Last modified by Eric Nantel on 2025/06/06 07:47

From version < 95.1 >
edited by Coleman Benson
on 2019/02/01 15:17
To version < 64.13 >
edited by RB1
on 2018/11/19 09:30
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Parent
... ... @@ -1,1 +1,1 @@
1 -Lynxmotion Smart Servo (LSS).WebHome
1 +lynxmotion:LSS - Overview (DEV).WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.CBenson
1 +xwiki:XWiki.RB1
Tags
... ... @@ -1,1 +1,1 @@
1 -LSS|communication|protocol|programming|firmware|control|LSS-Ref
1 +LSS|communication|protocol|programming|firmware|control
Content
... ... @@ -1,14 +4,9 @@
1 -(% class="wikigeneratedid" id="HTableofContents" %)
2 -**Table of Contents**
3 -
4 4  {{toc depth="3"/}}
5 5  
6 -= Serial Protocol Concept =
3 += Protocol concepts =
7 7  
8 -The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 RC servo controller and almost everything one might expect to be able to configure for a smart servo motor is available.
5 +The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available.
9 9  
10 -In order to have servos react differently when commands are sent to all servos in a serial bus, the first step a user should take is to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol.
11 -
12 12  == Session ==
13 13  
14 14  A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
... ... @@ -15,7 +15,7 @@
15 15  
16 16  == Action Commands ==
17 17  
18 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
13 +Action commands are sent serially to the servo's Rx pin and must be set in the following format:
19 19  
20 20  1. Start with a number sign # (U+0023)
21 21  1. Servo ID number as an integer
... ... @@ -26,12 +26,16 @@
26 26  (((
27 27  Ex: #5PD1443<cr>
28 28  
29 -This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
24 +Move servo with ID #5 to a position of 144.3 degrees.
30 30  
31 -== Action Modifiers ==
26 +Action commands cannot be combined with query commands, and only one action command can be sent at a time.
32 32  
33 -Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is:
28 +Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page).
34 34  
30 +=== Action Modifiers ===
31 +
32 +Two commands can be used as action modifiers only: Timed Move and Speed. The format is:
33 +
35 35  1. Start with a number sign # (U+0023)
36 36  1. Servo ID number as an integer
37 37  1. Action command (one to three letters, no spaces, capital or lower case)
... ... @@ -42,12 +42,14 @@
42 42  
43 43  Ex: #5P1456T1263<cr>
44 44  
45 -This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds.
44 +Results in the servo rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds.
45 +
46 +Action modifiers can only be used with certain commands.
46 46  )))
47 47  
48 48  == Configuration Commands ==
49 49  
50 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
51 +Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:LSS - Overview (DEV).LSS - RC PWM.WebHome]].
51 51  
52 52  1. Start with a number sign # (U+0023)
53 53  1. Servo ID number as an integer
... ... @@ -57,11 +57,15 @@
57 57  
58 58  Ex: #5CO-50<cr>
59 59  
60 -This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.
61 +Assigns an absolute origin offset of -5.0 degrees (with respect to factory origin) to servo #5 and changes the offset for that session to -5.0 degrees.
61 61  
63 +Configuration commands are not cumulative, in that if two configurations are sent at any time, only the last configuration is used and stored.
64 +
65 +*Important Note: the one exception is the baud rate - the servo's current session retains the given baud rate. The new baud rate will only be in place when the servo is power cycled.
66 +
62 62  == Query Commands ==
63 63  
64 -Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
69 +Query commands are sent serially to the servo's Rx pin and must be set in the following format:
65 65  
66 66  1. Start with a number sign # (U+0023)
67 67  1. Servo ID number as an integer
... ... @@ -73,47 +73,49 @@
73 73  )))
74 74  
75 75  (((
76 -The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
81 +The query will return a value via the Tx pin with the following format:
77 77  
78 -1. Start with an asterisk * (U+002A)
83 +1. Start with an asterisk (U+002A)
79 79  1. Servo ID number as an integer
80 80  1. Query command (one to three letters, no spaces, capital letters)
81 81  1. The reported value in the units described, no decimals.
82 82  1. End with a control / carriage return '<cr>'
83 83  
84 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be:
85 -
86 86  (((
87 87  Ex: *5QD1443<cr>
88 88  )))
89 89  
90 -This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees).
93 +Indicates that servo #5 is currently at 144.3 degrees.
91 91  
92 92  **Session vs Configuration Query**
93 93  
94 -By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
97 +By default, the query command returns the sessions' value; should no action commands have been sent to change, it will return the value saved in EEPROM from the last configuration command.
95 95  
96 -Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
99 +In order to query the value in EEPROM, add a '1' to the query command.
97 97  
98 -After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
101 +Ex: #5CSR20<cr> sets the maximum speed for servo #5 to 20rpm upon RESET (explained below).
99 99  
100 -#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas
103 +After RESET: #5SR4<cr> sets the session's speed to 4rpm.
101 101  
105 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session.
106 +
102 102  #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
103 103  
104 -== Virtual Angular Position ==
109 +=== Virtual Angular Position ===
105 105  
106 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
111 +{In progress}
107 107  
113 +A "virtual position" is one which allows for multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to 360.0 degrees.
114 +
108 108  [[image:LSS-servo-positions.jpg]]
109 109  
110 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
117 +Example: Gyre direction / rotation is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees.
111 111  
112 -#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
119 +#1D-300<cr> The servo is sent a command to move to -30.0 degrees (green arrow)
113 113  
114 114  #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
115 115  
116 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
123 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees stopping at an absolute position of 60.0 degrees (420.0-360.0), with a virtual position of -420.0 degrees.
117 117  
118 118  Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
119 119  
... ... @@ -126,69 +126,52 @@
126 126  
127 127  = Command List =
128 128  
129 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
130 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
131 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
132 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)
133 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)
134 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
135 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
136 -0
136 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes
137 +| 1|**L**imp| L| | | | ✓| none|
138 +| 2|**H**alt & Hold| H| | | | ✓| none|
139 +| 3|**T**imed move| T| | | | ✓| milliseconds| Modifier only
140 +| 4|**S**peed| S| | | | ✓| microseconds / second| Modifier only
141 +| 5|**M**ove in **D**egrees (relative)| MD| | | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
142 +| 6|**O**rigin Offset| O| QO| CO| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
143 +| 7|**A**ngular **R**ange| AR| QAR| CAR| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
144 +| 8|Position in **P**ulse| P| QP| | | ✓| microseconds|(((
145 +See details below
137 137  )))
138 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
139 -1800
147 +| 9|Position in **D**egrees| D| QD| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
148 +| 10|**W**heel mode in **D**egrees| WD| QWD| | | ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|
149 +| 11|**W**heel mode in **R**PM| WR| QWR| | | ✓| rpm|
150 +| 12|Max **S**peed in **D**egrees| SD| QSD| CSD| ✓| ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed
151 +| 13|Max **S**peed in **R**PM| SR| QSR| CSR| ✓| ✓| rpm|QSR: Add modifier "2" for instantaneous speed
152 +| 14|**A**ngular **S**tiffness| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4
153 +| 15|**A**ngular **H**olding Stiffness|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0.
154 +|15b|**A**ngular **A**cceleration|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared
155 +|15c|**A**ngular **D**eceleration|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared
156 +|15d|**M**otion **C**ontrol|MC|QMC| | | ✓|none|MC0 to disable motion control, MC1 to enable. Session specific
157 +| 16|**LED** Color| LED| QLED| CLED| ✓| ✓| none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6=MAGENTA, 7=WHITE
158 +| 17|**ID** #| | QID| CID| | ✓| none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to
159 +| 18|**B**aud rate| B| QB| CB| | ✓| none (integer)|
160 +| 19|**G**yre direction (**G**)| G| QG| CG| ✓| ✓| none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)
161 +| 20|**F**irst Position (**P**ulse)| | QFP|CFP | ✓| ✓| none |
162 +| 21|**F**irst Position (**D**egrees)| | QFD|CFD| ✓| ✓| none |
163 +| 22|**T**arget (**D**egree) **P**osition| | QDT| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|
164 +| 23|**M**odel **String**| | QMS| | | | none (string)| Recommended to determine the model|
165 +| 23b|**M**odel| | QM| | | | none (integer)| Returns a raw value representing the three model inputs (36 bit)|
166 +| 24|Serial **N**umber| | QN| | | | none (integer)|
167 +| 25|**F**irmware version| | QF| | | | none (integer)|
168 +| 26|**Q**uery (general status)| | Q| | | ✓| none (integer from 1 to 8)| See command description for details
169 +| 27|**V**oltage| | QV| | | ✓| millivolts (ex 5936 = 5936mV = 5.936V)|
170 +| 28|**T**emperature| | QT| | | ✓| tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)
171 +| 29|**C**urrent| | QC| | | ✓| milliamps (ex 200 = 0.2A)|
172 +| 30|**RC** Mode| | |CRC| |✓|none|(((
173 +CRC: Add modifier "1" for RC-position mode.
174 +CRC: Add modifier "2" for RC-wheel mode.
175 +Any other value for the modifier results in staying in smart mode.
176 +Puts the servo into RC mode. To revert to smart mode, use the button menu.
140 140  )))
141 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(% style="width:510px" %)(((
142 -Inherited from SSC-32 serial protocol
143 -)))|(% style="text-align:center; width:113px" %)
144 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
145 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
146 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
147 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)(((
148 -QSD: Add modifier "2" for instantaneous speed.
178 +|31|**RESET**| | | | | ✓|none|Soft reset. See command for details.
179 +|32|**DEFAULT**| | | | |✓|none|Revert to firmware default values. See command for details
180 +|33|**UPDATE**| | | | |✓|none|Update firmware. See command for details.
149 149  
150 -SD overwrites SR / CSD overwrites CSR and vice-versa.
151 -)))|(% style="text-align:center; width:113px" %)Max per servo
152 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
153 -QSR: Add modifier "2" for instantaneous speed
154 -
155 -SR overwrites SD / CSR overwrites CSD and vice-versa.
156 -)))|(% style="text-align:center; width:113px" %)Max per servo
157 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
158 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0
159 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
160 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
161 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((
162 -Limp
163 -)))
164 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp
165 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
166 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %)
167 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
168 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
169 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
170 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
171 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
172 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
173 -| 30a|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1| | ✓|none|(% style="width:510px" %)(((
174 -Puts the servo into RC mode. To revert to smart mode, use the button menu.
175 -)))|(% style="text-align:center; width:113px" %)Serial
176 -| 30b|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2| | ✓| |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
177 -| 31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
178 -| 32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
179 -| 33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
180 -
181 -== Advanced ==
182 -
183 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
184 -| 1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0
185 -| 2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1
186 -| 3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
187 -| 4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
188 -| 5|[[**E**nable **M**otion Control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %)
189 -| 6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center; width:113px" %)
190 -| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
191 -
192 192  == Details ==
193 193  
194 194  ====== __1. Limp (**L**)__ ======
... ... @@ -197,33 +197,31 @@
197 197  
198 198  This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
199 199  
200 -====== __2. Halt & Hold (**H**)__ ======
190 +__2. Halt & Hold (**H**)__
201 201  
202 202  Example: #5H<cr>
203 203  
204 204  This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position.
205 205  
206 -====== __3. Timed move (**T**)__ ======
196 +__3. Timed move (**T**)__
207 207  
208 208  Example: #5P1500T2500<cr>
209 209  
210 210  Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
211 211  
212 -Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
202 +__4. Speed (**S**)__
213 213  
214 -====== __4. Speed (**S**)__ ======
215 -
216 216  Example: #5P1500S750<cr>
217 217  
218 218  This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
219 219  
220 -====== __5. (Relative) Move in Degrees (**MD**)__ ======
208 +__5. (Relative) Move in Degrees (**MD**)__
221 221  
222 222  Example: #5MD123<cr>
223 223  
224 224  The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
225 225  
226 -====== __6. Origin Offset Action (**O**)__ ======
214 +__6. Origin Offset Action (**O**)__
227 227  
228 228  Example: #5O2400<cr>
229 229  
... ... @@ -247,7 +247,7 @@
247 247  
248 248  This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode.
249 249  
250 -====== __7. Angular Range (**AR**)__ ======
238 +__7. Angular Range (**AR**)__
251 251  
252 252  Example: #5AR1800<cr>
253 253  
... ... @@ -271,7 +271,7 @@
271 271  
272 272  This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
273 273  
274 -====== __8. Position in Pulse (**P**)__ ======
262 +__8. Position in Pulse (**P**)__
275 275  
276 276  Example: #5P2334<cr>
277 277  
... ... @@ -284,7 +284,7 @@
284 284  This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 
285 285  Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
286 286  
287 -====== __9. Position in Degrees (**D**)__ ======
275 +__9. Position in Degrees (**D**)__
288 288  
289 289  Example: #5PD1456<cr>
290 290  
... ... @@ -298,7 +298,7 @@
298 298  
299 299  This means the servo is located at 13.2 degrees.
300 300  
301 -====== __10. Wheel Mode in Degrees (**WD**)__ ======
289 +__10. Wheel Mode in Degrees (**WD**)__
302 302  
303 303  Ex: #5WD900<cr>
304 304  
... ... @@ -310,7 +310,7 @@
310 310  
311 311  The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
312 312  
313 -====== __11. Wheel Mode in RPM (**WR**)__ ======
301 +__11. Wheel Mode in RPM (**WR**)__
314 314  
315 315  Ex: #5WR40<cr>
316 316  
... ... @@ -322,7 +322,7 @@
322 322  
323 323  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
324 324  
325 -====== __12. Speed in Degrees (**SD**)__ ======
313 +__12. Speed in Degrees (**SD**)__
326 326  
327 327  Ex: #5SD1800<cr>
328 328  
... ... @@ -347,7 +347,7 @@
347 347  
348 348  Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
349 349  
350 -====== __13. Speed in RPM (**SR**)__ ======
338 +__13. Speed in RPM (**SR**)__
351 351  
352 352  Ex: #5SD45<cr>
353 353  
... ... @@ -372,7 +372,7 @@
372 372  
373 373  Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
374 374  
375 -====== __14. Angular Stiffness (**AS**)__ ======
363 +__14. Angular Stiffness (**AS**)__
376 376  
377 377  The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
378 378  
... ... @@ -400,7 +400,7 @@
400 400  
401 401  Writes the desired angular stiffness value to memory.
402 402  
403 -====== __15. Angular Hold Stiffness (**AH**)__ ======
391 +__15. Angular Hold Stiffness (**AH**)__
404 404  
405 405  The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
406 406  
... ... @@ -420,19 +420,19 @@
420 420  
421 421  This writes the angular holding stiffness of servo #5 to 2 to EEPROM
422 422  
423 -====== __15b: Angular Acceleration (**AA**)__ ======
411 +__15b: Angular Acceleration (**AA**)__
424 424  
425 425  {More details to come}
426 426  
427 -====== __15c: Angular Deceleration (**AD**)__ ======
415 +__15c: Angular Deceleration (**AD**)__
428 428  
429 429  {More details to come}
430 430  
431 -====== __15d: Motion Control (**EM**)__ ======
419 +__15d: Motion Control (**MC**)__
432 432  
433 433  {More details to come}
434 434  
435 -====== __16. RGB LED (**LED**)__ ======
423 +__16. RGB LED (**LED**)__
436 436  
437 437  Ex: #5LED3<cr>
438 438  
... ... @@ -450,22 +450,8 @@
450 450  
451 451  Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
452 452  
453 -====== __16b. Configure LED Blinking (**CLB**)__ ======
441 +__17. Identification Number__
454 454  
455 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details).
456 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
457 -
458 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
459 -
460 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
461 -Ex: #5CLB1<cr> only blink when limp
462 -Ex: #5CLB2<cr> only blink when holding
463 -Ex: #5CLB12<cr> only blink when accel or decel
464 -Ex: #5CLB48<cr> only blink when free or travel
465 -Ex: #5CLB63<cr> blink in all status
466 -
467 -====== __17. Identification Number__ ======
468 -
469 469  A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
470 470  
471 471  Query Identification (**QID**)
... ... @@ -480,7 +480,7 @@
480 480  
481 481  Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.
482 482  
483 -====== __18. Baud Rate__ ======
457 +__18. Baud Rate__
484 484  
485 485  A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.
486 486  \*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out.
... ... @@ -493,13 +493,11 @@
493 493  
494 494  Configure Baud Rate (**CB**)
495 495  
496 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled.
497 -
498 498  Ex: #5CB9600<cr>
499 499  
500 500  Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
501 501  
502 -====== __19. Gyre Rotation Direction__ ======
474 +__19. Gyre Rotation Direction__
503 503  
504 504  "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
505 505  
... ... @@ -517,7 +517,7 @@
517 517  
518 518  This changes the gyre direction as described above and also writes to EEPROM.
519 519  
520 -====== __20. First / Initial Position (pulse)__ ======
492 +__20. First / Initial Position (pulse)__
521 521  
522 522  In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
523 523  
... ... @@ -533,7 +533,7 @@
533 533  
534 534  This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled).
535 535  
536 -====== __21. First / Initial Position (Degrees)__ ======
508 +__21. First / Initial Position (Degrees)__
537 537  
538 538  In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
539 539  
... ... @@ -549,37 +549,37 @@
549 549  
550 550  This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up.
551 551  
552 -====== __22. Query Target Position in Degrees (**QDT**)__ ======
524 +__22. Query Target Position in Degrees (**QDT**)__
553 553  
554 554  Ex: #5QDT<cr> might return *5QDT6783<cr>
555 555  
556 556  The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
557 557  
558 -====== __23. Query Model String (**QMS**)__ ======
530 +__23. Query Model String (**QMS**)__
559 559  
560 560  Ex: #5QMS<cr> might return *5QMSLSS-HS1cr>
561 561  
562 562  This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
563 563  
564 -====== __23b. Query Model (**QM**)__ ======
536 +__23b. Query Model (**QM**)__
565 565  
566 566  Ex: #5QM<cr> might return *5QM68702699520cr>
567 567  
568 568  This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision.
569 569  
570 -====== __24. Query Serial Number (**QN**)__ ======
542 +__24. Query Serial Number (**QN**)__
571 571  
572 572  Ex: #5QN<cr> might return *5QN~_~_<cr>
573 573  
574 574  The number in the response is the servo's serial number which is set and cannot be changed.
575 575  
576 -====== __25. Query Firmware (**QF**)__ ======
548 +__25. Query Firmware (**QF**)__
577 577  
578 578  Ex: #5QF<cr> might return *5QF11<cr>
579 579  
580 580  The integer in the reply represents the firmware version with one decimal, in this example being 1.1
581 581  
582 -====== __26. Query Status (**Q**)__ ======
554 +__26. Query Status (**Q**)__
583 583  
584 584  Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
585 585  
... ... @@ -589,32 +589,32 @@
589 589  |ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely
590 590  |ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed
591 591  |ex: *5Q4<cr>|Traveling|Moving at a stable speed
592 -|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position.
564 +|ex: *5Q5<cr>|Deccelerating|Decreasing speed towards travel speed towards rest
593 593  |ex: *5Q6<cr>|Holding|Keeping current position
594 594  |ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque
595 -|ex: *5Q8<cr>|Outside limits|{More details coming soon}
567 +|ex: *5Q8<cr>|Outside limits|More details coming soon
596 596  |ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting
597 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
569 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maxiumum duty and still cannot move (i.e.: stalled)
598 598  
599 -====== __27. Query Voltage (**QV**)__ ======
571 +__27. Query Voltage (**QV**)__
600 600  
601 601  Ex: #5QV<cr> might return *5QV11200<cr>
602 602  
603 603  The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
604 604  
605 -====== __28. Query Temperature (**QT**)__ ======
577 +__28. Query Temperature (**QT**)__
606 606  
607 607  Ex: #5QT<cr> might return *5QT564<cr>
608 608  
609 609  The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
610 610  
611 -====== __29. Query Current (**QC**)__ ======
583 +__29. Query Current (**QC**)__
612 612  
613 613  Ex: #5QC<cr> might return *5QC140<cr>
614 614  
615 615  The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
616 616  
617 -====== __30. RC Mode (**CRC**)__ ======
589 +__30. RC Mode (**CRC**)__
618 618  
619 619  This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
620 620  
... ... @@ -626,13 +626,13 @@
626 626  
627 627  EX: #5CRC<cr>
628 628  
629 -====== __31. RESET__ ======
601 +__31. RESET__
630 630  
631 631  Ex: #5RESET<cr> or #5RS<cr>
632 632  
633 633  This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
634 634  
635 -====== __32. DEFAULT & CONFIRM__ ======
607 +__32. DEFAULT & CONFIRM__
636 636  
637 637  Ex: #5DEFAULT<cr>
638 638  
... ... @@ -644,7 +644,7 @@
644 644  
645 645  Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
646 646  
647 -====== __33. UPDATE & CONFIRM__ ======
619 +__33. UPDATE & CONFIRM__
648 648  
649 649  Ex: #5UPDATE<cr>
650 650  
XWiki.XWikiRights[0]
Allow/Deny
... ... @@ -1,1 +1,0 @@
1 -1
Groups
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.XWikiAdminGroup
Levels
... ... @@ -1,1 +1,0 @@
1 -view
XWiki.XWikiRights[1]
Allow/Deny
... ... @@ -1,1 +1,0 @@
1 -1
Groups
... ... @@ -1,1 +1,0 @@
1 -XWiki.XWikiAdminGroup
Levels
... ... @@ -1,1 +1,0 @@
1 -view
XWiki.XWikiRights[2]
Allow/Deny
... ... @@ -1,1 +1,0 @@
1 -1
Groups
... ... @@ -1,1 +1,0 @@
1 -XWiki.Profiles (Lynxmotion).BETA Testers
Levels
... ... @@ -1,1 +1,0 @@
1 -view
Copyright RobotShop 2018