Last modified by Eric Nantel on 2025/06/06 07:47

From version < 96.1 >
edited by Coleman Benson
on 2019/02/01 16:02
To version < 114.1 >
edited by Coleman Benson
on 2019/02/27 10:24
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -1,5 +1,5 @@
1 1  (% class="wikigeneratedid" id="HTableofContents" %)
2 -**Table of Contents**
2 +**Page Contents**
3 3  
4 4  {{toc depth="3"/}}
5 5  
... ... @@ -79,7 +79,7 @@
79 79  
80 80  == Configuration Commands ==
81 81  
82 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
82 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
83 83  
84 84  1. Start with a number sign # (U+0023)
85 85  1. Servo ID number as an integer
... ... @@ -128,75 +128,71 @@
128 128  
129 129  = Command List =
130 130  
131 -|= #|=Description|= Action|= Query|= Config|=(((
132 -Config Affects
131 +== Regular ==
133 133  
134 -Session
135 -)))|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
133 +|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
136 136  | 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
137 137  | 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
138 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)
139 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)
136 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)
137 +| 4|[[**S**peed>>||anchor="H4.Speed28S29modifier"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)
140 140  | 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
141 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| | ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
139 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO|CO|| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
142 142  0
143 143  )))
144 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| | ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
142 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR|| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
145 145  1800
146 146  )))
147 147  | 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | | ✓|microseconds|(% style="width:510px" %)(((
148 148  Inherited from SSC-32 serial protocol
149 149  )))|(% style="text-align:center; width:113px" %)
150 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
148 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
151 151  | 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
152 152  | 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
153 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| | ✓| ✓|tenths of degrees per second |(% style="width:510px" %)(((
151 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| SD| QSD|CSD|| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)(((
154 154  QSD: Add modifier "2" for instantaneous speed.
155 155  
156 156  SD overwrites SR / CSD overwrites CSR and vice-versa.
157 157  )))|(% style="text-align:center; width:113px" %)Max per servo
158 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| | ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
156 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| SR| QSR|CSR|| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
159 159  QSR: Add modifier "2" for instantaneous speed
160 160  
161 161  SR overwrites SD / CSR overwrites CSD and vice-versa.
162 162  )))|(% style="text-align:center; width:113px" %)Max per servo
163 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| | ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
164 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0
165 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
166 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| | | ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
167 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | | | |none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((
168 -Limp
161 +| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| LED| QLED| CLED|| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
162 +| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| G| QG| CG|| | ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
163 +| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0
164 +| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
165 +| 18|//{coming soon}//| | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
166 +
169 169  )))
170 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| | ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp
171 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
172 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %)
173 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
174 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
175 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
176 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
177 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
178 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
179 -| 30a|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1| | | ✓|none|(% style="width:510px" %)(((
180 -Puts the servo into RC mode. To revert to smart mode, use the button menu.
168 +| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstPosition28Degrees2928FD29"]]| | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp
169 +| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %)
170 +| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
171 +| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
172 +| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
173 +| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
174 +| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
175 +| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
176 +| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | |CRC|✓| | ✓|none|(% style="width:510px" %)(((
177 +Change to RC mode 1 (position) or 2 (wheel).
181 181  )))|(% style="text-align:center; width:113px" %)Serial
182 -| 30b|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2| | | ✓| |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
183 -| 31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
184 -| 32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
185 -| 33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
179 +| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
180 +| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
181 +| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
186 186  
187 187  == Advanced ==
188 188  
189 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
190 -| A1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0
191 -| A2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1
192 -| A3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
193 -| A4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
194 -| A5|[[**E**nable **M**otion Control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %)
195 -| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)(((
185 +|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes
186 +| A1|[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|AS|QAS|CAS|✓| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4
187 +| A2|[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|AH|QAH|CAH|✓| | ✓|none (integer -10 to +10)|(% style="width:510px" %)Effect is different between serial and RC
188 +| A3|[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
189 +| A4|[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared
190 +| A5|[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|EM|QEM| | | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable
191 +| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]| | | CLB| | ✓| |none (integer from 0 to 63)|(% style="width:510px" %)(((
196 196  0=No blinking, 63=Always blink;
197 197  
198 198  Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
199 -)))|(% style="text-align:center; width:113px" %)
195 +)))
200 200  
201 201  == Details ==
202 202  
... ... @@ -212,7 +212,7 @@
212 212  
213 213  This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position.
214 214  
215 -====== __3. Timed move (**T**)__ ======
211 +====== __3. Timed move (**T**) modifier__ ======
216 216  
217 217  Example: #5P1500T2500<cr>
218 218  
... ... @@ -220,7 +220,7 @@
220 220  
221 221  Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
222 222  
223 -====== __4. Speed (**S**)__ ======
219 +====== __4. Speed (**S**) modifier__ ======
224 224  
225 225  Example: #5P1500S750<cr>
226 226  
... ... @@ -284,7 +284,7 @@
284 284  
285 285  Example: #5P2334<cr>
286 286  
287 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected to end points.
283 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.
288 288  
289 289  Query Position in Pulse (**QP**)
290 290  
... ... @@ -307,6 +307,13 @@
307 307  
308 308  This means the servo is located at 13.2 degrees.
309 309  
306 +(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %)
307 +Query Target Position in Degrees (**QDT**)
308 +
309 +Ex: #5QDT<cr> might return *5QDT6783<cr>
310 +
311 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
312 +
310 310  ====== __10. Wheel Mode in Degrees (**WD**)__ ======
311 311  
312 312  Ex: #5WD900<cr>
... ... @@ -331,22 +331,22 @@
331 331  
332 332  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
333 333  
334 -====== __12. Speed in Degrees (**SD**)__ ======
337 +====== __12. Max Speed in Degrees (**SD**)__ ======
335 335  
336 336  Ex: #5SD1800<cr>
337 337  
338 -This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
341 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
339 339  
340 340  Query Speed in Degrees (**QSD**)
341 341  
342 342  Ex: #5QSD<cr> might return *5QSD1800<cr>
343 343  
344 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed.
347 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed.
345 345  If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
346 346  
347 347  |**Command sent**|**Returned value (1/10 °)**
348 348  |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
349 -|ex: #5QSD1<cr>|Configured maximum speed  (set by CSD/CSR)
352 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
350 350  |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
351 351  |ex: #5QSD3<cr>|Target travel speed
352 352  
... ... @@ -356,22 +356,22 @@
356 356  
357 357  Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
358 358  
359 -====== __13. Speed in RPM (**SR**)__ ======
362 +====== __13. Max Speed in RPM (**SR**)__ ======
360 360  
361 361  Ex: #5SD45<cr>
362 362  
363 -This command sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
366 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
364 364  
365 365  Query Speed in Degrees (**QSR**)
366 366  
367 367  Ex: #5QSR<cr> might return *5QSR45<cr>
368 368  
369 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed.
372 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed.
370 370  If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
371 371  
372 372  |**Command sent**|**Returned value (1/10 °)**
373 373  |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
374 -|ex: #5QSR1<cr>|Configured maximum speed  (set by CSD/CSR)
377 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
375 375  |ex: #5QSR2<cr>|Instantaneous speed (same as QWR)
376 376  |ex: #5QSR3<cr>|Target travel speed
377 377  
... ... @@ -379,288 +379,319 @@
379 379  
380 380  Ex: #5CSR45<cr>
381 381  
382 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
385 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
383 383  
384 -====== __14. Angular Stiffness (**AS**)__ ======
387 +====== __14. LED Color (**LED**)__ ======
385 385  
386 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
389 +Ex: #5LED3<cr>
387 387  
388 -A positive value of "angular stiffness":
391 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
389 389  
390 -* The more torque will be applied to try to keep the desired position against external input / changes
391 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
393 +0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE 
392 392  
393 -A negative value on the other hand:
395 +Query LED Color (**QLED**)
394 394  
395 -* Causes a slower acceleration to the travel speed, and a slower deceleration
396 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back
397 +Ex: #5QLED<cr> might return *5QLED5<cr>
397 397  
398 -The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior.
399 +This simple query returns the indicated servo's LED color.
399 399  
400 -Ex: #5AS-2<cr>
401 +Configure LED Color (**CLED**)
401 401  
402 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
403 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
403 403  
404 -Ex: #5QAS<cr>
405 +====== __15. Gyre Rotation Direction (**G**)__ ======
405 405  
406 -Queries the value being used.
407 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
407 407  
408 -Ex: #5CAS<cr>
409 +Ex: #5G-1<cr>
409 409  
410 -Writes the desired angular stiffness value to memory.
411 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
411 411  
412 -====== __15. Angular Hold Stiffness (**AH**)__ ======
413 +Query Gyre Direction (**QG**)
413 413  
414 -The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
415 +Ex: #5QG<cr> might return *5QG-1<cr>
415 415  
416 -Ex: #5AH3<cr>
417 +The value returned above means the servo is in a counter-clockwise gyration.
417 417  
418 -This sets the holding stiffness for servo #5 to 3 for that session.
419 +Configure Gyre (**CG**)
419 419  
420 -Query Angular Hold Stiffness (**QAH**)
421 +Ex: #5CG-1<cr>
421 421  
422 -Ex: #5QAH<cr> might return *5QAH3<cr>
423 +This changes the gyre direction as described above and also writes to EEPROM.
423 423  
424 -This returns the servo's angular holding stiffness value.
425 +====== __16. Identification Number (**ID**)__ ======
425 425  
426 -Configure Angular Hold Stiffness (**CAH**)
427 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate).
427 427  
428 -Ex: #5CAH2<cr>
429 +Query Identification (**QID**)
429 429  
430 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM
431 +EX: #254QID<cr> might return *QID5<cr>
431 431  
432 -====== __15b: Angular Acceleration (**AA**)__ ======
433 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
433 433  
434 -{More details to come}
435 +Configure ID (**CID**)
435 435  
436 -====== __15c: Angular Deceleration (**AD**)__ ======
437 +Ex: #4CID5<cr>
437 437  
438 -{More details to come}
439 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.
439 439  
440 -====== __15d: Motion Control (**EM**)__ ======
441 +====== __17. Baud Rate__ ======
441 441  
442 -{More details to come}
443 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.
443 443  
444 -====== __16. RGB LED (**LED**)__ ======
445 +Query Baud Rate (**QB**)
445 445  
446 -Ex: #5LED3<cr>
447 +Ex: #5QB<cr> might return *5QB9600<cr>
447 447  
448 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
449 +Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.
449 449  
450 -0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE 
451 +Configure Baud Rate (**CB**)
451 451  
452 -Query LED Color (**QLED**)
453 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.
453 453  
454 -Ex: #5QLED<cr> might return *5QLED5<cr>
455 +Ex: #5CB9600<cr>
455 455  
456 -This simple query returns the indicated servo's LED color.
457 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
457 457  
458 -Configure LED Color (**CLED**)
459 +====== __18. {//Coming soon//}__ ======
459 459  
460 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
461 +Command coming soon....
461 461  
462 -====== __16b. Configure LED Blinking (**CLB**)__ ======
463 +====== __19. First Position (Degrees) (**FD**)__ ======
463 463  
464 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details).
465 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
465 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
466 466  
467 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
467 +Query First Position in Degrees (**QFD**)
468 468  
469 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
470 -Ex: #5CLB1<cr> only blink when limp
471 -Ex: #5CLB2<cr> only blink when holding
472 -Ex: #5CLB12<cr> only blink when accel or decel
473 -Ex: #5CLB48<cr> only blink when free or travel
474 -Ex: #5CLB63<cr> blink in all status
469 +Ex: #5QFD<cr> might return *5QFD64<cr>
475 475  
476 -====== __17. Identification Number__ ======
471 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds.
477 477  
478 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
473 +Configure First Position in Degrees (**CFD**)
479 479  
480 -Query Identification (**QID**)
475 +Ex: #5CD64<cr>
481 481  
482 -EX: #254QID<cr> might return *QID5<cr>
477 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up.
483 483  
484 -When using the query ID command, it is best to only have one servo connected and thus receive only one reply using the broadcast command (ID 254). Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
479 +====== __20. Query Model String (**QMS**)__ ======
485 485  
486 -Configure ID (**CID**)
481 +Ex: #5QMS<cr> might return *5QMSLSS-HS1cr>
487 487  
488 -Ex: #4CID5<cr>
483 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
489 489  
490 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.
485 +====== __21. Query Serial Number (**QN**)__ ======
491 491  
492 -====== __18. Baud Rate__ ======
487 +Ex: #5QN<cr> might return *5QN12345678<cr>
493 493  
494 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.
495 -\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out.
489 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.
496 496  
497 -Query Baud Rate (**QB**)
491 +====== __22. Query Firmware (**QF**)__ ======
498 498  
499 -Ex: #5QB<cr> might return *5QB9600<cr>
493 +Ex: #5QF<cr> might return *5QF411<cr>
500 500  
501 -Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled.
495 +The number in the reply represents the firmware version, in this example being 411.
502 502  
503 -Configure Baud Rate (**CB**)
497 +====== __23. Query Status (**Q**)__ ======
504 504  
505 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled.
499 +The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses.
506 506  
507 -Ex: #5CB9600<cr>
501 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
508 508  
509 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
503 +|***Value returned (Q)**|**Status**|**Detailed description**
504 +|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
505 +|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
506 +|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely
507 +|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
508 +|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
509 +|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
510 +|ex: *5Q6<cr>|6: Holding|Keeping current position
511 +|ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
512 +|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
513 +|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
514 +|ex: *5Q10<cr>|10: Safe Mode|(((
515 +A safety limit has been exceeded (temperature, peak current or extended high current draw).
510 510  
511 -====== __19. Gyre Rotation Direction__ ======
517 +Send a Q1 command to know which limit has been reached (described below).
518 +)))
512 512  
513 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
520 +(% class="wikigeneratedid" %)
521 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
514 514  
515 -{images showing before and after with AR and Origin offset}
523 +|***Value returned (Q1)**|**Status**|**Detailed description**
524 +|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
525 +|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
526 +|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
527 +|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
516 516  
517 -Query Gyre Direction (**QG**)
529 +====== __24. Query Voltage (**QV**)__ ======
518 518  
519 -Ex: #5QG<cr> might return *5QG-1<cr>
531 +Ex: #5QV<cr> might return *5QV11200<cr>
520 520  
521 -The value returned above means the servo is in a counter-clockwise gyration.
533 +The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
522 522  
523 -Configure Gyre (**CG**)
535 +====== __25. Query Temperature (**QT**)__ ======
524 524  
525 -Ex: #5CG-1<cr>
537 +Ex: #5QT<cr> might return *5QT564<cr>
526 526  
527 -This changes the gyre direction as described above and also writes to EEPROM.
539 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
528 528  
529 -====== __20. First / Initial Position (pulse)__ ======
541 +====== __26. Query Current (**QC**)__ ======
530 530  
531 -In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
543 +Ex: #5QC<cr> might return *5QC140<cr>
532 532  
533 -Query First Position in Pulses (**QFP**)
545 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
534 534  
535 -Ex: #5QFP<cr> might return *5QFP1550<cr>
547 +====== __27. Configure RC Mode (**CRC**)__ ======
536 536  
537 -The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If no first position has been set, servo will respond with DIS ("disabled").
549 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
538 538  
539 -Configure First Position in Pulses (**CFP**)
551 +|**Command sent**|**Note**
552 +|ex: #5CRC1<cr>|Change to RC position mode.
553 +|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode.
554 +|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode.
540 540  
541 -Ex: #5CP1550<cr>
556 +EX: #5CRC2<cr>
542 542  
543 -This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled).
558 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.
544 544  
545 -====== __21. First / Initial Position (Degrees)__ ======
560 +Important note:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:Lynxmotion Smart Servo (LSS).LSS - Button Menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.
546 546  
547 -In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
562 +====== __28. **RESET**__ ======
548 548  
549 -Query First Position in Degrees (**QFD**)
564 +Ex: #5RESET<cr> or #5RS<cr>
550 550  
551 -Ex: #5QFD<cr> might return *5QFD64<cr>
566 +This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
552 552  
553 -The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds.
568 +====== __29. **DEFAULT** & CONFIRM__ ======
554 554  
555 -Configure First Position in Degrees (**CFD**)
570 +Ex: #5DEFAULT<cr>
556 556  
557 -Ex: #5CD64<cr>
572 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
558 558  
559 -This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up.
574 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
560 560  
561 -====== __22. Query Target Position in Degrees (**QDT**)__ ======
576 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
562 562  
563 -Ex: #5QDT<cr> might return *5QDT6783<cr>
578 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
564 564  
565 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
580 +====== __30. **UPDATE** & CONFIRM__ ======
566 566  
567 -====== __23. Query Model String (**QMS**)__ ======
582 +Ex: #5UPDATE<cr>
568 568  
569 -Ex: #5QMS<cr> might return *5QMSLSS-HS1cr>
584 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
570 570  
571 -This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
586 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
572 572  
573 -====== __23b. Query Model (**QM**)__ ======
588 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
574 574  
575 -Ex: #5QM<cr> might return *5QM68702699520cr>
590 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
576 576  
577 -This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision.
592 += Advanced =
578 578  
579 -====== __24. Query Serial Number (**QN**)__ ======
594 +The motion controller used in serial mode is not the same as the motion controller use in RC mode. RC mode is intended to add functionality to what would be considered "normal" RC behavior based on PWM input.
580 580  
581 -Ex: #5QN<cr> might return *5QN~_~_<cr>
596 +====== __A1. Angular Stiffness (**AS**)__ ======
582 582  
583 -The number in the response is the servo's serial number which is set and cannot be changed.
598 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.
584 584  
585 -====== __25. Query Firmware (**QF**)__ ======
600 +A positive value of "angular stiffness":
586 586  
587 -Ex: #5QF<cr> might return *5QF11<cr>
602 +* The more torque will be applied to try to keep the desired position against external input / changes
603 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
588 588  
589 -The integer in the reply represents the firmware version with one decimal, in this example being 1.1
605 +A negative value on the other hand:
590 590  
591 -====== __26. Query Status (**Q**)__ ======
607 +* Causes a slower acceleration to the travel speed, and a slower deceleration
608 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back
592 592  
593 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
610 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
594 594  
595 -|*Value returned|**Status**|**Detailed description**
596 -|ex: *5Q0<cr>|Unknown|LSS is unsure
597 -|ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely
598 -|ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely
599 -|ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed
600 -|ex: *5Q4<cr>|Traveling|Moving at a stable speed
601 -|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position.
602 -|ex: *5Q6<cr>|Holding|Keeping current position
603 -|ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque
604 -|ex: *5Q8<cr>|Outside limits|{More details coming soon}
605 -|ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting
606 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
612 +Ex: #5AS-2<cr>
607 607  
608 -====== __27. Query Voltage (**QV**)__ ======
614 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
609 609  
610 -Ex: #5QV<cr> might return *5QV11200<cr>
616 +Ex: #5QAS<cr>
611 611  
612 -The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
618 +Queries the value being used.
613 613  
614 -====== __28. Query Temperature (**QT**)__ ======
620 +Ex: #5CAS<cr>
615 615  
616 -Ex: #5QT<cr> might return *5QT564<cr>
622 +Writes the desired angular stiffness value to memory.
617 617  
618 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
624 +====== __A2. Angular Holding Stiffness (**AH**)__ ======
619 619  
620 -====== __29. Query Current (**QC**)__ ======
626 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
621 621  
622 -Ex: #5QC<cr> might return *5QC140<cr>
628 +Ex: #5AH3<cr>
623 623  
624 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
630 +This sets the holding stiffness for servo #5 to 3 for that session.
625 625  
626 -====== __30. RC Mode (**CRC**)__ ======
632 +Query Angular Hold Stiffness (**QAH**)
627 627  
628 -This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
634 +Ex: #5QAH<cr> might return *5QAH3<cr>
629 629  
630 -|**Command sent**|**Note**
631 -|ex: #5CRC<cr>|Stay in smart mode.
632 -|ex: #5CRC1<cr>|Change to RC position mode.
633 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode.
634 -|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode.
636 +This returns the servo's angular holding stiffness value.
635 635  
636 -EX: #5CRC<cr>
638 +Configure Angular Hold Stiffness (**CAH**)
637 637  
638 -====== __31. RESET__ ======
640 +Ex: #5CAH2<cr>
639 639  
640 -Ex: #5RESET<cr> or #5RS<cr>
642 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. Note that when  considering altering a stiffness value, the end effect depends on the mode being tested.
641 641  
642 -This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
644 +====== __A3: Angular Acceleration (**AA**)__ ======
643 643  
644 -====== __32. DEFAULT & CONFIRM__ ======
646 +The default value for angular acceleration is 100, which is the same as the maximum deceleration. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
645 645  
646 -Ex: #5DEFAULT<cr>
648 +Ex: #5AA30<cr>
647 647  
648 -This command sets in motion the reset all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
650 +Query Angular Acceleration (**QAD**)
649 649  
650 -EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
652 +Ex: #5QA<cr> might return *5QA30<cr>
651 651  
652 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
654 +Configure Angular Acceleration (**CAD**)
653 653  
654 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
656 +Ex: #5CA30<cr>
655 655  
656 -====== __33. UPDATE & CONFIRM__ ======
658 +====== __A4: Angular Deceleration (**AD**)__ ======
657 657  
658 -Ex: #5UPDATE<cr>
660 +The default value for angular deceleration is 100, which is the same as the maximum acceleration. Values between 1 and 15 have the greatest impact.
659 659  
660 -This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
662 +Ex: #5AD8<cr>
661 661  
662 -EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
664 +Query Angular Deceleration (**QAD**)
663 663  
664 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
666 +Ex: #5QD<cr> might return *5QD8<cr>
665 665  
666 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
668 +Configure Angular Deceleration (**CAD**)
669 +
670 +Ex: #5CD8<cr>
671 +
672 +====== __A5: Motion Control (**EM**)__ ======
673 +
674 +{More details to come}
675 +
676 +====== __A6. Configure LED Blinking (**CLB**)__ ======
677 +
678 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:
679 +
680 +(% style="width:195px" %)
681 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#**
682 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0
683 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1
684 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2
685 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4
686 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8
687 +|(% style="width:134px" %)Free|(% style="width:58px" %)16
688 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32
689 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63
690 +
691 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
692 +
693 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
694 +Ex: #5CLB1<cr> only blink when limp (1)
695 +Ex: #5CLB2<cr> only blink when holding (2)
696 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)
697 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)
698 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)
699 +
700 +RESETTING the servo is needed.
Copyright RobotShop 2018