspan="2" %)((( 438 +====== Raw Duty-cycle Move (**RDM**) ====== 439 +))) 440 +|(% style="width:30px" %) |((( 441 +Ex: #5RDM512<cr> 345 345 346 - Ex:#5CSD1800<cr>443 +The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor. 347 347 348 - Using theCSD commandsetsthe servo's maximum speed which issavedinEEPROM.Intheexample above,the servo's maximum speedwillbe seto 180.0 degreespersecond.When theservoispoweredon (oraftera reset), the CSD value is used. NotethatCSD and CSR (described below)are effectivelythe same, but allow theusertospecify the speedineitherunit. The lastcommand (eitherCSRor CSD)iswhat theservo uses for that session.445 +The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise). 349 349 350 - ======__13. SpeedinRPM(**SR**)__ ======447 +Query Move in Duty-cycle (**QMD**) 351 351 352 -Ex: #5 SD45<cr>449 +Ex: #5QMD<cr> might return *5QMD512 353 353 354 -This command sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session. 451 +This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 452 +))) 355 355 356 -Query Speed in Degrees (**QSR**) 454 +|(% colspan="2" %)((( 455 +====== Query Status (**Q**) ====== 456 +))) 457 +|(% style="width:30px" %) |((( 458 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below. 357 357 358 -Ex: #5Q SR<cr> might return *5QSR45<cr>460 +Ex: #5Q<cr> might return *5Q6<cr> 359 359 360 - By default QSRwill return thecurrent sessionvalue, which issetto thevalueof CSR as reset/powercycleand changedwheneveraSD/SR command isprocessed.361 - If #5QSR1<cr> is sent, the configured maximum speed (CSR value)will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:462 +which indicates the motor is holding a position. 463 +))) 362 362 363 -|**Command sent**|**Returned value (1/10 °)** 364 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 365 -|ex: #5QSR1<cr>|Configured maximum speed (set by CSD/CSR) 366 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 367 -|ex: #5QSR3<cr>|Target travel speed 465 +|(% style="width:30px" %) |***Value returned (Q)**|**Status**|**Detailed description** 466 +| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 467 +| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 468 +| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command 469 +| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 470 +| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 471 +| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 472 +| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding) 473 +| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 474 +| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 475 +| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 476 +| |ex: *5Q10<cr>|10: Safe Mode|((( 477 +A safety limit has been exceeded (temperature, peak current or extended high current draw). 368 368 369 -Configure Speed in RPM (**CSR**) 479 +Send a Q1 command to know which limit has been reached (described below). 480 +))) 370 370 371 -Ex: #5CSR45<cr> 482 +|(% style="width:30px" %) |(% colspan="3" rowspan="1" %)If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 483 +| |***Value returned (Q1)**|**Status**|**Detailed description** 484 +| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 485 +| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 486 +| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 487 +| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 372 372 373 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 489 +|(% colspan="2" %)((( 490 +====== Limp (**L**) ====== 491 +))) 492 +|(% style="width:30px" %) |((( 493 +Ex: #5L<cr> 374 374 375 -====== __14. Angular Stiffness (**AS**)__ ====== 495 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 496 +))) 376 376 377 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 498 +|(% colspan="2" %)((( 499 +====== Halt & Hold (**H**) ====== 500 +))) 501 +|(% style="width:30px" %) |((( 502 +Example: #5H<cr> 378 378 379 -A positive value of "angular stiffness": 504 +This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 505 +))) 380 380 381 -* The more torque will be applied to try to keep the desired position against external input / changes 382 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 507 +== Motion Setup == 383 383 384 -A negative value on the other hand: 509 +|(% colspan="2" %)((( 510 +====== Enable Motion Profile (**EM**) ====== 511 +))) 512 +|(% style="width:30px" %) |((( 513 +EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1. 385 385 386 -* Causes a slower acceleration to the travel speed, and a slower deceleration 387 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back 515 +Ex: #5EM1<cr> 388 388 389 -Th e default valueiszerotheeffectbecomesextreme by -4, +4. Therearenounits, onlyintegersbetween -4 to 4. Greater valuesproduceincreasinglyerratic behavior.517 +This command enables a trapezoidal motion profile for servo #5 390 390 391 -Ex: #5 AS-2<cr>519 +Ex: #5EM0<cr> 392 392 393 -This reduces theangularstiffness to-2forthat session,allowingservoto deviatemorearound thedesiredposition.This canbebeneficial inanysituationssuchasimpacts(leggedrobots)wheremoreofa"spring"effectis desired.Uponreset, the servowilluse thevaluestored in memory,basedonthe lastconfigurationcommand.521 +This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command). 394 394 395 - Ex: #5QAS<cr>523 +Query Motion Profile (**QEM**) 396 396 397 -Q ueriesthevaluebeingused.525 +Ex: #5QEM<cr> might return *5QEM1<cr> 398 398 399 - Ex:#5CAS<cr>527 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled. 400 400 401 - Writes the desired angularstiffness valuetomemory.529 +Configure Motion Profile (**CEM**) 402 402 403 - ======__15. AngularHold Stiffness (**AH**)__ ======531 +Ex: #5CEM0<cr> 404 404 405 -The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 533 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 534 +))) 406 406 407 -Ex: #5AH3<cr> 536 +|(% colspan="2" %)((( 537 +====== Filter Position Count (**FPC**) ====== 538 +))) 539 +|(% style="width:30px" %) |((( 540 +The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default. 408 408 409 - Thissets the holding stiffness for servo#5to 3 forthat session.542 +Ex: #5FPC10<cr> 410 410 411 - QueryAngularHold Stiffness(**QAH**)544 +This command allows the user to change the Filter Position Count value for that session. 412 412 413 - Ex: #5QAH<cr>mightreturn *5QAH3<cr>546 +Query Filter Position Count (**QFPC**) 414 414 415 - Thisreturnstheservo's angularholdingstiffness value.548 +Ex: #5QFPC<cr> might return *5QFPC10<cr> 416 416 417 - ConfigureAngularHold Stiffness(**CAH**)550 +This command will query the Filter Position Count value. 418 418 419 - Ex: #5CAH2<cr>552 +Configure Filter Position Count (**CFPC**) 420 420 421 - Thiswrites the angular holding stiffness of servo#5to 2 to EEPROM554 +Ex: #5CFPC10<cr> 422 422 423 -====== __15b: Angular Acceleration (**AA**)__ ====== 556 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 557 +))) 424 424 425 -{More details to come} 559 +|(% colspan="2" %)((( 560 +====== Origin Offset (**O**) ====== 561 +))) 562 +|(% style="width:30px" %) |((( 563 +Ex: #5O2400<cr> 426 426 427 - ======__15c:AngularDeceleration (**AD**)__ ======565 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 428 428 429 - {Moreails}567 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 430 430 431 - ======__15d:MotionControl (**EM**)__======569 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: 432 432 433 - {Moreails}571 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]] 434 434 435 - ======__16.RGBLED(**LED**)__ ======573 +Origin Offset Query (**QO**) 436 436 437 -Ex: #5 LED3<cr>575 +Ex: #5QO<cr> might return *5QO-13 438 438 439 -This a ctionsetstheservo'sRGBLEDcolorforthat session.TheLEDcanbeusedforaesthetics,or (basedon usercode)toprovidevisualstatusupdates.Using timingcan createpatterns.577 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero. 440 440 441 - 0=OFF1=RED 2=GREEN 3= BLUE 4=YELLOW5=CYAN 6= 7=MAGENTA, 8=WHITE579 +Configure Origin Offset (**CO**) 442 442 443 - Query LEDColor(**QLED**)581 +Ex: #5CO-24<cr> 444 444 445 -Ex: #5QLED<cr> might return *5QLED5<cr> 583 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 584 +))) 446 446 447 -This simple query returns the indicated servo's LED color. 586 +|(% colspan="2" %)Angular Range (**AR**)((( 587 +====== ====== 588 +))) 589 +|(% style="width:30px" %) |((( 590 +Ex: #5AR1800<cr> 448 448 449 - ConfigureLEDColor (**CLED**)592 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: 450 450 451 - Configuringthe LEDcolor viathe CLED commandsets the startup color of theservoafteraeset orpower cycle. Note that it alsohangesthe session's LEDcolor immediatelyaswell.594 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]] 452 452 453 - ======__16b.ConfigureLEDBlinking(**CLB**)__ ======596 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 454 454 455 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 456 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 598 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]] 457 457 458 - To set blinking,use CLB withthevalue of yourchoosing.Toactivateblinkingmultiplestatus, simplyaddtogetherthevalues ofthe correspondingstatus.Seeexamplesbelow:600 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range: 459 459 460 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 461 -Ex: #5CLB1<cr> only blink when limp 462 -Ex: #5CLB2<cr> only blink when holding 463 -Ex: #5CLB12<cr> only blink when accel or decel 464 -Ex: #5CLB48<cr> only blink when free or travel 465 -Ex: #5CLB63<cr> blink in all status 602 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]] 466 466 467 - ====== __17. IdentificationNumber__======604 +Query Angular Range (**QAR**) 468 468 469 - Aservo's identification numbercannot be set "on the fly" andmust be configured via theCID command described below. The factory default ID numberfor all servos is0.Since smartservos areintendedto be daisy chained,in ordertorespond differentlyfrom oneanother, theusermust set different identificationnumbers.Servos with thesameIDandbaud ratewill allreceive and react to thesame commands.606 +Ex: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees. 470 470 471 - Query Identification (**QID**)608 +Configure Angular Range (**CAR**) 472 472 473 -EX: #254QID<cr> might return *QID5<cr> 610 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 611 +))) 474 474 475 -When using the query ID command, it is best to only have one servo connected and thus receive only one reply using the broadcast command (ID 254). Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 613 +|(% colspan="2" %)((( 614 +====== Angular Stiffness (**AS**) ====== 615 +))) 616 +|(% style="width:30px" %) |((( 617 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units. 476 476 477 - ConfigureID(**CID**)619 +A higher value of "angular stiffness": 478 478 479 -Ex: #4CID5<cr> 621 +* The more torque will be applied to try to keep the desired position against external input / changes 622 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 480 480 481 - Setting a servo's ID in EEPROM is done via the CID command.Allservos connected to the same serialbus will be assigned that ID. In most situations each servo must be set a unique ID,which means each servomust be connected individually to the serial bus and receivea unique CID number. It is best todo this before the servos are added to anassembly. Numbered stickers are provided to distinguishachservoafter theirID is set, though youare free to use whatever alternative methodyou like.624 +A lower value on the other hand: 482 482 483 -====== __18. Baud Rate__ ====== 626 +* Causes a slower acceleration to the travel speed, and a slower deceleration 627 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back 484 484 485 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 486 -\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. 629 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 487 487 488 - QueryBaud Rate (**QB**)631 +Ex: #5AS-2<cr> 489 489 490 - Ex:#5QB<cr>might return*5QB9600<cr>633 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 491 491 492 - Queryingthe baud rate is used simply toconfirm the CB configuration command before the servo is power cycled.635 +Ex: #5QAS<cr> 493 493 494 - ConfigureBaudRate(**CB**)637 +Queries the value being used. 495 495 496 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled. 639 +Ex: #5CAS-2<cr>Writes the desired angular stiffness value to EEPROM. 640 +))) 497 497 498 -Ex: #5CB9600<cr> 642 +|(% colspan="2" %)((( 643 +====== Angular Holding Stiffness (**AH**) ====== 644 +))) 645 +|(% style="width:30px" %) |((( 646 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 499 499 500 - Sendingthis command will change the baud rate associated with servo ID5to 9600 bits per second.648 +Ex: #5AH3<cr> 501 501 502 - ======__19.GyreRotationDirection__ ======650 +This sets the holding stiffness for servo #5 to 3 for that session. 503 503 504 - "Gyre"is defined as a circularcourse or motion. The effect of changingthe gyre direction is as ifyou were to use a mirror image ofa circle. CW = 1; CCW = -1. The factory default isclockwise(CW).652 +Query Angular Holding Stiffness (**QAH**) 505 505 506 - {imagesshowingbeforeand afterwith AR andOrigin offset}654 +Ex: #5QAH<cr> might return *5QAH3<cr> 507 507 656 +This returns the servo's angular holding stiffness value. 657 + 658 +Configure Angular Holding Stiffness (**CAH**) 659 + 660 +Ex: #5CAH2<cr> 661 + 662 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 663 +))) 664 + 665 +|(% colspan="2" %)((( 666 +====== Angular Acceleration (**AA**) ====== 667 +))) 668 +|(% style="width:30px" %) |((( 669 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 670 + 671 +Ex: #5AA30<cr> 672 + 673 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 674 + 675 +Query Angular Acceleration (**QAA**) 676 + 677 +Ex: #5QAA<cr> might return *5QAA30<cr> 678 + 679 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^). 680 + 681 +Configure Angular Acceleration (**CAA**) 682 + 683 +Ex: #5CAA30<cr> 684 + 685 +This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 686 +))) 687 + 688 +|(% colspan="2" %)((( 689 +====== Angular Deceleration (**AD**) ====== 690 +))) 691 +|(% style="width:30px" %) |((( 692 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 693 + 694 +Ex: #5AD30<cr> 695 + 696 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^). 697 + 698 +Query Angular Deceleration (**QAD**) 699 + 700 +Ex: #5QAD<cr> might return *5QAD30<cr> 701 + 702 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^). 703 + 704 +Configure Angular Deceleration (**CAD**) 705 + 706 +Ex: #5CAD30<cr> 707 + 708 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 709 +))) 710 + 711 +|(% colspan="2" %)((( 712 +====== Gyre Direction (**G**) ====== 713 +))) 714 +|(% style="width:30px" %) |((( 715 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1. 716 + 717 +Ex: #5G-1<cr> 718 + 719 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 720 + 508 508 Query Gyre Direction (**QG**) 509 509 510 510 Ex: #5QG<cr> might return *5QG-1<cr> 511 511 512 -The value returned above means the servo is in a counter-clockwise gyration. 725 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM. 513 513 514 514 Configure Gyre (**CG**) 515 515 ... ... @@ -516,142 +516,272 @@ 516 516 Ex: #5CG-1<cr> 517 517 518 518 This changes the gyre direction as described above and also writes to EEPROM. 732 +))) 519 519 520 -====== __20. First / Initial Position (pulse)__ ====== 734 +|(% colspan="2" %)((( 735 +====== First Position ====== 736 +))) 737 +|(% style="width:30px" %) |((( 738 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. 521 521 522 - In certain cases, ausermight want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factorydefault has no firstposition value stored in EEPROM and therefore upon power up, theservo remains limp until a position(or hold command)is assigned.FP and FDaredifferent in that FP is used for RC mode only, whereas FDis used for smart mode only.740 +Query First Position in Degrees (**QFD**) 523 523 524 -Q ueryFirstPositionin Pulses (**QFP**)742 +Ex: #5QFD<cr> might return *5QFD900<cr> 525 525 526 - Ex:#5QFP<cr>might return*5QFP1550<cr>744 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS. 527 527 528 - The reply above indicates that servo with ID 5 has afirst position pulse of 1550 microseconds.If no firstpositionhas beenset, servo will respondwith DIS("disabled").746 +Configure First Position in Degrees (**CFD**) 529 529 530 - ConfigureFirst Position in Pulses (**CFP**)748 +Ex: #5CFD900<cr> 531 531 532 -Ex: #5CP1550<cr> 750 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 751 +))) 533 533 534 -This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 753 +|(% colspan="2" %)((( 754 +====== Maximum Motor Duty (**MMD**) ====== 755 +))) 756 +|(% style="width:30px" %) |((( 757 +This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance. 535 535 536 - ======__21. First / Initial Position (Degrees)__ ======759 +Ex: #5MMD512<cr> 537 537 538 - In certain cases,a user mightwant to have the servo move to a specific angleupon power up. We refertothis as "first position". Thefactorydefaulthas no first position valuestoredinEEPROM and thereforeupon power up, theservoremains limp until a position (orholdcommand) is assigned. FP and FDaredifferentinthatFP isused for RC mode only, whereasFD isused for smart mode only.761 +This will set the duty-cycle to 512 for servo with ID 5 for that session. 539 539 540 -Query FirstPositioninDegrees(**QFD**)763 +Query Maximum Motor Duty (**QMMD**) 541 541 542 -Ex: #5Q FD<cr> might return *5QFD64<cr>765 +Ex: #5QMMDD<cr> might return *5QMMD512<cr> 543 543 544 -The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. 767 +This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023. 768 +))) 545 545 546 -Configure First Position in Degrees (**CFD**) 770 +|(% colspan="2" %)((( 771 +====== Maximum Speed in Degrees (**SD**) ====== 772 +))) 773 +|(% style="width:30px" %) |((( 774 +Ex: #5SD1800<cr> 547 547 548 - Ex:#5CD64<cr>776 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 549 549 550 - This configuration command means the servo, when set to smart mode, will immediatelymove to 6.4 degrees upon power up. Sendinga CFDcommand without a numberresults in theervoremaining limp upon power up.778 +Query Speed in Degrees (**QSD**) 551 551 552 - ======__22.QueryTargetPositionin Degrees (**QDT**)__ ======780 +Ex: #5QSD<cr> might return *5QSD1800<cr> 553 553 554 -Ex: #5QDT<cr> might return *5QDT6783<cr> 782 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 783 +))) 555 555 556 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 785 +|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)** 786 +| |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 787 +| |ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 788 +| |ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 789 +| |ex: #5QSD3<cr>|Target travel speed 557 557 558 -====== __23. Query Model String (**QMS**)__ ====== 791 +|(% style="width:30px" %) |((( 792 +Configure Speed in Degrees (**CSD**) 559 559 560 -Ex: #5 QMS<cr>might return *5QMSLSS-HS1cr>794 +Ex: #5CSD1800<cr> 561 561 562 -This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 796 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 797 +))) 563 563 564 -====== __23b. Query Model (**QM**)__ ====== 799 +|(% colspan="2" %)((( 800 +====== Maximum Speed in RPM (**SR**) ====== 801 +))) 802 +|(% style="width:30px" %) |((( 803 +Ex: #5SR45<cr> 565 565 566 - Ex:#5QM<cr>might return*5QM68702699520cr>805 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 567 567 568 - This replymeans theservo modelis 0xFFF000000 or 100, meaningahigh speed servo, first revision.807 +Query Speed in RPM (**QSR**) 569 569 570 - ======__24.QuerySerialNumber(**QN**)__ ======809 +Ex: #5QSR<cr> might return *5QSR45<cr> 571 571 572 -Ex: #5QN<cr> might return *5QN~_~_<cr> 811 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 812 +))) 573 573 574 -The number in the response is the servo's serial number which is set and cannot be changed. 814 +|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)** 815 +| |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 816 +| |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 817 +| |ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 818 +| |ex: #5QSR3<cr>|Target travel speed 575 575 576 -====== __25. Query Firmware (**QF**)__ ====== 820 +|((( 821 +Configure Speed in RPM (**CSR**) 577 577 578 -Ex: #5 QF<cr> might return *5QF11<cr>823 +Ex: #5CSR45<cr> 579 579 580 -The integer in the reply represents the firmware version with one decimal, in this example being 1.1 825 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 826 +)))| 581 581 582 -== ====__26. Query Status(**Q**)__======828 +== Modifiers == 583 583 584 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 830 +|(% colspan="2" %)((( 831 +====== Speed (**S**, **SD**) modifier ====== 832 +))) 833 +|(% style="width:30px" %) |((( 834 +Ex: #5P1500S750<cr> 585 585 586 -|*Value returned|**Status**|**Detailed description** 587 -|ex: *5Q0<cr>|Unknown|LSS is unsure 588 -|ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely 589 -|ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 590 -|ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed 591 -|ex: *5Q4<cr>|Traveling|Moving at a stable speed 592 -|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position. 593 -|ex: *5Q6<cr>|Holding|Keeping current position 594 -|ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque 595 -|ex: *5Q8<cr>|Outside limits|{More details coming soon} 596 -|ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 597 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 836 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 598 598 599 - ======__27. Query Voltage (**QV**)__ ======838 +Ex: #5D0SD180<cr> 600 600 601 - Ex:#5QV<cr>might return*5QV11200<cr>840 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second. 602 602 603 - The numberreturnedhas one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V(perhaps a three cell LiPo battery).842 +Query Speed (**QS**) 604 604 605 - ======__28.QueryTemperature(**QT**)__ ======844 +Ex: #5QS<cr> might return *5QS300<cr> 606 606 607 -Ex: #5QT<cr> might return *5QT564<cr> 846 +This command queries the current speed in microseconds per second. 847 +))) 608 608 609 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 849 +|(% colspan="2" %)((( 850 +====== Timed move (**T**) modifier ====== 851 +))) 852 +|(% style="width:30px" %) |((( 853 + 610 610 611 - ======__29. Query Current (**QC**)__ ======855 +Example: #5P1500T2500<cr> 612 612 857 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 858 + 859 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 860 +))) 861 + 862 +|(% colspan="2" %)((( 863 +====== Current Halt & Hold (**CH**) modifier ====== 864 +))) 865 +|(% style="width:30px" %) |((( 866 +Example: #5D1423CH400<cr> 867 + 868 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position. 869 + 870 +This modifier can be added to the following actions: D; MD; WD; WR. 871 +))) 872 + 873 +|(% colspan="2" %)((( 874 +====== Current Limp (**CL**) modifier ====== 875 +))) 876 +|(% style="width:30px" %) |((( 877 +Example: #5D1423CL400<cr> 878 + 879 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp. 880 + 881 +This modifier can be added to the following actions: D; MD; WD; WR. 882 +))) 883 + 884 +== Telemetry == 885 + 886 +|(% colspan="2" %)((( 887 +====== Query Voltage (**QV**) ====== 888 +))) 889 +|(% style="width:30px" %) |((( 890 +Ex: #5QV<cr> might return *5QV11200<cr> 891 + 892 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V. 893 +))) 894 + 895 +|(% colspan="2" %)((( 896 +====== Query Current (**QC**) ====== 897 +))) 898 +|(% style="width:30px" %) |((( 899 + 900 + 613 613 Ex: #5QC<cr> might return *5QC140<cr> 614 614 615 615 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 904 +))) 616 616 617 -====== __30. RC Mode (**CRC**)__ ====== 906 +|(% colspan="2" %)((( 907 +====== Query Model String (**QMS**) ====== 908 +))) 909 +|(% style="width:30px" %) |((( 910 + 618 618 619 - Thiscommand puts the servointo RCmode (position or continuous), where itwill onlyrespondto RC pulses. Note that because this is the case, the servo willnolonger accept serial commands. The servo can be placed back into smart mode by using the button menu.912 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr> 620 620 621 -|**Command sent**|**Note** 622 -|ex: #5CRC<cr>|Stay in smart mode. 623 -|ex: #5CRC1<cr>|Change to RC position mode. 624 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 625 -|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode. 914 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision. 915 +))) 626 626 627 -EX: #5CRC<cr> 917 +|(% colspan="2" %)((( 918 +====== Query Firmware (**QF**) ====== 919 +))) 920 +|(% style="width:30px" %) |((( 921 +Ex: #5QF<cr> might return *5QF368<cr> 628 628 629 - ======__31.RESET__======923 +The number in the reply represents the firmware version, in this example being 368. 630 630 631 -Ex: #5RESET<cr> or #5RS<cr> 925 +The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14 926 +))) 632 632 633 - Thiscommanddoes a "soft reset" (no power cycle required) and reverts all commands to those stored inEEPROM(i.e. configuration commands).928 +== RGB LED == 634 634 635 -====== __32. DEFAULT & CONFIRM__ ====== 930 +|(% colspan="2" %)((( 931 +====== LED Color (**LED**) ====== 932 +))) 933 +|(% style="width:30px" %) |((( 934 + 636 636 637 -Ex: #5 DEFAULT<cr>936 +Ex: #5LED3<cr> 638 638 639 -This command setsin motionthe resetall values to thedefault valuesincluded with the versionofthefirmware installedon that servo. Theservo then waitsfor the CONFIRM command. Any othercommand received will causetheservo to exit the DEFAULT function.938 +This action sets the servo's RGB LED color for that session. 640 640 641 - EX:#5DEFAULT<cr>followedby#5CONFIRM<cr>940 +The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. 642 642 643 - Sinceit it not common to have to restore all configurations, aconfirmationcommand is neededaftera firmwarecommand is sent.Should any command otherthan CONFIRM bereceived by the servoafter the firmwarecommandhas beenreceived, itwill leavethe firmware action.942 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White; 644 644 645 - Notethat aftertheCONFIRM command is sent, the servo will automatically performa RESET.944 +Query LED Color (**QLED**) 646 646 647 - ======__33. UPDATE&CONFIRM__======946 +Ex: #5QLED<cr> might return *5QLED5<cr> 648 648 649 - Ex: #5UPDATE<cr>948 +This simple query returns the indicated servo's LED color. 650 650 651 - This command sets in motion the equivalent ofa longbutton presswhenthe servois not powered in order to enter firmware update mode. This is usefulshould the button be brokenor inaccessible. The servo then waits for theCONFIRM command. Any other command received will cause the servo to exit the UPDATEfunction.950 +Configure LED Color (**CLED**) 652 652 653 -E X: #5UPDATE<cr>followed by #5CONFIRM<cr>952 +Ex: #5CLED3<cr> 654 654 655 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 954 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color. 955 +))) 656 656 657 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 957 +|(% colspan="2" %)((( 958 +====== Configure LED Blinking (**CLB**) ====== 959 +))) 960 +|(% style="width:30px" %) |((( 961 + 962 + 963 +This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value: 964 +))) 965 + 966 +|(% style="width:30px" %) |(% style="width:200px" %)**Blink While:**|(% style="width:50px" %)**#**| 967 +| |No blinking|0| 968 +| |Limp|1| 969 +| |Holding|2| 970 +| |Accelerating|4| 971 +| |Decelerating|8| 972 +| |Free|16| 973 +| |Travelling|32| 974 +| |Always blink|63| 975 + 976 +|(% style="width:30px" %) |((( 977 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 978 + 979 +Ex: #5CLB0 to turn off all blinking (LED always solid) 980 + 981 +Ex: #5CLB1 only blink when limp (1) 982 + 983 +Ex: #5CLB2 only blink when holding (2) 984 + 985 +Ex: #5CLB12 only blink when accel or decel (accel 4 + decel 8 = 12) 986 + 987 +Ex: #5CLB48 only blink when free or travel (free 16 + travel 32 = 48) 988 + 989 +Ex: #5CLB63 blink in all status (1 + 2 + 4 + 8 + 16 + 32) 990 + 991 +RESETTING the servo is needed. 992 +))) 993 + 994 +|(% colspan="2" style="width:30px" %)((( 995 +====== RGB LED Patterns ====== 996 +))) 997 +|(% style="width:30px" %) |((( 998 +The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-button-menu/]] 999 +))) 1000 +|(% style="width:30px" %) |[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS%20-%20LED%20Patterns.png||alt="LSS - LED Patterns.png"]]
- LSS - LED Patterns.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.RB1 - Size
-
... ... @@ -1,0 +1,1 @@ 1 +116.3 KB - Content
- LSS-Protocol-Backup-2020-05-01.zip
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.ENantel - Size
-
... ... @@ -1,0 +1,1 @@ 1 +47.4 KB - Content
- XWiki.XWikiRights[0]
-
- Allow/Deny
-
... ... @@ -1,1 +1,0 @@ 1 -1 - Groups
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.XWikiAdminGroup - Levels
-
... ... @@ -1,1 +1,0 @@ 1 -view
- XWiki.XWikiRights[1]
-
- Allow/Deny
-
... ... @@ -1,1 +1,0 @@ 1 -1 - Groups
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.XWikiAdminGroup - Levels
-
... ... @@ -1,1 +1,0 @@ 1 -view
- XWiki.XWikiRights[2]
-
- Allow/Deny
-
... ... @@ -1,1 +1,0 @@ 1 -1 - Groups
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Profiles (Lynxmotion).BETA Testers - Levels
-
... ... @@ -1,1 +1,0 @@ 1 -view
- XWiki.StyleSheetExtension[0]
-
- Caching policy
-
... ... @@ -1,0 +1,1 @@ 1 +long - Code
-
... ... @@ -1,0 +1,13 @@ 1 +div.cmdcnt 2 +{ 3 + display:table-row; 4 +} 5 +div.cmdpad 6 +{ 7 + display:table-cell; 8 + padding:16px; 9 +} 10 +div.cmdtxt 11 +{ 12 + display:table-cell; 13 +} - Content Type
-
... ... @@ -1,0 +1,1 @@ 1 +CSS - Name
-
... ... @@ -1,0 +1,1 @@ 1 +DivTextIndentation - Parse content
-
... ... @@ -1,0 +1,1 @@ 1 +No - Use this extension
-
... ... @@ -1,0 +1,1 @@ 1 +currentPage