Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% class="wikigeneratedid" id="HTableofContents" %) 2 -** TableofContents**2 +**Page Contents** 3 3 4 4 {{toc depth="3"/}} 5 5 ... ... @@ -79,7 +79,7 @@ 79 79 80 80 == Configuration Commands == 81 81 82 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:82 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 83 83 84 84 1. Start with a number sign # (U+0023) 85 85 1. Servo ID number as an integer ... ... @@ -128,71 +128,71 @@ 128 128 129 129 = Command List = 130 130 131 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 132 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 133 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 134 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %) 135 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 136 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 137 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| __CO__| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 131 +== Regular == 132 + 133 +|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 134 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 135 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 136 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %) 137 +| 4|[[**S**peed>>||anchor="H4.Speed28S29modifier"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 138 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 139 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 138 138 0 139 139 ))) 140 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 142 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 141 141 1800 142 142 ))) 143 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(% style="width:510px" %)((( 145 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | | ✓|microseconds|(% style="width:510px" %)((( 144 144 Inherited from SSC-32 serial protocol 145 145 )))|(% style="text-align:center; width:113px" %) 146 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 147 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 148 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 149 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| tenthsofdegrees per second |(% style="width:510px" %)(((148 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 149 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 150 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 151 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)((( 150 150 QSD: Add modifier "2" for instantaneous speed. 151 151 152 152 SD overwrites SR / CSD overwrites CSR and vice-versa. 153 153 )))|(% style="text-align:center; width:113px" %)Max per servo 154 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 156 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 155 155 QSR: Add modifier "2" for instantaneous speed 156 156 157 157 SR overwrites SD / CSR overwrites CSD and vice-versa. 158 158 )))|(% style="text-align:center; width:113px" %)Max per servo 159 -| 1 6|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7160 -| 1 7|[[**ID**#>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none(integer from 0 to 250)|(% style="width:510px" %)Note:ID254 is a "broadcast"whichallservosrespondto|(% style="text-align:center; width:113px" %)0161 -| 1 8|[[**B**audrate>>||anchor="H18.BaudRate"]]|B| QB| CB| | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600162 -| 1 9|[[**G**yredirection (**G**)>>||anchor="H19.GyreRotationDirection"]]|G| QG| CG|✓| ✓|none |(% style="width:510px" %)Gyre/ rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1163 -| 20|[[**F**irst Position(**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| |QFP|CFP|✓|✓|none|(% style="width:510px" %)CFPoverwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((164 - Limp161 +| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7 162 +| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 163 +| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0 164 +| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600 165 +| 18|//{coming soon}//| | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 166 + 165 165 ))) 166 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 167 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 168 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 169 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 170 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 171 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 172 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 173 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 174 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 175 -| 30a|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1| | ✓|none|(% style="width:510px" %)((( 176 -Puts the servo into RC mode. To revert to smart mode, use the button menu. 168 +| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstPosition28Degrees2928FD29"]]| | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 169 +| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 170 +| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 171 +| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 172 +| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 173 +| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 174 +| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 175 +| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 176 +| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | |CRC|✓| | ✓|none|(% style="width:510px" %)((( 177 +Change to RC mode 1 (position) or 2 (wheel). 177 177 )))|(% style="text-align:center; width:113px" %)Serial 178 -| 30b|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2| | ✓| |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 179 -| 31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 180 -| 32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 181 -| 33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 179 +| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 180 +| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 181 +| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 182 182 183 183 == Advanced == 184 184 185 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes |=(% style="width: 113px;" %)Default Value186 -| A1|[[**A**ngular **S**tiffness>>||anchor="H1 4.AngularStiffness28AS29"]]||(% style="text-align:center; width:113px" %)0187 -| A2|[[**A**ngular **H**olding Stiffness>>||anchor="H 15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none (integer -10 to +10)|(% style="width:510px" %)|(%style="text-align:center; width:113px"%)1188 -| A3|[[**A**ngular **A**cceleration>>||anchor="H 15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)189 -| A4|[[**A**ngular **D**eceleration>>||anchor="H 15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)190 -| A5|[[**E**nable **M**otion Control>>||anchor="H 15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %)191 -| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="H 16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)(((185 +|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes 186 +| A1|[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|AS|QAS|CAS|✓| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4 187 +| A2|[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|AH|QAH|CAH|✓| | ✓|none (integer -10 to +10)|(% style="width:510px" %)Effect is different between serial and RC 188 +| A3|[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared 189 +| A4|[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared 190 +| A5|[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|EM|QEM| | | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable 191 +| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]| | | CLB| | ✓| |none (integer from 0 to 63)|(% style="width:510px" %)((( 192 192 0=No blinking, 63=Always blink; 193 193 194 194 Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 195 -))) |(% style="text-align:center; width:113px" %)195 +))) 196 196 197 197 == Details == 198 198 ... ... @@ -208,7 +208,7 @@ 208 208 209 209 This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position. 210 210 211 -====== __3. Timed move (**T**)__ ====== 211 +====== __3. Timed move (**T**) modifier__ ====== 212 212 213 213 Example: #5P1500T2500<cr> 214 214 ... ... @@ -216,7 +216,7 @@ 216 216 217 217 Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 218 218 219 -====== __4. Speed (**S**)__ ====== 219 +====== __4. Speed (**S**) modifier__ ====== 220 220 221 221 Example: #5P1500S750<cr> 222 222 ... ... @@ -280,7 +280,7 @@ 280 280 281 281 Example: #5P2334<cr> 282 282 283 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected to end points. 283 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points. 284 284 285 285 Query Position in Pulse (**QP**) 286 286 ... ... @@ -303,6 +303,13 @@ 303 303 304 304 This means the servo is located at 13.2 degrees. 305 305 306 +(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 307 +Query Target Position in Degrees (**QDT**) 308 + 309 +Ex: #5QDT<cr> might return *5QDT6783<cr> 310 + 311 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 312 + 306 306 ====== __10. Wheel Mode in Degrees (**WD**)__ ====== 307 307 308 308 Ex: #5WD900<cr> ... ... @@ -327,22 +327,22 @@ 327 327 328 328 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 329 329 330 -====== __12. Speed in Degrees (**SD**)__ ====== 337 +====== __12. Max Speed in Degrees (**SD**)__ ====== 331 331 332 332 Ex: #5SD1800<cr> 333 333 334 -This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Thereforemaximumspeed foractions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.341 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 335 335 336 336 Query Speed in Degrees (**QSD**) 337 337 338 338 Ex: #5QSD<cr> might return *5QSD1800<cr> 339 339 340 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed. 347 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. 341 341 If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 342 342 343 343 |**Command sent**|**Returned value (1/10 °)** 344 344 |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 345 -|ex: #5QSD1<cr>|Configured maximum speed 352 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 346 346 |ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 347 347 |ex: #5QSD3<cr>|Target travel speed 348 348 ... ... @@ -352,22 +352,22 @@ 352 352 353 353 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 354 354 355 -====== __13. Speed in RPM (**SR**)__ ====== 362 +====== __13. Max Speed in RPM (**SR**)__ ====== 356 356 357 357 Ex: #5SD45<cr> 358 358 359 -This command sets the servo's maximum speed for actionreforemaximumspeed foractions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.366 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 360 360 361 361 Query Speed in Degrees (**QSR**) 362 362 363 363 Ex: #5QSR<cr> might return *5QSR45<cr> 364 364 365 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed. 372 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. 366 366 If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 367 367 368 368 |**Command sent**|**Returned value (1/10 °)** 369 369 |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 370 -|ex: #5QSR1<cr>|Configured maximum speed 377 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 371 371 |ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 372 372 |ex: #5QSR3<cr>|Target travel speed 373 373 ... ... @@ -375,288 +375,321 @@ 375 375 376 376 Ex: #5CSR45<cr> 377 377 378 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 385 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 379 379 380 -====== __14. AngularStiffness(**AS**)__ ======387 +====== __14. LED Color (**LED**)__ ====== 381 381 382 - Theservo's rigidity / angular stiffnesscan be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.389 +Ex: #5LED3<cr> 383 383 384 - Apositivealueof"angularstiffness":391 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. 385 385 386 -* The more torque will be applied to try to keep the desired position against external input / changes 387 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 393 +0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE 388 388 389 - A negative valueontheotherhand:395 +Query LED Color (**QLED**) 390 390 391 -* Causes a slower acceleration to the travel speed, and a slower deceleration 392 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back 397 +Ex: #5QLED<cr> might return *5QLED5<cr> 393 393 394 -Th e default valueiszero and the effect becomesextreme by-4, +4. Thereareno units,only integersbetween-4 to 4. Greatervaluesproduceincreasinglyerraticbehavior.399 +This simple query returns the indicated servo's LED color. 395 395 396 -E x:#5AS-2<cr>401 +Configure LED Color (**CLED**) 397 397 398 - This reducestheangularstiffnessto-2for thatsession,allowingthe servoto deviatemorearoundthedesired position.This can be beneficial in many situationssuchasimpacts(leggedrobots)wheremoreofa"spring" effectisdesired. Uponreset,the servo will usethevalue storedinmemory, basedonthetconfiguration command.403 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 399 399 400 - Ex:#5QAS<cr>405 +====== __15. Gyre Rotation Direction (**G**)__ ====== 401 401 402 - Queriesthevaluebeing used.407 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 403 403 404 -Ex: #5 CAS<cr>409 +Ex: #5G-1<cr> 405 405 406 - Writes the desired angular stiffnessmory.411 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 407 407 408 - ====== __15. AngularHoldStiffness(**AH**)__ ======413 +Query Gyre Direction (**QG**) 409 409 410 - Theangularholding stiffness determines the servo's abilityto hold a desired positionunderload. Values canbe from-10 to 10, with the default being 0. Note that negative values mean the final positioncan be easily deflected.415 +Ex: #5QG<cr> might return *5QG-1<cr> 411 411 412 - Ex:#5AH3<cr>417 +The value returned above means the servo is in a counter-clockwise gyration. 413 413 414 - This sets the holding stiffness forservo#5 to 3 forthat session.419 +Configure Gyre (**CG**) 415 415 416 - QueryAngularHold Stiffness (**QAH**)421 +Ex: #5CG-1<cr> 417 417 418 - Ex:#5QAH<cr> might return*5QAH3<cr>423 +This changes the gyre direction as described above and also writes to EEPROM. 419 419 420 - Thisreturnstheservo's angular holding stiffnessvalue.425 +====== __16. Identification Number (**ID**)__ ====== 421 421 422 - ConfigureAngularHoldStiffness (**CAH**)427 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate). 423 423 424 - Ex:#5CAH2<cr>429 +Query Identification (**QID**) 425 425 426 - Thiswritestheangularholdingstiffness of servo #5to 2 to EEPROM431 +EX: #254QID<cr> might return *QID5<cr> 427 427 428 - ======__15b: AngularAcceleration (**AA**)__======433 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 429 429 430 - {Moredetailsto come}435 +Configure ID (**CID**) 431 431 432 - ====== __15c:AngularDeceleration (**AD**)__ ======437 +Ex: #4CID5<cr> 433 433 434 - {More details to come}439 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect. 435 435 436 -====== __1 5d:Motion Control (**EM**)__ ======441 +====== __17. Baud Rate__ ====== 437 437 438 - {More details to come}443 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 439 439 440 - ======__16.RGBLED(**LED**)__ ======445 +Query Baud Rate (**QB**) 441 441 442 -Ex: #5 LED3<cr>447 +Ex: #5QB<cr> might return *5QB9600<cr> 443 443 444 - This actionsetstheservo'sRGBLED colorforthatsession.TheLEDcan be usedforaesthetics,or(basedonusercode)toprovide visualstatus updates.Usingtiming cancreatepatterns.449 +Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect. 445 445 446 - 0=OFF1=RED2=GREEN3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE451 +Configure Baud Rate (**CB**) 447 447 448 - QueryLEDColor(**QLED**)453 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET. 449 449 450 -Ex: #5 QLED<cr>might return *5QLED5<cr>455 +Ex: #5CB9600<cr> 451 451 452 - Thissimplequeryreturnstheindicated servo'sLEDcolor.457 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 453 453 454 -Co nfigureLED Color(**CLED**)459 +====== __18. {//Coming soon//}__ ====== 455 455 456 -Co nfiguring the LED color via the CLED commandsets the startupcolor of the servo after a reset or power cycle. Note thatit also changesthesession's LED color immediately as well.461 +Command coming soon.... 457 457 458 -====== __1 6b.Configure LED Blinking (**CLB**)__ ======463 +====== __19. First Position (Degrees) (**FD**)__ ====== 459 459 460 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 461 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 465 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 462 462 463 - To set blinking,useCLB withthe valueof your choosing. To activate blinkinginmultiplestatus, simply add togetherthevaluesof the corresponding status. See examples below:467 +Query First Position in Degrees (**QFD**) 464 464 465 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 466 -Ex: #5CLB1<cr> only blink when limp 467 -Ex: #5CLB2<cr> only blink when holding 468 -Ex: #5CLB12<cr> only blink when accel or decel 469 -Ex: #5CLB48<cr> only blink when free or travel 470 -Ex: #5CLB63<cr> blink in all status 469 +Ex: #5QFD<cr> might return *5QFD64<cr> 471 471 472 - ======__17.IdentificationNumber__======471 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. 473 473 474 - A servo's identification number cannot be set "on the fly" and must be configuredvia the CID command described below. The factory default ID number for allservos is 0. Since smartservosareintended to be daisy chained, inorder to responddifferentlyfrom one another, the user must set different identification numbers. Servos with the same IDand baud ratewill allreceive and react to thesamecommands.473 +Configure First Position in Degrees (**CFD**) 475 475 476 - QueryIdentification (**QID**)475 +Ex: #5CD64<cr> 477 477 478 - EX:#254QID<cr>might return*QID5<cr>477 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. 479 479 480 - Whenusingthe queryID command, it is best to onlyhave one servo connected and thusreceive only one reply usingthe broadcast command(ID 254).Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.479 +====== __20. Query Model String (**QMS**)__ ====== 481 481 482 - ConfigureID (**CID**)481 +Ex: #5QMS<cr> might return *5QMSLSS-HS1cr> 483 483 484 - Ex:#4CID5<cr>483 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 485 485 486 - Settinga servo's ID in EEPROM is done via the CID command.All servos connected to the same serial bus will beassigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individuallyto theserialbus and receive a unique CID number.It is best to do this before the servos are added to an assembly.Numberedstickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like.485 +====== __21. Query Serial Number (**QN**)__ ====== 487 487 488 - ======__18.Baud Rate__======487 +Ex: #5QN<cr> might return *5QN12345678<cr> 489 489 490 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 491 -\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. 489 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user. 492 492 493 -Query Baud Rate (**QB**)491 +====== __22. Query Firmware (**QF**)__ ====== 494 494 495 -Ex: #5Q B<cr> might return *5QB9600<cr>493 +Ex: #5QF<cr> might return *5QF411<cr> 496 496 497 - Queryingthebaudrateis used simply toconfirmtheCB configuration command beforetheservo is powercycled.495 +The number in the reply represents the firmware version, in this example being 411. 498 498 499 - ConfigureBaudRate(**CB**)497 +====== __23. Query Status (**Q**)__ ====== 500 500 501 - ImportantNote:the servo's currentsession retains theivenbaudrateand thenewbaudratewillonlybeinplacewhen theservoispower cycled.499 +The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses. 502 502 503 -Ex: #5 CB9600<cr>501 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 504 504 505 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 503 +|***Value returned (Q)**|**Status**|**Detailed description** 504 +|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 505 +|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 506 +|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely 507 +|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 508 +|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 509 +|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 510 +|ex: *5Q6<cr>|6: Holding|Keeping current position 511 +|ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 512 +|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 513 +|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 514 +|ex: *5Q10<cr>|10: Safe Mode|((( 515 +A safety limit has been exceeded (temperature, peak current or extended high current draw). 506 506 507 -====== __19. Gyre Rotation Direction__ ====== 517 +Send a Q1 command to know which limit has been reached (described below). 518 +))) 508 508 509 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 520 +(% class="wikigeneratedid" %) 521 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 510 510 511 -{images showing before and after with AR and Origin offset} 523 +|***Value returned (Q1)**|**Status**|**Detailed description** 524 +|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 525 +|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 526 +|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 527 +|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 512 512 513 -Query GyreDirection(**QG**)529 +====== __24. Query Voltage (**QV**)__ ====== 514 514 515 -Ex: #5Q G<cr> might return *5QG-1<cr>531 +Ex: #5QV<cr> might return *5QV11200<cr> 516 516 517 -The value returned abovemeans the servo is in acounter-clockwisegyration.533 +The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 518 518 519 - ConfigureGyre (**CG**)535 +====== __25. Query Temperature (**QT**)__ ====== 520 520 521 -Ex: #5 CG-1<cr>537 +Ex: #5QT<cr> might return *5QT564<cr> 522 522 523 -This changesthe gyredirection asdescribedaboveandalsowrites toEEPROM.539 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 524 524 525 -====== __2 0.First/ InitialPosition(pulse)__ ======541 +====== __26. Query Current (**QC**)__ ====== 526 526 527 - Incertaincases, a usermightwant to have the servo moveo a specific angleupon powerup. We refer to this as "first position".The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.543 +Ex: #5QC<cr> might return *5QC140<cr> 528 528 529 - QueryFirstPositioninPulses(**QFP**)545 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 530 530 531 - Ex:#5QFP<cr>might return*5QFP1550<cr>547 +====== __27. Configure RC Mode (**CRC**)__ ====== 532 532 533 -Th ereply above indicates thatservowithID5has a firstpositionpulseof1550 microseconds.If nofirstpositionhasbeenset, servo will respondwithDIS("disabled").549 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 534 534 535 -Configure First Position in Pulses (**CFP**) 551 +|**Command sent**|**Note** 552 +|ex: #5CRC1<cr>|Change to RC position mode. 553 +|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 554 +|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode. 536 536 537 -E x: #5CP1550<cr>556 +EX: #5CRC2<cr> 538 538 539 -This co nfiguration commandmeansthe servo,whenset toRCmode,will immediatelymove toanangleequivalentto havingreceivedanRCpulse of1550microsecondsupon powerup. SendingaCFPcommand withouta numberresultsinthe servo remaininglimpupon powerup (i.e.disabled).558 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command. 540 540 541 - ======__21.First/InitialPosition (Degrees)__======560 +Important note:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:Lynxmotion Smart Servo (LSS).LSS - Button Menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe. 542 542 543 - Incertain cases, a user might want to have the servo move to a specific angle upon power up.We refer to this as "first position". The factory default has no first position value stored inEEPROMand therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.562 +====== __28. **RESET**__ ====== 544 544 545 - QueryFirstPosition in Degrees(**QFD**)564 +Ex: #5RESET<cr> or #5RS<cr> 546 546 547 - Ex:#5QFD<cr>might return*5QFD64<cr>566 +This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 548 548 549 - Thereplyaboveindicates that servo withID5 has a first position pulse of 1550 microseconds.568 +====== __29. **DEFAULT** & CONFIRM__ ====== 550 550 551 - ConfigureFirst Position inDegrees (**CFD**)570 +Ex: #5DEFAULT<cr> 552 552 553 - Ex:#5CD64<cr>572 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 554 554 555 - Thisconfigurationcommand means the servo, when set to smart mode, willimmediately move to 6.4 degrees upon power up. SendingaCFDcommand without a numberresults in the servo remaining limp upon power up.574 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 556 556 557 - ======__22.QueryTargetPosition inDegrees(**QDT**)__======576 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command. 558 558 559 - Ex:#5QDT<cr>mightreturn*5QDT6783<cr>578 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 560 560 561 - Thequery target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3degrees.Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex:*5QDT<cr>).580 +====== __30. **UPDATE** & CONFIRM__ ====== 562 562 563 - ======__23. Query Model String (**QMS**)__ ======582 +Ex: #5UPDATE<cr> 564 564 565 - Ex:#5QMS<cr>might return*5QMSLSS-HS1cr>584 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. 566 566 567 - Thisreplymeans the servomodel is LSS-HS1, meaning a high speedservo,first revision.586 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr> 568 568 569 - ======__23b.Query Model(**QM**)__======588 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 570 570 571 - Ex:#5QM<cr>mightreturn*5QM68702699520cr>590 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 572 572 573 - Thisreply means the servo model is 0xFFF000000 or 100, meaning a high speedservo, first revision.592 += Advanced = 574 574 575 - ======__24.QuerySerialNumber(**QN**)__======594 +The motion controller used in serial mode is not the same as the motion controller use in RC mode. RC mode is intended to add functionality to what would be considered "normal" RC behavior based on PWM input. 576 576 577 - Ex:#5QN<cr>might return *5QN~_~_<cr>596 +====== __A1. Angular Stiffness (**AS**)__ ====== 578 578 579 -The number intheresponseis theservo'sserialnumber whichisset and cannotbe changed.598 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units. 580 580 581 - ======__25. QueryFirmware(**QF**)__ ======600 +A positive value of "angular stiffness": 582 582 583 -Ex: #5QF<cr> might return *5QF11<cr> 602 +* The more torque will be applied to try to keep the desired position against external input / changes 603 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 584 584 585 - Theinteger inthereply representsthefirmware version withonedecimal, in this example being 1.1605 +A negative value on the other hand: 586 586 587 -====== __26. Query Status (**Q**)__ ====== 607 +* Causes a slower acceleration to the travel speed, and a slower deceleration 608 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back 588 588 589 - Ex:#5Q<cr>might return*5Q6<cr>,whichicates thetorisholdingaposition.610 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 590 590 591 -|*Value returned|**Status**|**Detailed description** 592 -|ex: *5Q0<cr>|Unknown|LSS is unsure 593 -|ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely 594 -|ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 595 -|ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed 596 -|ex: *5Q4<cr>|Traveling|Moving at a stable speed 597 -|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position. 598 -|ex: *5Q6<cr>|Holding|Keeping current position 599 -|ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque 600 -|ex: *5Q8<cr>|Outside limits|{More details coming soon} 601 -|ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 602 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 612 +Ex: #5AS-2<cr> 603 603 604 - ======__27.QueryVoltage(**QV**)__======614 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 605 605 606 -Ex: #5Q V<cr>might return *5QV11200<cr>616 +Ex: #5QAS<cr> 607 607 608 - The numberreturned hasone decimal, so inthecaseabove, servo with ID 5 has aninput voltageof 11.2V (perhapsa three cell LiPo battery).618 +Queries the value being used. 609 609 610 - ======__28. Query Temperature (**QT**)__ ======620 +Ex: #5CAS<cr> 611 611 612 - Ex: #5QT<cr> might return*5QT564<cr>622 +Writes the desired angular stiffness value to memory. 613 613 614 - Theunitsare intenths of degrees Celcius, so in the exampleabove, the servo'sinternaltemperatureis 56.4 degrees C. To convert from degreesCelciustodegrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C=133.52F.624 +====== __A2. Angular Holding Stiffness (**AH**)__ ====== 615 615 616 - ======__29.QueryCurrent(**QC**)__======626 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when considering altering a stiffness value, the end effect depends on the mode being tested. 617 617 618 -Ex: #5 QC<cr>might return *5QC140<cr>628 +Ex: #5AH3<cr> 619 619 620 -Th e unitsare inmilliamps,sointheexampleabove,theservo isconsuming 140mA,or 0.14A.630 +This sets the holding stiffness for servo #5 to 3 for that session. 621 621 622 - ======__30.RC Mode (**CRC**)__ ======632 +Query Angular Hold Stiffness (**QAH**) 623 623 624 - Thiscommand puts the servointo RCmode (position or continuous), where itwill onlyrespondto RC pulses. Note that because this is the case, the servo willnolonger accept serial commands. The servo can be placed back into smart mode by using the button menu.634 +Ex: #5QAH<cr> might return *5QAH3<cr> 625 625 626 -|**Command sent**|**Note** 627 -|ex: #5CRC<cr>|Stay in smart mode. 628 -|ex: #5CRC1<cr>|Change to RC position mode. 629 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 630 -|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode. 636 +This returns the servo's angular holding stiffness value. 631 631 632 - EX: #5CRC<cr>638 +Configure Angular Hold Stiffness (**CAH**) 633 633 634 - ====== __31. RESET__======640 +Ex: #5CAH2<cr> 635 635 636 - Ex: #5RESET<cr>or #5RS<cr>642 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. Note that when considering altering a stiffness value, the end effect depends on the mode being tested. 637 637 638 - Thiscommanddoesa"softreset"(no powercyclerequired) and reverts all commands to thosestored in EEPROM (i.e. configurationcommands).644 +====== __A3: Angular Acceleration (**AA**)__ ====== 639 639 640 - ======__32.DEFAULT &CONFIRM__======646 +The default value for angular acceleration is 100, which is the same as the maximum deceleration. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 641 641 642 -Ex: #5 DEFAULT<cr>648 +Ex: #5AA30<cr> 643 643 644 - This command sets in motion the reset all values to the default values included with the versionof the firmware installed on that servo. Theservo then waits for the CONFIRM command.Any othercommand received will causethe servoto exit the DEFAULT function.650 +Query Angular Acceleration (**QAD**) 645 645 646 -E X: #5DEFAULT<cr>followedby #5CONFIRM<cr>652 +Ex: #5QA<cr> might return *5QA30<cr> 647 647 648 - Since it it not commonto have to restore all configurations, a confirmation command is neededafter a firmware command is sent. Shouldany command otherthan CONFIRM be received by the servo after the firmwarecommand has been received, it will leave the firmware action.654 +Configure Angular Acceleration (**CAD**) 649 649 650 - Notethat after theCONFIRMcommand is sent, the servo will automatically perform a RESET.656 +Ex: #5CA30<cr> 651 651 652 -====== __ 33.UPDATE &CONFIRM__ ======658 +====== __A4: Angular Deceleration (**AD**)__ ====== 653 653 654 - Ex:#5UPDATE<cr>660 +The default value for angular deceleration is 100, which is the same as the maximum acceleration. Values between 1 and 15 have the greatest impact. 655 655 656 - This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exitthe UPDATE function.662 +Ex: #5AD8<cr> 657 657 658 - EX:#5UPDATE<cr>followed by #5CONFIRM<cr>664 +Query Angular Deceleration (**QAD**) 659 659 660 - Sinceit it notcommon to have to update firmware,a confirmation command is needed after an UPDATE command is sent. Should any command otherthan CONFIRM bereceived bythe servo after the firmware commandhas been received, it will leave the firmware action.666 +Ex: #5QD<cr> might return *5QD8<cr> 661 661 662 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 668 +Configure Angular Deceleration (**CAD**) 669 + 670 +Ex: #5CD8<cr> 671 + 672 +====== __A5: Motion Control (**EM**)__ ====== 673 + 674 +The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller. 675 + 676 +Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used. 677 + 678 +====== __A6. Configure LED Blinking (**CLB**)__ ====== 679 + 680 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value: 681 + 682 +(% style="width:195px" %) 683 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 684 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 685 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1 686 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2 687 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 688 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 689 +|(% style="width:134px" %)Free|(% style="width:58px" %)16 690 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 691 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63 692 + 693 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 694 + 695 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 696 +Ex: #5CLB1<cr> only blink when limp (1) 697 +Ex: #5CLB2<cr> only blink when holding (2) 698 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12) 699 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48) 700 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32) 701 + 702 +RESETTING the servo is needed.