Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2024/11/21 09:43
Change comment: allow view right for XWiki.Profiles (Lynxmotion).BETA Testers
Summary
-
Page properties (2 modified, 0 added, 0 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -xwiki:XWiki. CBenson1 +xwiki:XWiki.ENantel - Content
-
... ... @@ -3,12 +3,10 @@ 3 3 4 4 {{toc depth="3"/}} 5 5 6 -= SerialProtocol Concept =6 += Protocol Concepts = 7 7 8 -The customLynxmotion Smart Servo (LSS)serialprotocol was created in order to be as simple and straightforward as possible from a user perspective("human readable format"), while at the same timeThe protocolwas based on Lynxmotion'sSSC-32 RC servo controllerand almosteverything one might expect to be able to configure for a smart servo motor is available.8 +The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available. 9 9 10 -In order to have servos react differently when commands are sent to all servos in a serial bus, the first step a user should take is to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol. 11 - 12 12 == Session == 13 13 14 14 A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. ... ... @@ -15,7 +15,7 @@ 15 15 16 16 == Action Commands == 17 17 18 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent aredescribed below, andthey cannotbe combined with other commandssuch as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any"memory" of previous actionsor virtual positions (described below on this page). Actioncommandsaresent serially to the servo's Rx pin and must be sent in the following format:16 +Action commands are sent serially to the servo's Rx pin and must be set in the following format: 19 19 20 20 1. Start with a number sign # (U+0023) 21 21 1. Servo ID number as an integer ... ... @@ -26,11 +26,15 @@ 26 26 ((( 27 27 Ex: #5PD1443<cr> 28 28 29 - This sends a serial command to all servo's Rx pins which areconnected to the busand only servo(s)with ID #5will movetoin tenthsofdegrees ("PD") of144.3 degrees.Any servo on the bus which does not have ID 5 will take no action when receiving this command.27 +Move servo with ID #5 to a position of 144.3 degrees. 30 30 29 +Action commands cannot be combined with query commands, and only one action command can be sent at a time. 30 + 31 +Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page). 32 + 31 31 == Action Modifiers == 32 32 33 - Only two commands can be used as action modifiers: Timed Move(T)and Speed(S) described below.Action modifiers can only be used with certain action commands.The formattoinclude a modifier is:35 +Two commands can be used as action modifiers only: Timed Move and Speed. The format is: 34 34 35 35 1. Start with a number sign # (U+0023) 36 36 1. Servo ID number as an integer ... ... @@ -42,12 +42,14 @@ 42 42 43 43 Ex: #5P1456T1263<cr> 44 44 45 -This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds. 47 +Results in the servo rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds. 48 + 49 +Action modifiers can only be used with certain commands. 46 46 ))) 47 47 48 48 == Configuration Commands == 49 49 50 -Configuration commands a nd corresponding values affectaservo'sdefaultswhich arewritten to and readfromtheservo'sEEPROM.These configurationsare retainedinmemory after the servoisresetorpoweris cut/ lost. Someconfiguration commands affectthesession,while othersdo not (see each commandfor details). Not all action commands have a corresponding configuration and vice versa.Moreinformationabout which configurationcommands are retained when inConfiguration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:54 +Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. 51 51 52 52 1. Start with a number sign # (U+0023) 53 53 1. Servo ID number as an integer ... ... @@ -57,11 +57,15 @@ 57 57 58 58 Ex: #5CO-50<cr> 59 59 60 - Thisconfigures an absolute origin offset("CO")with respect to factory originwith ID#5 and changes the offset for that session to -5.0 degrees(50 tenths of degrees).Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.64 +Assigns an absolute origin offset of -5.0 degrees (with respect to factory origin) to servo #5 and changes the offset for that session to -5.0 degrees. 61 61 66 +Configuration commands are not cumulative, in that if two configurations are sent at any time, only the last configuration is used and stored. 67 + 68 +*Important Note: the one exception is the baud rate - the servo's current session retains the given baud rate. The new baud rate will only be in place when the servo is power cycled. 69 + 62 62 == Query Commands == 63 63 64 -Query commands request information from the servo. They are received via the Rx pinoftheservo,and the servo's replyis sentviathe servo'sTx pin.Using separate lines for Tx andRx is called "full duplex". Query commandsarealso similartoactionand configuration commands and must use the following format:72 +Query commands are sent serially to the servo's Rx pin and must be set in the following format: 65 65 66 66 1. Start with a number sign # (U+0023) 67 67 1. Servo ID number as an integer ... ... @@ -73,47 +73,49 @@ 73 73 ))) 74 74 75 75 ((( 76 -The query will return a serialstring (almost instantaneously)via theservo'sTx pin with the following format:84 +The query will return a value via the Tx pin with the following format: 77 77 78 -1. Start with an asterisk *(U+002A)86 +1. Start with an asterisk (U+002A) 79 79 1. Servo ID number as an integer 80 80 1. Query command (one to three letters, no spaces, capital letters) 81 81 1. The reported value in the units described, no decimals. 82 82 1. End with a control / carriage return '<cr>' 83 83 84 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be: 85 - 86 86 ((( 87 87 Ex: *5QD1443<cr> 88 88 ))) 89 89 90 - This indicates that servo #5 is currently at 144.3 degrees(1443 tenths of degrees).96 +Indicates that servo #5 is currently at 144.3 degrees. 91 91 92 92 **Session vs Configuration Query** 93 93 94 -By default, the query command returns the sessions' value . Should no action commands have been sent to changethe session value, it will return the value saved in EEPROMwhich will either be the servo's default, ormodified with a configuration command. Inorderto query thevaluestoredin EEPROM (configuration),add a '1' to the querycommand:100 +By default, the query command returns the sessions' value; should no action commands have been sent to change, it will return the value saved in EEPROM from the last configuration command. 95 95 96 - Ex:#5CSR20<cr> immediatelysets themaximum speedfor servo #5 to 20rpm (explainedbelow)andchangesthevalueinmemory.102 +In order to query the value in EEPROM, add a '1' to the query command. 97 97 98 - After RESET,a command of#5SR4<cr> sets thesession'sspeedto4rpm,but doesnotchangetheconfigurationvaluein memory.Therefore:104 +Ex: #5CSR20<cr> sets the maximum speed for servo #5 to 20rpm upon RESET (explained below). 99 99 100 - #5QSR<cr> would return*5QSR4<cr>which represents thevalue for thatsession,whereas106 +After RESET: #5SR4<cr> sets the session's speed to 4rpm. 101 101 108 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session. 109 + 102 102 #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 103 103 104 104 == Virtual Angular Position == 105 105 106 - The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more.Invirtualposition mode, the "absolute position" would be the angle of the output shaft withrespect toa 360.0 degree circle, and can be obtained by taking the modulus(with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).114 +{In progress} 107 107 116 +A "virtual position" is one which allows for multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to 360.0 degrees. 117 + 108 108 [[image:LSS-servo-positions.jpg]] 109 109 110 - In this example,the gyre direction(explainedbelow, a.k.a. "rotationdirection") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees.The following command is sent:120 +Example: Gyre direction / rotation is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. 111 111 112 -#1D-300<cr> Th is causestheservo to move to -30.0 degrees (green arrow)122 +#1D-300<cr> The servo is sent a command to move to -30.0 degrees (green arrow) 113 113 114 114 #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow) 115 115 116 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 126 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees, stopping at an absolute position of 60.0 degrees (420.0-360.0), with a virtual position of -420.0 degrees. 117 117 118 118 Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 119 119 ... ... @@ -126,69 +126,63 @@ 126 126 127 127 = Command List = 128 128 129 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 130 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 131 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 132 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %) 133 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 134 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 135 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 136 -0 139 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes|=(% style="width: 50px;" %)Default 140 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none| |(% style="text-align:center" %) 141 +| 2|[[**H**alt & Hold>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none| |(% style="text-align:center" %) 142 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds| Modifier only (P, D, MD)|(% style="text-align:center" %) 143 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds / second| Modifier only (P)|(% style="text-align:center" %) 144 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %) 145 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %)((( 146 +00 147 + 148 +0.0 degrees 137 137 ))) 138 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 139 -1800 140 -))) 141 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(% style="width:510px" %)((( 142 -Inherited from SSC-32 serial protocol 143 -)))|(% style="text-align:center; width:113px" %) 144 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 145 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 146 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 147 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)((( 148 -QSD: Add modifier "2" for instantaneous speed. 150 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %)((( 151 +1800 149 149 150 -SD overwrites SR / CSD overwrites CSR and vice-versa. 151 -)))|(% style="text-align:center; width:113px" %)Max per servo 152 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 153 -QSR: Add modifier "2" for instantaneous speed 154 - 155 -SR overwrites SD / CSR overwrites CSD and vice-versa. 156 -)))|(% style="text-align:center; width:113px" %)Max per servo 157 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7 158 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0 159 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600 160 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 161 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)((( 153 +180.0 degrees 154 +))) 155 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|((( 156 +See details below 157 +)))|(% style="text-align:center" %) 158 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %) 159 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center" %) 160 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center" %) 161 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD| CSD| ✓| ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed|(% style="text-align:center" %) 162 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR| CSR| ✓| ✓|rpm|QSR: Add modifier "2" for instantaneous speed|(% style="text-align:center" %) 163 +| 14|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4|(% style="text-align:center" %)0 164 +| 15|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0. |(% style="text-align:center" %) 165 +|15b|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared|(% style="text-align:center" %) 166 +|15c|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared|(% style="text-align:center" %) 167 +|15d|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles|(% style="text-align:center" %) 168 +| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center" %)7 169 +| 16b|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center" %) 170 +| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center" %)0 171 +| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)| |(% style="text-align:center" %)9600 172 +| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center" %)1 Clowckwise 173 +| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none | |(% style="text-align:center" %)((( 162 162 Limp 163 163 ))) 164 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 165 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 166 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 167 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 168 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 169 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 170 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 171 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 172 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 173 -| 30a|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1| | ✓|none|(% style="width:510px" %)((( 176 +| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none | |(% style="text-align:center" %)Limp 177 +| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| |(% style="text-align:center" %) 178 +| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)| Recommended to determine the model|(% style="text-align:center" %) | 179 +| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)| Returns a raw value representing the three model inputs (36 bit)|(% style="text-align:center" %) | 180 +| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)| |(% style="text-align:center" %) 181 +| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)| |(% style="text-align:center" %) 182 +| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)| See command description for details|(% style="text-align:center" %) 183 +| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)| |(% style="text-align:center" %) 184 +| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp)|(% style="text-align:center" %) 185 +| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)| |(% style="text-align:center" %) 186 +| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|((( 187 +CRC: Add modifier "1" for RC-position mode. 188 +CRC: Add modifier "2" for RC-wheel mode. 189 +Any other value for the modifier results in staying in smart mode. 174 174 Puts the servo into RC mode. To revert to smart mode, use the button menu. 175 -)))|(% style="text-align:center; width:113px" %)Serial 176 -| 30b|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2| | ✓| |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 177 -| 31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 178 -| 32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 179 -| 33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 191 +)))|(% style="text-align:center" %)Serial 192 +|31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|Soft reset. See command for details.|(% style="text-align:center" %) 193 +|32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|Revert to firmware default values. See command for details|(% style="text-align:center" %) 194 +|33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|Update firmware. See command for details.|(% style="text-align:center" %) 180 180 181 -== Advanced == 182 - 183 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 184 -| 1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0 185 -| 2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1 186 -| 3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 187 -| 4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 188 -| 5|[[**E**nable **M**otion Control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %) 189 -| 6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center; width:113px" %) 190 -| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 191 - 192 192 == Details == 193 193 194 194 ====== __1. Limp (**L**)__ ====== ... ... @@ -493,8 +493,6 @@ 493 493 494 494 Configure Baud Rate (**CB**) 495 495 496 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled. 497 - 498 498 Ex: #5CB9600<cr> 499 499 500 500 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.