Last modified by Eric Nantel on 2025/06/06 07:47

From version < 96.1 >
edited by Coleman Benson
on 2019/02/01 16:02
To version < 214.1 >
edited by Eric Nantel
on 2024/11/21 09:18
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Title
... ... @@ -1,1 +1,1 @@
1 -LSS - Communication Protocol
1 +LSS Communication Protocol
Parent
... ... @@ -1,1 +1,1 @@
1 -Lynxmotion Smart Servo (LSS).WebHome
1 +ses-v2.lynxmotion-smart-servo.WebHome
Author
... ... @@ -1,1 +1,1 @@
1 -xwiki:XWiki.CBenson
1 +xwiki:XWiki.ENantel
Content
... ... @@ -1,114 +4,129 @@
1 -(% class="wikigeneratedid" id="HTableofContents" %)
2 -**Table of Contents**
3 -
4 4  {{toc depth="3"/}}
5 5  
6 -= Serial Protocol Concept =
3 += Serial Protocol =
7 7  
8 -The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 RC servo controller and almost everything one might expect to be able to configure for a smart servo motor is available.
5 +The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available.
9 9  
10 -In order to have servos react differently when commands are sent to all servos in a serial bus, the first step a user should take is to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol.
7 +In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>path:#HIdentificationNumber28ID29]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
11 11  
9 +|(% colspan="2" %)(((
12 12  == Session ==
13 -
11 +)))
12 +|(% style="width:25px" %) |(((
14 14  A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
15 15  
16 -Note that for a given session, the action related to a specific commands overrides the stored value in EEPROM.
15 +**Note 1:** For a given session, the action related to a specific command overrides the stored value in EEPROM.
17 17  
18 -== Action Commands ==
17 +**Note 2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).
19 19  
20 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
19 +**Note 3:** You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r described below). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays.
20 +)))
21 21  
22 -1. Start with a number sign # (U+0023)
23 -1. Servo ID number as an integer
24 -1. Action command (one to three letters, no spaces, capital or lower case)
22 +|(% colspan="2" %)(((
23 +== Action Commands ==
24 +)))
25 +|(% style="width:25px" %) |(((
26 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HVirtualAngularPosition]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
27 +
28 +1. Start with a number sign **#** (Unicode Character: U+0023)
29 +1. Servo ID number as an integer (assigning an ID described below)
30 +1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
25 25  1. Action value in the correct units with no decimal
26 -1. End with a control / carriage return '<cr>'
32 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
27 27  
28 -(((
29 -Ex: #5PD1443<cr>
34 +Ex: #5D1800<cr>
30 30  
31 -This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
36 +This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
37 +)))
32 32  
33 -== Action Modifiers ==
39 +|(% colspan="2" %)(((
40 +== Modifiers ==
41 +)))
42 +|(% style="width:25px" %) |(((
43 +Modifiers can only be used with certain **action commands**. The format to include a modifier is:
34 34  
35 -Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is:
36 -
37 -1. Start with a number sign # (U+0023)
45 +1. Start with a number sign **#** (Unicode Character: U+0023)
38 38  1. Servo ID number as an integer
39 -1. Action command (one to three letters, no spaces, capital or lower case)
47 +1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
40 40  1. Action value in the correct units with no decimal
41 -1. Modifier command (one letter)
49 +1. Modifier command (one or two letters from the list of modifiers below)
42 42  1. Modifier value in the correct units with no decimal
43 -1. End with a control / carriage return '<cr>'
51 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
44 44  
45 -Ex: #5P1456T1263<cr>
53 +Ex: #5D1800T1500<cr>
46 46  
47 -This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds.
55 +This results in the servo with ID #5 rotating ta position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).
48 48  )))
49 49  
58 +|(% colspan="2" %)(((
50 50  == Query Commands ==
51 -
60 +)))
61 +|(% style="width:25px" %) |(((
52 52  Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
53 53  
54 -1. Start with a number sign # (U+0023)
64 +1. Start with a number sign **#** (Unicode Character: U+0023)
55 55  1. Servo ID number as an integer
56 -1. Query command (one to three letters, no spaces, capital or lower case)
57 -1. End with a control / carriage return '<cr>'
66 +1. Query command (one to four letters, no spaces, capital or lower case)
67 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
58 58  
59 -(((
60 -Ex: #5QD<cr>Query position in degrees for servo #5
61 -)))
69 +Ex: #5QD<cr> Query the position in (tenth of) degrees for servo with ID #5
62 62  
63 -(((
64 64  The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
65 65  
66 -1. Start with an asterisk * (U+002A)
73 +1. Start with an asterisk * (Unicode Character: U+0023)
67 67  1. Servo ID number as an integer
68 -1. Query command (one to three letters, no spaces, capital letters)
75 +1. Query command (one to four letters, no spaces, capital letters)
69 69  1. The reported value in the units described, no decimals.
70 -1. End with a control / carriage return '<cr>'
77 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
71 71  
72 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be:
79 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:
73 73  
74 -(((
75 -Ex: *5QD1443<cr>
81 +Ex: *5QD1800<cr>
82 +
83 +This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees).
76 76  )))
77 77  
78 -This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees).
79 -
86 +|(% colspan="2" %)(((
80 80  == Configuration Commands ==
88 +)))
89 +|(% style="width:25px" %) |(((
90 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.
81 81  
82 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
92 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-radio-control-pwm/]]. Configuration commands are not cumulative. This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.
83 83  
84 -1. Start with a number sign # (U+0023)
94 +The format to send a configuration command is identical to that of an action command:
95 +
96 +1. Start with a number sign **#** (Unicode Character: U+0023)
85 85  1. Servo ID number as an integer
86 -1. Configuration command (two to three letters, no spaces, capital or lower case)
98 +1. Configuration command (two to four letters, no spaces, capital or lower case)
87 87  1. Configuration value in the correct units with no decimal
88 -1. End with a control / carriage return '<cr>'
100 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
89 89  
90 90  Ex: #5CO-50<cr>
91 91  
92 -This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below.
104 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).
93 93  
94 94  **Session vs Configuration Query**
95 95  
96 -By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
108 +By default, the query command returns the session'value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
97 97  
98 -Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
110 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
99 99  
100 100  After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
101 101  
102 -#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas
114 +#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas
103 103  
104 104  #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
117 +)))
105 105  
119 +|(% colspan="2" %)(((
106 106  == Virtual Angular Position ==
121 +)))
122 +|(% style="width:25px" %) |(((
123 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
107 107  
108 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
125 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
109 109  
110 -[[image:LSS-servo-positions.jpg]]
111 -
112 112  In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
113 113  
114 114  #1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
... ... @@ -115,215 +115,275 @@
115 115  
116 116  #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
117 117  
118 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
133 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
119 119  
120 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
135 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
121 121  
122 -#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
137 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
123 123  
124 124  #1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).
125 125  
126 -If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified).
141 +If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°].
127 127  )))
128 128  
129 129  = Command List =
130 130  
131 -|= #|=Description|= Action|= Query|= Config|=(((
132 -Config Affects
146 +**Latest firmware version currently : 370**
133 133  
134 -Session
135 -)))|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
136 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
137 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
138 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)
139 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)
140 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
141 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| | ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
142 -0
143 -)))
144 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| | ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((
145 -1800
146 -)))
147 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | | ✓|microseconds|(% style="width:510px" %)(((
148 -Inherited from SSC-32 serial protocol
149 -)))|(% style="text-align:center; width:113px" %)
150 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
151 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
152 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)
153 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| | ✓| ✓|tenths of degrees per second |(% style="width:510px" %)(((
154 -QSD: Add modifier "2" for instantaneous speed.
148 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Communication Setup**>>path:#HCommunicationSetup]]
149 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
150 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Reset**>>path:#HReset]]|RESET| | | |✓| | |Soft reset. See command for details.
151 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Default** Configuration>>path:#HDefault26confirm]]|DEFAULT| | | |✓| | |Revert to firmware default values. See command for details
152 +| |[[Firmware (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Update** Mode>>path:#HUpdate26confirm]]|UPDATE| | | |✓| | |Update firmware. See command for details.
153 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Confirm** Changes>>path:#HConfirm]]|CONFIRM| | | |✓| | |
154 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**hange to **RC**>>path:#HConfigureRCMode28CRC29]]| | |CRC| |✓| | |Change to RC mode 1 (position) or 2 (wheel).
155 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**ID** #>>path:#HIdentificationNumber28ID29]]| |QID|CID| |✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
156 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**B**audrate>>path:#HBaudRate]]| |QB|CB| |✓|115200| |Reset required after change.
155 155  
156 -SD overwrites SR / CSD overwrites CSR and vice-versa.
157 -)))|(% style="text-align:center; width:113px" %)Max per servo
158 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| | ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((
159 -QSR: Add modifier "2" for instantaneous speed
158 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion**>>path:#HMotion]]
159 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
160 +| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**D**egrees>>path:#HPositioninDegrees28D29]]|D|QD/QDT| | |✓| |1/10°|
161 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in **D**egrees (relative)>>path:#H28Relative29MoveinDegrees28MD29]]|MD| | | |✓| |1/10°|
162 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **D**egrees>>path:#HWheelModeinDegrees28WD29]]|WD|QWD/QVT| | |✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation"
163 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **R**PM>>path:#HWheelModeinRPM28WR29]]|WR|QWR| | |✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation"
164 +| |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**P**WM>>path:#HPositioninPWM28P29]]|P|QP| | |✓| |us|Inherited from SSC-32 serial protocol
165 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in PWM (relative)>>path:#H28Relative29MoveinPWM28M29]]|M| | | |✓| |us|
166 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**R**aw **D**uty-cycle **M**ove>>path:#HRawDuty-cycleMove28RDM29]]|RDM|QMD| | |✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW
167 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery Status>>path:#HQueryStatus28Q29]]| |Q| | |✓| |1 to 8 integer|See command description for details
168 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**L**imp>>path:#HLimp28L29]]|L| | | |✓| | |
169 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**H**alt & Hold>>path:#HHalt26Hold28H29]]|H| | | |✓| | |
160 160  
161 -SR overwrites SD / CSR overwrites CSD and vice-versa.
162 -)))|(% style="text-align:center; width:113px" %)Max per servo
163 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| | ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
164 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0
165 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
166 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| | ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
167 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((
168 -Limp
169 -)))
170 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| | ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp
171 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
172 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %)
173 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
174 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
175 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
176 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
177 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
178 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
179 -| 30a|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1| | | ✓|none|(% style="width:510px" %)(((
180 -Puts the servo into RC mode. To revert to smart mode, use the button menu.
181 -)))|(% style="text-align:center; width:113px" %)Serial
182 -| 30b|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2| | | ✓| |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
183 -| 31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
184 -| 32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
185 -| 33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
171 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion Setup**>>path:#HMotionSetup]]
172 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
173 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**E**nable **M**otion Profile>>path:#HEnableMotionProfile28EM29]]|EM|QEM|CEM| |✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile
174 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**ilter **P**osition **C**ount>>path:#HFilterPositionCount28FPC29]]|FPC|QFPC|CFPC|✓|✓|5| |Affects motion only when motion profile is disabled (EM0)
175 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**O**rigin Offset>>path:#HOriginOffset28O29]]|O|QO|CO|✓|✓|0|1/10°|
176 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **R**ange>>path:#HAngularRange28AR29]]|AR|QAR|CAR|✓|✓|1800|1/10°|
177 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **S**tiffness>>path:#HAngularStiffness28AS29]]|AS|QAS|CAS|✓|✓|0|-4 to +4 integer|Suggested values are between 0 to +4
178 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **H**olding Stiffness>>path:#HAngularHoldingStiffness28AH29]]|AH|QAH|CAH|✓|✓|4|-10 to +10 integer|
179 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **A**cceleration>>path:#HAngularAcceleration28AA29]]|AA|QAA|CAA| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
180 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **D**eceleration>>path:#HAngularDeceleration28AD29]]|AD|QAD|CAD| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
181 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**G**yre Direction>>path:#HGyreDirection28G29]]|G|QG|CG|✓|✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
182 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**irst Position (**D**eg)>>path:#HFirstPosition]]| |QFD|CFD|✓|✓|No value|1/10°|Reset required after change.
183 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**aximum **M**otor **D**uty>>path:#HMaximumMotorDuty28MMD29]]|MMD|QMMD| | |✓|1023|255 to 1023 integer|
184 +| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HMaximumSpeedinDegrees28SD29]]|SD|QSD|CSD|✓|✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
185 +| |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **R**PM>>path:#HMaximumSpeedinRPM28SR29]]|SR|QSR|CSR|✓|✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
186 186  
187 -== Advanced ==
187 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Modifiers**>>path:#HModifiers]]
188 +| |**Description**|**Modifier**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
189 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed>>path:#HSpeed28S2CSD29modifier]]|S|QS| | |✓| |uS/s |For P action command
190 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HSpeed28S2CSD29modifier]]|SD| | | |✓| |0.1°/s|For D and MD action commands
191 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**T**imed move>>path:#HTimedmove28T29modifier]]|T| | | |✓| |ms|Modifier only for P, D and MD. Time can change based on load
192 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **H**old>>path:#HCurrentHalt26Hold28CH29modifier]]|CH| | | |✓| |mA|Modifier for D, MD, WD and WR
193 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **L**imp>>path:#HCurrentLimp28CL29modifier]]|CL| | | |✓| |mA|Modifier for D, MD, WD and WR
188 188  
189 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value
190 -| A1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0
191 -| A2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1
192 -| A3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
193 -| A4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)
194 -| A5|[[**E**nable **M**otion Control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %)
195 -| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)(((
196 -0=No blinking, 63=Always blink;
195 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Telemetry**>>path:#HTelemetry]]
196 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
197 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **V**oltage>>path:#HQueryVoltage28QV29]]| |QV| | |✓| |mV|
198 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **T**emperature>>path:#HQueryTemperature28QT29]]| |QT| | |✓| |1/10°C|
199 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **C**urrent>>path:#HQueryCurrent28QC29]]| |QC| | |✓| |mA|
200 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **M**odel **S**tring>>path:#HQueryModelString28QMS29]]| |QMS| | |✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
201 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **F**irmware Version>>path:#HQueryFirmware28QF29]]| |QF| | |✓| | |
197 197  
198 -Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
199 -)))|(% style="text-align:center; width:113px" %)
203 +|(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**RGB LED**>>path:#HRGBLED]]
204 +| |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
205 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**LED** Color>>path:#HLEDColor28LED29]]|LED|QLED|CLED|✓|✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
206 +| |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**onfigure **L**ED **B**linking>>path:#HConfigureLEDBlinking28CLB29]]| | |CLB|✓|✓| |0 to 63 integer|Reset required after change. See command for details.
200 200  
201 -== Details ==
208 += Details =
202 202  
203 -====== __1. Limp (**L**)__ ======
210 +== Communication Setup ==
204 204  
205 -Example: #5L<cr>
212 +|(% colspan="2" %)(((
213 +====== Reset ======
214 +)))
215 +|(% style="width:30px" %) |(((
216 +Ex: #5RESET<cr>
206 206  
207 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
218 +This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HSession]], note #2 for more details.
219 +)))
208 208  
209 -====== __2. Halt & Hold (**H**)__ ======
221 +|(% colspan="2" %)(((
222 +====== Default & confirm ======
223 +)))
224 +|(% style="width:30px" %) |(((
225 +Ex: #5DEFAULT<cr>
210 210  
211 -Example: #5H<cr>
227 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
212 212  
213 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position.
229 +Ex: #5DEFAULT<cr> followed by #5CONFIRM<cr>
214 214  
215 -====== __3. Timed move (**T**)__ ======
231 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
216 216  
217 -Example: #5P1500T2500<cr>
233 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
234 +)))
218 218  
219 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
236 +|(% colspan="2" %)(((
237 +====== Update & confirm ======
238 +)))
239 +|(% style="width:30px" %) |(((
240 +Ex: #5UPDATE<cr>
220 220  
221 -Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
242 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
222 222  
223 -====== __4. Speed (**S**)__ ======
244 +Ex: #5UPDATE<cr> followed by #5CONFIRM<cr>
224 224  
225 -Example: #5P1500S750<cr>
246 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
226 226  
227 -This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
248 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
249 +)))
228 228  
229 -====== __5. (Relative) Move in Degrees (**MD**)__ ======
251 +|(% colspan="2" %)(((
252 +====== Confirm ======
253 +)))
254 +|(% style="width:30px" %) |(((
255 +Ex: #5CONFIRM<cr>
230 230  
231 -Example: #5MD123<cr>
257 +This command is used to confirm changes after a Default or Update command.
232 232  
233 -The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
259 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
260 +)))
234 234  
235 -====== __6. Origin Offset Action (**O**)__ ======
262 +|(% colspan="2" %)(((
263 +====== Configure RC Mode (**CRC**) ======
264 +)))
265 +|(% style="width:30px" %) |(((
266 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
236 236  
237 -Example: #5O2400<cr>
268 +Ex: #5CRC1<cr>
238 238  
239 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
270 +Change to RC position mode.
240 240  
241 -[[image:LSS-servo-default.jpg]]
272 +Ex: #5CRC2<cr>
242 242  
243 -In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
274 +Change to RC continuous rotation (wheel) mode.
244 244  
245 -[[image:LSS-servo-origin.jpg]]
276 +Ex: #5CRC*<cr>
246 246  
247 -Origin Offset Query (**QO**)
278 +Where * is any value other than 1 or 2 (or no value): stay in smart mode
248 248  
249 -Example: #5QO<cr> Returns: *5QO-13
280 +Ex: #5CRC2<cr>
250 250  
251 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
282 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.
252 252  
253 -Configure Origin Offset (**CO**)
284 +**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-button-menu/]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.
285 +)))
254 254  
255 -Example: #5CO-24<cr>
287 +|(% colspan="2" %)(((
288 +====== Identification Number (**ID**) ======
289 +)))
290 +|(% style="width:30px" %) |(((
291 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
256 256  
257 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
293 +Query Identification (**QID**)
258 258  
259 -====== __7. Angular Range (**AR**)__ ======
295 +EX: #254QID<cr> might return *QID5<cr>
260 260  
261 -Example: #5AR1800<cr>
297 +When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
262 262  
263 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
299 +Configure ID (**CID**)
264 264  
265 -[[image:LSS-servo-default.jpg]]
301 +Ex: #4CID5<cr>
266 266  
267 -Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
303 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.
304 +)))
268 268  
269 -[[image:LSS-servo-ar.jpg]]
306 +|(% colspan="2" %)(((
307 +====== Baud Rate ======
308 +)))
309 +|(% style="width:30px" %) |(((
310 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.
270 270  
271 -Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
312 +Query Baud Rate (**QB**)
272 272  
273 -[[image:LSS-servo-ar-o-1.jpg]]
314 +Ex: #5QB<cr> might return *5QB115200<cr>Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.
274 274  
275 -Query Angular Range (**QAR**)
316 +Configure Baud Rate (**CB**)
276 276  
277 -Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
318 +**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.
278 278  
279 -Configure Angular Range (**CAR**)
320 +Ex: #5CB9600<cr>
280 280  
281 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
322 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
323 +)))
282 282  
283 -====== __8. Position in Pulse (**P**)__ ======
325 +|(% colspan="2" %)(((
326 +====== __Automatic Baud Rate__ ======
327 +)))
328 +|(% style="width:30px" %) |(((
329 +This option allows the LSS to listen to it's serial input and select the right baudrate automatically.
284 284  
285 -Example: #5P2334<cr>
331 +Query Automatic Baud Rate (**QABR**)
286 286  
287 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected to end points.
333 +Ex: #5QABR<cr> might return *5ABR0<cr>
288 288  
289 -Query Position in Pulse (**QP**)
335 +Enable Baud Rate (**ABR**)
290 290  
291 -Example: #5QP<cr> might return *5QP2334
337 +Ex: #5QABR1<cr>
292 292  
293 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 
294 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
339 +Enable baudrate detection on first byte received after power-up.
295 295  
296 -====== __9. Position in Degrees (**D**)__ ======
341 +Ex: #5QABR2,30<cr>Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte.
297 297  
298 -Example: #5PD1456<cr>
343 +Warning: ABR doesnt work well with LSS Config at the moment.
344 +)))
299 299  
300 -This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction.
346 +== Motion ==
301 301  
302 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position.
348 +|(% colspan="2" %)(((
349 +====== __Position in Degrees (**D**)__ ======
350 +)))
351 +|(% style="width:30px" %) |(((
352 +Ex: #5D1456<cr>
303 303  
354 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.
355 +
356 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above).
357 +
304 304  Query Position in Degrees (**QD**)
305 305  
306 -Example: #5QD<cr> might return *5QD132<cr>
360 +Ex: #5QD<cr> might return *5QD132<cr>
307 307  
308 -This means the servo is located at 13.2 degrees.
362 +This means the servo is located at 13.2 degrees.
309 309  
310 -====== __10. Wheel Mode in Degrees (**WD**)__ ======
364 +Query Target Position in Degrees (**QDT**)
311 311  
312 -Ex: #5WD900<cr>
366 +Ex: #5QDT<cr> might return *5QDT6783<cr>
313 313  
368 +The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
369 +)))
370 +
371 +|(% colspan="2" %)(((
372 +====== (Relative) Move in Degrees (**MD**) ======
373 +)))
374 +|(% style="width:30px" %) |(((
375 +Ex: #5MD123<cr>
376 +
377 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
378 +)))
379 +
380 +|(% colspan="2" %)(((
381 +====== Wheel Mode in Degrees (**WD**) ======
382 +)))
383 +|(% style="width:30px" %) |(((
384 +Ex: #5WD90<cr>
385 +
314 314  This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
315 315  
316 316  Query Wheel Mode in Degrees (**QWD**)
317 317  
318 -Ex: #5QWD<cr> might return *5QWD900<cr>
390 +Ex: #5QWD<cr> might return *5QWD90<cr>
319 319  
320 -The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
392 +The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
393 +)))
321 321  
322 -====== __11. Wheel Mode in RPM (**WR**)__ ======
323 -
395 +|(% colspan="2" %)(((
396 +====== Wheel Mode in RPM (**WR**) ======
397 +)))
398 +|(% style="width:30px" %) |(((
324 324  Ex: #5WR40<cr>
325 325  
326 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
401 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
327 327  
328 328  Query Wheel Mode in RPM (**QWR**)
329 329  
... ... @@ -330,195 +330,321 @@
330 330  Ex: #5QWR<cr> might return *5QWR40<cr>
331 331  
332 332  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
408 +)))
333 333  
334 -====== __12. Speed in Degrees (**SD**)__ ======
410 +|(% colspan="2" %)(((
411 +====== Position in PWM (**P**) ======
412 +)))
413 +|(% style="width:30px" %) |(((
414 +Ex: #5P2334<cr>
335 335  
336 -Ex: #5SD1800<cr>
416 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>url:https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.
337 337  
338 -This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
418 +Query Position in Pulse (**QP**)
339 339  
340 -Query Speed in Degrees (**QSD**)
420 +Ex: #5QP<cr> might return *5QP2334
341 341  
342 -Ex: #5QSD<cr> might return *5QSD1800<cr>
422 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
423 +)))
343 343  
344 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed.
345 -If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
425 +|(% colspan="2" %)(((
426 +====== __(Relative) Move in PWM (**M**)__ ======
427 +)))
428 +|(% style="width:30px" %) |(((
429 +Ex: #5M1500<cr>
346 346  
347 -|**Command sent**|**Returned value (1/10 °)**
348 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
349 -|ex: #5QSD1<cr>|Configured maximum speed  (set by CSD/CSR)
350 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
351 -|ex: #5QSD3<cr>|Target travel speed
431 +The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
432 +)))
352 352  
353 -Configure Speed in Degrees (**CSD**)
434 +|(% colspan="2" %)(((
435 +====== Raw Duty-cycle Move (**RDM**) ======
436 +)))
437 +|(% style="width:30px" %) |(((
438 +Ex: #5RDM512<cr>
354 354  
355 -Ex: #5CSD1800<cr>
440 +The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.
356 356  
357 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
442 +The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).
358 358  
359 -====== __13. Speed in RPM (**SR**)__ ======
444 +Query Move in Duty-cycle (**QMD**)
360 360  
361 -Ex: #5SD45<cr>
446 +Ex: #5QMD<cr> might return *5QMD512
362 362  
363 -This command sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
448 +This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
449 +)))
364 364  
365 -Query Speed in Degrees (**QSR**)
451 +|(% colspan="2" %)(((
452 +====== Query Status (**Q**) ======
453 +)))
454 +|(% style="width:30px" %) |(((
455 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
366 366  
367 -Ex: #5QSR<cr> might return *5QSR45<cr>
457 +Ex: #5Q<cr> might return *5Q6<cr>
368 368  
369 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed.
370 -If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
459 +which indicates the motor is holding a position.
460 +)))
371 371  
372 -|**Command sent**|**Returned value (1/10 °)**
373 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
374 -|ex: #5QSR1<cr>|Configured maximum speed  (set by CSD/CSR)
375 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWR)
376 -|ex: #5QSR3<cr>|Target travel speed
462 +|(% style="width:30px" %) |***Value returned (Q)**|**Status**|**Detailed description**
463 +| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
464 +| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
465 +| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
466 +| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
467 +| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
468 +| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
469 +| |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding)
470 +| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
471 +| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
472 +| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
473 +| |ex: *5Q10<cr>|10: Safe Mode|(((
474 +A safety limit has been exceeded (temperature, peak current or extended high current draw).
377 377  
378 -Configure Speed in RPM (**CSR**)
476 +Send a Q1 command to know which limit has been reached (described below).
477 +)))
379 379  
380 -Ex: #5CSR45<cr>
479 +|(% style="width:30px" %) |(% colspan="3" rowspan="1" %)If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
480 +| |***Value returned (Q1)**|**Status**|**Detailed description**
481 +| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
482 +| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
483 +| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
484 +| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
381 381  
382 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
486 +|(% colspan="2" %)(((
487 +====== Limp (**L**) ======
488 +)))
489 +|(% style="width:30px" %) |(((
490 +Ex: #5L<cr>
383 383  
384 -====== __14. Angular Stiffness (**AS**)__ ======
492 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
493 +)))
385 385  
386 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
495 +|(% colspan="2" %)(((
496 +====== Halt & Hold (**H**) ======
497 +)))
498 +|(% style="width:30px" %) |(((
499 +Example: #5H<cr>
387 387  
388 -A positive value of "angular stiffness":
501 +This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
502 +)))
389 389  
390 -* The more torque will be applied to try to keep the desired position against external input / changes
391 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
504 +== Motion Setup ==
392 392  
393 -A negative value on the other hand:
506 +|(% colspan="2" %)(((
507 +====== Enable Motion Profile (**EM**) ======
508 +)))
509 +|(% style="width:30px" %) |(((
510 +EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.
394 394  
395 -* Causes a slower acceleration to the travel speed, and a slower deceleration
396 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back
512 +Ex: #5EM1<cr>
397 397  
398 -The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior.
514 +This command enables a trapezoidal motion profile for servo #5
399 399  
400 -Ex: #5AS-2<cr>
516 +Ex: #5EM0<cr>
401 401  
402 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
518 +This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
403 403  
404 -Ex: #5QAS<cr>
520 +Query Motion Profile (**QEM**)
405 405  
406 -Queries the value being used.
522 +Ex: #5QEM<cr> might return *5QEM1<cr>
407 407  
408 -Ex: #5CAS<cr>
524 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.
409 409  
410 -Writes the desired angular stiffness value to memory.
526 +Configure Motion Profile (**CEM**)
411 411  
412 -====== __15. Angular Hold Stiffness (**AH**)__ ======
528 +Ex: #5CEM0<cr>
413 413  
414 -The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
530 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
531 +)))
415 415  
416 -Ex: #5AH3<cr>
533 +|(% colspan="2" %)(((
534 +====== Filter Position Count (**FPC**) ======
535 +)))
536 +|(% style="width:30px" %) |(((
537 +The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
417 417  
418 -This sets the holding stiffness for servo #5 to 3 for that session.
539 +Ex: #5FPC10<cr>
419 419  
420 -Query Angular Hold Stiffness (**QAH**)
541 +This command allows the user to change the Filter Position Count value for that session.
421 421  
422 -Ex: #5QAH<cr> might return *5QAH3<cr>
543 +Query Filter Position Count (**QFPC**)
423 423  
424 -This returns the servo's angular holding stiffness value.
545 +Ex: #5QFPC<cr> might return *5QFPC10<cr>
425 425  
426 -Configure Angular Hold Stiffness (**CAH**)
547 +This command will query the Filter Position Count value.
427 427  
428 -Ex: #5CAH2<cr>
549 +Configure Filter Position Count (**CFPC**)
429 429  
430 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM
551 +Ex: #5CFPC10<cr>
431 431  
432 -====== __15b: Angular Acceleration (**AA**)__ ======
553 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
554 +)))
433 433  
434 -{More details to come}
556 +|(% colspan="2" %)(((
557 +====== Origin Offset (**O**) ======
558 +)))
559 +|(% style="width:30px" %) |(((
560 +Ex: #5O2400<cr>
435 435  
436 -====== __15c: Angular Deceleration (**AD**)__ ======
562 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
437 437  
438 -{More details to come}
564 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
439 439  
440 -====== __15d: Motion Control (**EM**)__ ======
566 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
441 441  
442 -{More details to come}
568 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
443 443  
444 -====== __16. RGB LED (**LED**)__ ======
570 +Origin Offset Query (**QO**)
445 445  
446 -Ex: #5LED3<cr>
572 +Ex: #5QO<cr> might return *5QO-13
447 447  
448 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
574 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
449 449  
450 -0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE 
576 +Configure Origin Offset (**CO**)
451 451  
452 -Query LED Color (**QLED**)
578 +Ex: #5CO-24<cr>
453 453  
454 -Ex: #5QLED<cr> might return *5QLED5<cr>
580 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
581 +)))
455 455  
456 -This simple query returns the indicated servo's LED color.
583 +|(% colspan="2" %)Angular Range (**AR**)(((
584 +====== ======
585 +)))
586 +|(% style="width:30px" %) |(((
587 +Ex: #5AR1800<cr>
457 457  
458 -Configure LED Color (**CLED**)
589 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
459 459  
460 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
591 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
461 461  
462 -====== __16b. Configure LED Blinking (**CLB**)__ ======
593 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
463 463  
464 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details).
465 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
595 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
466 466  
467 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
597 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
468 468  
469 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
470 -Ex: #5CLB1<cr> only blink when limp
471 -Ex: #5CLB2<cr> only blink when holding
472 -Ex: #5CLB12<cr> only blink when accel or decel
473 -Ex: #5CLB48<cr> only blink when free or travel
474 -Ex: #5CLB63<cr> blink in all status
599 +[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
475 475  
476 -====== __17. Identification Number__ ======
601 +Query Angular Range (**QAR**)
477 477  
478 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
603 +Ex: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
479 479  
480 -Query Identification (**QID**)
605 +Configure Angular Range (**CAR**)
481 481  
482 -EX: #254QID<cr> might return *QID5<cr>
607 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
608 +)))
483 483  
484 -When using the query ID command, it is best to only have one servo connected and thus receive only one reply using the broadcast command (ID 254). Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
610 +|(% colspan="2" %)(((
611 +====== Angular Stiffness (**AS**) ======
612 +)))
613 +|(% style="width:30px" %) |(((
614 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.
485 485  
486 -Configure ID (**CID**)
616 +A higher value of "angular stiffness":
487 487  
488 -Ex: #4CID5<cr>
618 +* The more torque will be applied to try to keep the desired position against external input / changes
619 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
489 489  
490 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.
621 +A lower value on the other hand:
491 491  
492 -====== __18. Baud Rate__ ======
623 +* Causes a slower acceleration to the travel speed, and a slower deceleration
624 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back
493 493  
494 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above.
495 -\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out.
626 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
496 496  
497 -Query Baud Rate (**QB**)
628 +Ex: #5AS-2<cr>
498 498  
499 -Ex: #5QB<cr> might return *5QB9600<cr>
630 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
500 500  
501 -Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled.
632 +Ex: #5QAS<cr>
502 502  
503 -Configure Baud Rate (**CB**)
634 +Queries the value being used.
504 504  
505 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled.
636 +Ex: #5CAS-2<cr>Writes the desired angular stiffness value to EEPROM.
637 +)))
506 506  
507 -Ex: #5CB9600<cr>
639 +|(% colspan="2" %)(((
640 +====== Angular Holding Stiffness (**AH**) ======
641 +)))
642 +|(% style="width:30px" %) |(((
643 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
508 508  
509 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
645 +Ex: #5AH3<cr>
510 510  
511 -====== __19. Gyre Rotation Direction__ ======
647 +This sets the holding stiffness for servo #5 to 3 for that session.
512 512  
513 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW).
649 +Query Angular Holding Stiffness (**QAH**)
514 514  
515 -{images showing before and after with AR and Origin offset}
651 +Ex: #5QAH<cr> might return *5QAH3<cr>
516 516  
653 +This returns the servo's angular holding stiffness value.
654 +
655 +Configure Angular Holding Stiffness (**CAH**)
656 +
657 +Ex: #5CAH2<cr>
658 +
659 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
660 +)))
661 +
662 +|(% colspan="2" %)(((
663 +====== Angular Acceleration (**AA**) ======
664 +)))
665 +|(% style="width:30px" %) |(((
666 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
667 +
668 +Ex: #5AA30<cr>
669 +
670 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
671 +
672 +Query Angular Acceleration (**QAA**)
673 +
674 +Ex: #5QAA<cr> might return *5QAA30<cr>
675 +
676 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).
677 +
678 +Configure Angular Acceleration (**CAA**)
679 +
680 +Ex: #5CAA30<cr>
681 +
682 +This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
683 +)))
684 +
685 +|(% colspan="2" %)(((
686 +====== Angular Deceleration (**AD**) ======
687 +)))
688 +|(% style="width:30px" %) |(((
689 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
690 +
691 +Ex: #5AD30<cr>
692 +
693 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
694 +
695 +Query Angular Deceleration (**QAD**)
696 +
697 +Ex: #5QAD<cr> might return *5QAD30<cr>
698 +
699 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).
700 +
701 +Configure Angular Deceleration (**CAD**)
702 +
703 +Ex: #5CAD30<cr>
704 +
705 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
706 +)))
707 +
708 +|(% colspan="2" %)(((
709 +====== Gyre Direction (**G**) ======
710 +)))
711 +|(% style="width:30px" %) |(((
712 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.
713 +
714 +Ex: #5G-1<cr>
715 +
716 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
717 +
517 517  Query Gyre Direction (**QG**)
518 518  
519 519  Ex: #5QG<cr> might return *5QG-1<cr>
520 520  
521 -The value returned above means the servo is in a counter-clockwise gyration.
722 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
522 522  
523 523  Configure Gyre (**CG**)
524 524  
... ... @@ -525,142 +525,272 @@
525 525  Ex: #5CG-1<cr>
526 526  
527 527  This changes the gyre direction as described above and also writes to EEPROM.
729 +)))
528 528  
529 -====== __20. First / Initial Position (pulse)__ ======
731 +|(% colspan="2" %)(((
732 +====== First Position ======
733 +)))
734 +|(% style="width:30px" %) |(((
735 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.
530 530  
531 -In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
737 +Query First Position in Degrees (**QFD**)
532 532  
533 -Query First Position in Pulses (**QFP**)
739 +Ex: #5QFD<cr> might return *5QFD900<cr>
534 534  
535 -Ex: #5QFP<cr> might return *5QFP1550<cr>
741 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.
536 536  
537 -The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If no first position has been set, servo will respond with DIS ("disabled").
743 +Configure First Position in Degrees (**CFD**)
538 538  
539 -Configure First Position in Pulses (**CFP**)
745 +Ex: #5CFD900<cr>
540 540  
541 -Ex: #5CP1550<cr>
747 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
748 +)))
542 542  
543 -This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled).
750 +|(% colspan="2" %)(((
751 +====== Maximum Motor Duty (**MMD**) ======
752 +)))
753 +|(% style="width:30px" %) |(((
754 +This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.
544 544  
545 -====== __21. First / Initial Position (Degrees)__ ======
756 +Ex: #5MMD512<cr>
546 546  
547 -In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.
758 +This will set the duty-cycle to 512 for servo with ID 5 for that session.
548 548  
549 -Query First Position in Degrees (**QFD**)
760 +Query Maximum Motor Duty (**QMMD**)
550 550  
551 -Ex: #5QFD<cr> might return *5QFD64<cr>
762 +Ex: #5QMMDD<cr> might return *5QMMD512<cr>
552 552  
553 -The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds.
764 +This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
765 +)))
554 554  
555 -Configure First Position in Degrees (**CFD**)
767 +|(% colspan="2" %)(((
768 +====== Maximum Speed in Degrees (**SD**) ======
769 +)))
770 +|(% style="width:30px" %) |(((
771 +Ex: #5SD1800<cr>
556 556  
557 -Ex: #5CD64<cr>
773 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
558 558  
559 -This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up.
775 +Query Speed in Degrees (**QSD**)
560 560  
561 -====== __22. Query Target Position in Degrees (**QDT**)__ ======
777 +Ex: #5QSD<cr> might return *5QSD1800<cr>
562 562  
563 -Ex: #5QDT<cr> might return *5QDT6783<cr>
779 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
780 +)))
564 564  
565 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>).
782 +|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)**
783 +| |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
784 +| |ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
785 +| |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
786 +| |ex: #5QSD3<cr>|Target travel speed
566 566  
567 -====== __23. Query Model String (**QMS**)__ ======
788 +|(% style="width:30px" %) |(((
789 +Configure Speed in Degrees (**CSD**)
568 568  
569 -Ex: #5QMS<cr> might return *5QMSLSS-HS1cr>
791 +Ex: #5CSD1800<cr>
570 570  
571 -This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision.
793 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
794 +)))
572 572  
573 -====== __23b. Query Model (**QM**)__ ======
796 +|(% colspan="2" %)(((
797 +====== Maximum Speed in RPM (**SR**) ======
798 +)))
799 +|(% style="width:30px" %) |(((
800 +Ex: #5SR45<cr>
574 574  
575 -Ex: #5QM<cr> might return *5QM68702699520cr>
802 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
576 576  
577 -This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision.
804 +Query Speed in RPM (**QSR**)
578 578  
579 -====== __24. Query Serial Number (**QN**)__ ======
806 +Ex: #5QSR<cr> might return *5QSR45<cr>
580 580  
581 -Ex: #5QN<cr> might return *5QN~_~_<cr>
808 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
809 +)))
582 582  
583 -The number in the response is the servo's serial number which is set and cannot be changed.
811 +|(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)**
812 +| |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
813 +| |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
814 +| |ex: #5QSR2<cr>|Instantaneous speed (same as QWD)
815 +| |ex: #5QSR3<cr>|Target travel speed
584 584  
585 -====== __25. Query Firmware (**QF**)__ ======
817 +|(((
818 +Configure Speed in RPM (**CSR**)
586 586  
587 -Ex: #5QF<cr> might return *5QF11<cr>
820 +Ex: #5CSR45<cr>
588 588  
589 -The integer in the reply represents the firmware version with one decimal, in this example being 1.1
822 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
823 +)))|
590 590  
591 -====== __26. Query Status (**Q**)__ ======
825 +== Modifiers ==
592 592  
593 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.
827 +|(% colspan="2" %)(((
828 +====== Speed (**S**, **SD**) modifier ======
829 +)))
830 +|(% style="width:30px" %) |(((
831 +Ex: #5P1500S750<cr>
594 594  
595 -|*Value returned|**Status**|**Detailed description**
596 -|ex: *5Q0<cr>|Unknown|LSS is unsure
597 -|ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely
598 -|ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely
599 -|ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed
600 -|ex: *5Q4<cr>|Traveling|Moving at a stable speed
601 -|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position.
602 -|ex: *5Q6<cr>|Holding|Keeping current position
603 -|ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque
604 -|ex: *5Q8<cr>|Outside limits|{More details coming soon}
605 -|ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting
606 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
833 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
607 607  
608 -====== __27. Query Voltage (**QV**)__ ======
835 +Ex: #5D0SD180<cr>
609 609  
610 -Ex: #5QV<cr> might return *5QV11200<cr>
837 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.
611 611  
612 -The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery).
839 +Query Speed (**QS**)
613 613  
614 -====== __28. Query Temperature (**QT**)__ ======
841 +Ex: #5QS<cr> might return *5QS300<cr>
615 615  
616 -Ex: #5QT<cr> might return *5QT564<cr>
843 +This command queries the current speed in microseconds per second.
844 +)))
617 617  
618 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.
846 +|(% colspan="2" %)(((
847 +====== Timed move (**T**) modifier ======
848 +)))
849 +|(% style="width:30px" %) |(((
850 +
619 619  
620 -====== __29. Query Current (**QC**)__ ======
852 +Example: #5P1500T2500<cr>
621 621  
854 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
855 +
856 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
857 +)))
858 +
859 +|(% colspan="2" %)(((
860 +====== Current Halt & Hold (**CH**) modifier ======
861 +)))
862 +|(% style="width:30px" %) |(((
863 +Example: #5D1423CH400<cr>
864 +
865 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.
866 +
867 +This modifier can be added to the following actions: D; MD; WD; WR.
868 +)))
869 +
870 +|(% colspan="2" %)(((
871 +====== Current Limp (**CL**) modifier ======
872 +)))
873 +|(% style="width:30px" %) |(((
874 +Example: #5D1423CL400<cr>
875 +
876 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.
877 +
878 +This modifier can be added to the following actions: D; MD; WD; WR.
879 +)))
880 +
881 +== Telemetry ==
882 +
883 +|(% colspan="2" %)(((
884 +====== Query Voltage (**QV**) ======
885 +)))
886 +|(% style="width:30px" %) |(((
887 +Ex: #5QV<cr> might return *5QV11200<cr>
888 +
889 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.
890 +)))
891 +
892 +|(% colspan="2" %)(((
893 +====== Query Current (**QC**) ======
894 +)))
895 +|(% style="width:30px" %) |(((
896 +
897 +
622 622  Ex: #5QC<cr> might return *5QC140<cr>
623 623  
624 624  The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
901 +)))
625 625  
626 -====== __30. RC Mode (**CRC**)__ ======
903 +|(% colspan="2" %)(((
904 +====== Query Model String (**QMS**) ======
905 +)))
906 +|(% style="width:30px" %) |(((
907 +
627 627  
628 -This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
909 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
629 629  
630 -|**Command sent**|**Note**
631 -|ex: #5CRC<cr>|Stay in smart mode.
632 -|ex: #5CRC1<cr>|Change to RC position mode.
633 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode.
634 -|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode.
911 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
912 +)))
635 635  
636 -EX: #5CRC<cr>
914 +|(% colspan="2" %)(((
915 +====== Query Firmware (**QF**) ======
916 +)))
917 +|(% style="width:30px" %) |(((
918 +Ex: #5QF<cr> might return *5QF368<cr>
637 637  
638 -====== __31. RESET__ ======
920 +The number in the reply represents the firmware version, in this example being 368.
639 639  
640 -Ex: #5RESET<cr> or #5RS<cr>
922 +The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
923 +)))
641 641  
642 -This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands).
925 +== RGB LED ==
643 643  
644 -====== __32. DEFAULT & CONFIRM__ ======
927 +|(% colspan="2" %)(((
928 +====== LED Color (**LED**) ======
929 +)))
930 +|(% style="width:30px" %) |(((
931 +
645 645  
646 -Ex: #5DEFAULT<cr>
933 +Ex: #5LED3<cr>
647 647  
648 -This command sets in motion the reset all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
935 +This action sets the servo's RGB LED color for that session.
649 649  
650 -EX: #5DEFAULT<cr> followed by #5CONFIRM<cr>
937 +The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
651 651  
652 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
939 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;
653 653  
654 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
941 +Query LED Color (**QLED**)
655 655  
656 -====== __33. UPDATE & CONFIRM__ ======
943 +Ex: #5QLED<cr> might return *5QLED5<cr>
657 657  
658 -Ex: #5UPDATE<cr>
945 +This simple query returns the indicated servo's LED color.
659 659  
660 -This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
947 +Configure LED Color (**CLED**)
661 661  
662 -EX: #5UPDATE<cr> followed by #5CONFIRM<cr>
949 +Ex: #5CLED3<cr>
663 663  
664 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
951 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.
952 +)))
665 665  
666 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
954 +|(% colspan="2" %)(((
955 +====== Configure LED Blinking (**CLB**) ======
956 +)))
957 +|(% style="width:30px" %) |(((
958 +
959 +
960 +This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:
961 +)))
962 +
963 +|(% style="width:30px" %) |(% style="width:200px" %)**Blink While:**|(% style="width:50px" %)**#**|
964 +| |No blinking|0|
965 +| |Limp|1|
966 +| |Holding|2|
967 +| |Accelerating|4|
968 +| |Decelerating|8|
969 +| |Free|16|
970 +| |Travelling|32|
971 +| |Always blink|63|
972 +
973 +|(% style="width:30px" %) |(((
974 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
975 +
976 +Ex: #5CLB0 to turn off all blinking (LED always solid)
977 +
978 +Ex: #5CLB1 only blink when limp (1)
979 +
980 +Ex: #5CLB2 only blink when holding (2)
981 +
982 +Ex: #5CLB12 only blink when accel or decel (accel 4 + decel 8 = 12)
983 +
984 +Ex: #5CLB48 only blink when free or travel (free 16 + travel 32 = 48)
985 +
986 +Ex: #5CLB63 blink in all status (1 + 2 + 4 + 8 + 16 + 32)
987 +
988 +RESETTING the servo is needed.
989 +)))
990 +
991 +|(% colspan="2" style="width:30px" %)(((
992 +====== RGB LED Patterns ======
993 +)))
994 +|(% style="width:30px" %) |(((
995 +The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-button-menu/]]
996 +)))
997 +|(% style="width:30px" %) |[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS%20-%20LED%20Patterns.png||alt="LSS - LED Patterns.png"]]
LSS - LED Patterns.png
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.RB1
Size
... ... @@ -1,0 +1,1 @@
1 +116.3 KB
Content
LSS-Protocol-Backup-2020-05-01.zip
Author
... ... @@ -1,0 +1,1 @@
1 +xwiki:XWiki.ENantel
Size
... ... @@ -1,0 +1,1 @@
1 +47.4 KB
Content
XWiki.XWikiRights[0]
Allow/Deny
... ... @@ -1,1 +1,0 @@
1 -1
Groups
... ... @@ -1,1 +1,0 @@
1 -xwiki:XWiki.XWikiAdminGroup
Levels
... ... @@ -1,1 +1,0 @@
1 -view
XWiki.XWikiRights[1]
Allow/Deny
... ... @@ -1,1 +1,0 @@
1 -1
Groups
... ... @@ -1,1 +1,0 @@
1 -XWiki.XWikiAdminGroup
Levels
... ... @@ -1,1 +1,0 @@
1 -view
XWiki.XWikiRights[2]
Allow/Deny
... ... @@ -1,1 +1,0 @@
1 -1
Groups
... ... @@ -1,1 +1,0 @@
1 -XWiki.Profiles (Lynxmotion).BETA Testers
Levels
... ... @@ -1,1 +1,0 @@
1 -view
XWiki.StyleSheetExtension[0]
Caching policy
... ... @@ -1,0 +1,1 @@
1 +long
Code
... ... @@ -1,0 +1,13 @@
1 +div.cmdcnt
2 +{
3 + display:table-row;
4 +}
5 +div.cmdpad
6 +{
7 + display:table-cell;
8 + padding:16px;
9 +}
10 +div.cmdtxt
11 +{
12 + display:table-cell;
13 +}
Content Type
... ... @@ -1,0 +1,1 @@
1 +CSS
Name
... ... @@ -1,0 +1,1 @@
1 +DivTextIndentation
Parse content
... ... @@ -1,0 +1,1 @@
1 +No
Use this extension
... ... @@ -1,0 +1,1 @@
1 +currentPage
Copyright RobotShop 2018