Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (4 modified, 0 added, 0 removed)
-
Objects (0 modified, 0 added, 3 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 - LynxmotionmartServo(LSS).WebHome1 +lynxmotion:LSS - Overview (DEV).WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -xwiki:XWiki. CBenson1 +xwiki:XWiki.RB1 - Tags
-
... ... @@ -1,1 +1,1 @@ 1 -LSS|communication|protocol|programming|firmware|control |LSS-Ref1 +LSS|communication|protocol|programming|firmware|control - Content
-
... ... @@ -1,23 +4,16 @@ 1 -(% class="wikigeneratedid" id="HTableofContents" %) 2 -**Table of Contents** 3 - 4 4 {{toc depth="3"/}} 5 5 6 -= SerialProtocolConcept =3 += Protocol concepts = 7 7 8 -The customLynxmotion Smart Servo (LSS)serialprotocol was created in order to be as simple and straightforward as possible from a user perspective("human readable format"), while at the same timeThe protocolwas based on Lynxmotion'sSSC-32 RC servo controllerand almosteverything one might expect to be able to configure for a smart servo motor is available.5 +The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time trying to stay compact and robust yet highly versatile. Almost everything one might expect to be able to configure for a smart servo motor is available. 9 9 10 -In order to have servos react differently when commands are sent to all servos in a serial bus, the first step a user should take is to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol. 11 - 12 12 == Session == 13 13 14 14 A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 15 15 16 -Note that for a given session, the action related to a specific commands overrides the stored value in EEPROM. 17 - 18 18 == Action Commands == 19 19 20 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent aredescribed below, andthey cannotbe combined with other commandssuch as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any"memory" of previous actionsor virtual positions (described below on this page). Actioncommandsaresent serially to the servo's Rx pin and must be sent in the following format:13 +Action commands are sent serially to the servo's Rx pin and must be set in the following format: 21 21 22 22 1. Start with a number sign # (U+0023) 23 23 1. Servo ID number as an integer ... ... @@ -28,12 +28,16 @@ 28 28 ((( 29 29 Ex: #5PD1443<cr> 30 30 31 - This sends a serial command to all servo's Rx pins which areconnected to the busand only servo(s)with ID #5will movetoin tenthsofdegrees ("PD") of144.3 degrees.Any servo on the bus which does not have ID 5 will take no action when receiving this command.24 +Move servo with ID #5 to a position of 144.3 degrees. 32 32 33 - ==ActionModifiers==26 +Action commands cannot be combined with query commands, and only one action command can be sent at a time. 34 34 35 - Onlytwo commandscan beused asactionmodifiers: Timed Move(T) and Speed(S)describedbelow.Actionmodifiers can onlybeusedwithcertain actioncommands.Theformat to includeamodifieris:28 +Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page). 36 36 30 +=== Action Modifiers === 31 + 32 +Two commands can be used as action modifiers only: Timed Move and Speed. The format is: 33 + 37 37 1. Start with a number sign # (U+0023) 38 38 1. Servo ID number as an integer 39 39 1. Action command (one to three letters, no spaces, capital or lower case) ... ... @@ -44,12 +44,32 @@ 44 44 45 45 Ex: #5P1456T1263<cr> 46 46 47 -This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds. 44 +Results in the servo rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds. 45 + 46 +Action modifiers can only be used with certain commands. 48 48 ))) 49 49 49 +== Configuration Commands == 50 + 51 +Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:LSS - Overview (DEV).LSS - RC PWM.WebHome]]. 52 + 53 +1. Start with a number sign # (U+0023) 54 +1. Servo ID number as an integer 55 +1. Configuration command (two to three letters, no spaces, capital or lower case) 56 +1. Configuration value in the correct units with no decimal 57 +1. End with a control / carriage return '<cr>' 58 + 59 +Ex: #5CO-50<cr> 60 + 61 +Assigns an absolute origin offset of -5.0 degrees (with respect to factory origin) to servo #5 and changes the offset for that session to -5.0 degrees. 62 + 63 +Configuration commands are not cumulative, in that if two configurations are sent at any time, only the last configuration is used and stored. 64 + 65 +*Important Note: the one exception is the baud rate - the servo's current session retains the given baud rate. The new baud rate will only be in place when the servo is power cycled. 66 + 50 50 == Query Commands == 51 51 52 -Query commands request information from the servo. They are received via the Rx pinoftheservo,and the servo's replyis sentviathe servo'sTx pin.Using separate lines for Tx andRx is called "full duplex". Query commandsarealso similartoactionand configuration commands and must use the following format:69 +Query commands are sent serially to the servo's Rx pin and must be set in the following format: 53 53 54 54 1. Start with a number sign # (U+0023) 55 55 1. Servo ID number as an integer ... ... @@ -61,61 +61,49 @@ 61 61 ))) 62 62 63 63 ((( 64 -The query will return a serialstring (almost instantaneously)via theservo'sTx pin with the following format:81 +The query will return a value via the Tx pin with the following format: 65 65 66 -1. Start with an asterisk *(U+002A)83 +1. Start with an asterisk (U+002A) 67 67 1. Servo ID number as an integer 68 68 1. Query command (one to three letters, no spaces, capital letters) 69 69 1. The reported value in the units described, no decimals. 70 70 1. End with a control / carriage return '<cr>' 71 71 72 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be: 73 - 74 74 ((( 75 75 Ex: *5QD1443<cr> 76 76 ))) 77 77 78 - This indicates that servo #5 is currently at 144.3 degrees(1443 tenths of degrees).93 +Indicates that servo #5 is currently at 144.3 degrees. 79 79 80 -== Configuration Commands == 81 - 82 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 83 - 84 -1. Start with a number sign # (U+0023) 85 -1. Servo ID number as an integer 86 -1. Configuration command (two to three letters, no spaces, capital or lower case) 87 -1. Configuration value in the correct units with no decimal 88 -1. End with a control / carriage return '<cr>' 89 - 90 -Ex: #5CO-50<cr> 91 - 92 -This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below. 93 - 94 94 **Session vs Configuration Query** 95 95 96 -By default, the query command returns the sessions' value . Should no action commands have been sent to changethe session value, it will return the value saved in EEPROMwhich will either be the servo's default, ormodified with a configuration command. Inorderto query thevaluestoredin EEPROM (configuration),add a '1' to the querycommand:97 +By default, the query command returns the sessions' value; should no action commands have been sent to change, it will return the value saved in EEPROM from the last configuration command. 97 97 98 - Ex:#5CSR20<cr> immediatelysets themaximum speedfor servo #5 to 20rpm (explainedbelow)andchangesthevalueinmemory.99 +In order to query the value in EEPROM, add a '1' to the query command. 99 99 100 - After RESET,a command of#5SR4<cr> sets thesession'sspeedto4rpm,but doesnotchangetheconfigurationvaluein memory.Therefore:101 +Ex: #5CSR20<cr> sets the maximum speed for servo #5 to 20rpm upon RESET (explained below). 101 101 102 - #5QSR<cr> would return*5QSR4<cr>which represents thevalue for thatsession,whereas103 +After RESET: #5SR4<cr> sets the session's speed to 4rpm. 103 103 105 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session. 106 + 104 104 #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 105 105 106 -== Virtual Angular Position == 109 +=== Virtual Angular Position === 107 107 108 - The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more.Invirtualposition mode, the "absolute position" would be the angle of the output shaft withrespect toa 360.0 degree circle, and can be obtained by taking the modulus(with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).111 +{In progress} 109 109 113 +A "virtual position" is one which allows for multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to 360.0 degrees. 114 + 110 110 [[image:LSS-servo-positions.jpg]] 111 111 112 - In this example,the gyre direction(explainedbelow, a.k.a. "rotationdirection") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees.The following command is sent:117 +Example: Gyre direction / rotation is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. 113 113 114 -#1D-300<cr> Th is causestheservo to move to -30.0 degrees (green arrow)119 +#1D-300<cr> The servo is sent a command to move to -30.0 degrees (green arrow) 115 115 116 116 #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow) 117 117 118 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 123 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees, stopping at an absolute position of 60.0 degrees (420.0-360.0), with a virtual position of -420.0 degrees. 119 119 120 120 Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 121 121 ... ... @@ -128,72 +128,52 @@ 128 128 129 129 = Command List = 130 130 131 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 132 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 133 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 134 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %) 135 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 136 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 137 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| __CO__| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 138 -0 136 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes 137 +| 1|**L**imp| L| | | | ✓| none| 138 +| 2|**H**alt & Hold| H| | | | ✓| none| 139 +| 3|**T**imed move| T| | | | ✓| milliseconds| Modifier only 140 +| 4|**S**peed| S| | | | ✓| microseconds / second| Modifier only 141 +| 5|**M**ove in **D**egrees (relative)| MD| | | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 142 +| 6|**O**rigin Offset| O| QO| CO| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 143 +| 7|**A**ngular **R**ange| AR| QAR| CAR| ✓| ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 144 +| 8|Position in **P**ulse| P| QP| | | ✓| microseconds|((( 145 +See details below 139 139 ))) 140 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 141 -1800 147 +| 9|Position in **D**egrees| D| QD| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 148 +| 10|**W**heel mode in **D**egrees| WD| QWD| | | ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)| 149 +| 11|**W**heel mode in **R**PM| WR| QWR| | | ✓| rpm| 150 +| 12|Max **S**peed in **D**egrees| SD| QSD| CSD| ✓| ✓| tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed 151 +| 13|Max **S**peed in **R**PM| SR| QSR| CSR| ✓| ✓| rpm|QSR: Add modifier "2" for instantaneous speed 152 +| 14|**A**ngular **S**tiffness| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4 153 +| 15|**A**ngular **H**olding Stiffness|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0. 154 +|15b|**A**ngular **A**cceleration|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared 155 +|15c|**A**ngular **D**eceleration|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared 156 +|15d|**M**otion **C**ontrol|MC|QMC| | | ✓|none|MC0 to disable motion control, MC1 to enable. Session specific 157 +| 16|**LED** Color| LED| QLED| CLED| ✓| ✓| none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6=MAGENTA, 7=WHITE 158 +| 17|**ID** #| | QID| CID| | ✓| none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to 159 +| 18|**B**aud rate| B| QB| CB| | ✓| none (integer)| 160 +| 19|**G**yre direction (**G**)| G| QG| CG| ✓| ✓| none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise) 161 +| 20|**F**irst Position (**P**ulse)| | QFP|CFP | ✓| ✓| none | 162 +| 21|**F**irst Position (**D**egrees)| | QFD|CFD| ✓| ✓| none | 163 +| 22|**T**arget (**D**egree) **P**osition| | QDT| | | ✓| tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 164 +| 23|**M**odel **String**| | QMS| | | | none (string)| Recommended to determine the model| 165 +| 23b|**M**odel| | QM| | | | none (integer)| Returns a raw value representing the three model inputs (36 bit)| 166 +| 24|Serial **N**umber| | QN| | | | none (integer)| 167 +| 25|**F**irmware version| | QF| | | | none (integer)| 168 +| 26|**Q**uery (general status)| | Q| | | ✓| none (integer from 1 to 8)| See command description for details 169 +| 27|**V**oltage| | QV| | | ✓| millivolts (ex 5936 = 5936mV = 5.936V)| 170 +| 28|**T**emperature| | QT| | | ✓| tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp) 171 +| 29|**C**urrent| | QC| | | ✓| milliamps (ex 200 = 0.2A)| 172 +| 30|**RC** Mode| | |CRC| |✓|none|((( 173 +CRC: Add modifier "1" for RC-position mode. 174 +CRC: Add modifier "2" for RC-wheel mode. 175 +Any other value for the modifier results in staying in smart mode. 176 +Puts the servo into RC mode. To revert to smart mode, use the button menu. 142 142 ))) 143 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(% style="width:510px" %)((( 144 -Inherited from SSC-32 serial protocol 145 -)))|(% style="text-align:center; width:113px" %) 146 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 147 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 148 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 149 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)((( 150 -QSD: Add modifier "2" for instantaneous speed. 178 +|31|**RESET**| | | | | ✓|none|Soft reset. See command for details. 179 +|32|**DEFAULT**| | | | |✓|none|Revert to firmware default values. See command for details 180 +|33|**UPDATE**| | | | |✓|none|Update firmware. See command for details. 151 151 152 -SD overwrites SR / CSD overwrites CSR and vice-versa. 153 -)))|(% style="text-align:center; width:113px" %)Max per servo 154 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 155 -QSR: Add modifier "2" for instantaneous speed 156 - 157 -SR overwrites SD / CSR overwrites CSD and vice-versa. 158 -)))|(% style="text-align:center; width:113px" %)Max per servo 159 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7 160 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0 161 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600 162 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 163 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)((( 164 -Limp 165 -))) 166 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 167 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 168 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 169 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 170 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 171 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 172 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 173 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 174 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 175 -| 30a|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1| | ✓|none|(% style="width:510px" %)((( 176 -Puts the servo into RC mode. To revert to smart mode, use the button menu. 177 -)))|(% style="text-align:center; width:113px" %)Serial 178 -| 30b|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2| | ✓| |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 179 -| 31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 180 -| 32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 181 -| 33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 182 - 183 -== Advanced == 184 - 185 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 186 -| A1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0 187 -| A2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1 188 -| A3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 189 -| A4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 190 -| A5|[[**E**nable **M**otion Control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %) 191 -| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)((( 192 -0=No blinking, 63=Always blink; 193 - 194 -Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 195 -)))|(% style="text-align:center; width:113px" %) 196 - 197 197 == Details == 198 198 199 199 ====== __1. Limp (**L**)__ ====== ... ... @@ -202,41 +202,39 @@ 202 202 203 203 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 204 204 205 - ======__2. Halt & Hold (**H**)__======190 +__2. Halt & Hold (**H**)__ 206 206 207 207 Example: #5H<cr> 208 208 209 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angularposition.194 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position. 210 210 211 - ======__3. Timed move (**T**)__======196 +__3. Timed move (**T**)__ 212 212 213 213 Example: #5P1500T2500<cr> 214 214 215 -Timed move can be used only as a modifier for a position (P , D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensurethat the move is performed entirely at the desired velocity, though differences in torquemay cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.200 +Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 216 216 217 - Note:If the calculated speedat which a servo must rotate for a timed move is greater than its maximum speed(which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.202 +__4. Speed (**S**)__ 218 218 219 -====== __4. Speed (**S**)__ ====== 220 - 221 221 Example: #5P1500S750<cr> 222 222 223 223 This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 224 224 225 - ======__5. (Relative) Move in Degrees (**MD**)__======208 +__5. (Relative) Move in Degrees (**MD**)__ 226 226 227 227 Example: #5MD123<cr> 228 228 229 229 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 230 230 231 - ======__6. Origin Offset Action (**O**)__======214 +__6. Origin Offset Action (**O**)__ 232 232 233 233 Example: #5O2400<cr> 234 234 235 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session.As withall action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).218 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position. The setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. Note that for a given session, the O command overrides the CO command. In the first image, the origin at factory offset '0' (centered). 236 236 237 237 [[image:LSS-servo-default.jpg]] 238 238 239 -In the second image, the origin, a ndthecorrespondingangular range (explained below) have been shifted by+240.0 degrees:222 +In the second image, the origina, as well as the angular range (explained below) have been shifted by 240.0 degrees: 240 240 241 241 [[image:LSS-servo-origin.jpg]] 242 242 ... ... @@ -244,39 +244,39 @@ 244 244 245 245 Example: #5QO<cr> Returns: *5QO-13 246 246 247 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.230 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. 248 248 249 249 Configure Origin Offset (**CO**) 250 250 251 251 Example: #5CO-24<cr> 252 252 253 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.236 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. 254 254 255 - ======__7. Angular Range (**AR**)__======238 +__7. Angular Range (**AR**)__ 256 256 257 257 Example: #5AR1800<cr> 258 258 259 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image belowshows a standard-180.0 to +180.0 range,with no offset:242 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). In the first image, 260 260 261 261 [[image:LSS-servo-default.jpg]] 262 262 263 - Below, the angular rangeis restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.246 +Here, the angular range has been restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 264 264 265 265 [[image:LSS-servo-ar.jpg]] 266 266 267 - Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action commandre used to move both the center and limit the angular range:250 +The angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) an be used to move both the center and limit the angular range: 268 268 269 269 [[image:LSS-servo-ar-o-1.jpg]] 270 270 271 271 Query Angular Range (**QAR**) 272 272 273 -Example: #5QAR<cr> might return *5AR 1800, indicating the total angular range is 180.0 degrees.256 +Example: #5QAR<cr> might return *5AR2756 274 274 275 275 Configure Angular Range (**CAR**) 276 276 277 277 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 278 278 279 - ======__8. Position in Pulse (**P**)__======262 +__8. Position in Pulse (**P**)__ 280 280 281 281 Example: #5P2334<cr> 282 282 ... ... @@ -289,7 +289,7 @@ 289 289 This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 290 290 Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 291 291 292 - ======__9. Position in Degrees (**D**)__======275 +__9. Position in Degrees (**D**)__ 293 293 294 294 Example: #5PD1456<cr> 295 295 ... ... @@ -303,7 +303,7 @@ 303 303 304 304 This means the servo is located at 13.2 degrees. 305 305 306 - ======__10. Wheel Mode in Degrees (**WD**)__======289 +__10. Wheel Mode in Degrees (**WD**)__ 307 307 308 308 Ex: #5WD900<cr> 309 309 ... ... @@ -315,7 +315,7 @@ 315 315 316 316 The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 317 317 318 - ======__11. Wheel Mode in RPM (**WR**)__======301 +__11. Wheel Mode in RPM (**WR**)__ 319 319 320 320 Ex: #5WR40<cr> 321 321 ... ... @@ -327,7 +327,7 @@ 327 327 328 328 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 329 329 330 - ======__12. Speed in Degrees (**SD**)__======313 +__12. Speed in Degrees (**SD**)__ 331 331 332 332 Ex: #5SD1800<cr> 333 333 ... ... @@ -352,7 +352,7 @@ 352 352 353 353 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 354 354 355 - ======__13. Speed in RPM (**SR**)__======338 +__13. Speed in RPM (**SR**)__ 356 356 357 357 Ex: #5SD45<cr> 358 358 ... ... @@ -377,7 +377,7 @@ 377 377 378 378 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 379 379 380 - ======__14. Angular Stiffness (**AS**)__======363 +__14. Angular Stiffness (**AS**)__ 381 381 382 382 The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 383 383 ... ... @@ -405,7 +405,7 @@ 405 405 406 406 Writes the desired angular stiffness value to memory. 407 407 408 - ======__15. Angular Hold Stiffness (**AH**)__======391 +__15. Angular Hold Stiffness (**AH**)__ 409 409 410 410 The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 411 411 ... ... @@ -425,19 +425,19 @@ 425 425 426 426 This writes the angular holding stiffness of servo #5 to 2 to EEPROM 427 427 428 - ======__15b: Angular Acceleration (**AA**)__======411 +__15b: Angular Acceleration (**AA**)__ 429 429 430 430 {More details to come} 431 431 432 - ======__15c: Angular Deceleration (**AD**)__======415 +__15c: Angular Deceleration (**AD**)__ 433 433 434 434 {More details to come} 435 435 436 - ======__15d: Motion Control (**EM**)__======419 +__15d: Motion Control (**MC**)__ 437 437 438 438 {More details to come} 439 439 440 - ======__16. RGB LED (**LED**)__======423 +__16. RGB LED (**LED**)__ 441 441 442 442 Ex: #5LED3<cr> 443 443 ... ... @@ -455,22 +455,8 @@ 455 455 456 456 Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 457 457 458 - ======__16b.Configure LED Blinking(**CLB**)__======441 +__17. Identification Number__ 459 459 460 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 461 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 462 - 463 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 464 - 465 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 466 -Ex: #5CLB1<cr> only blink when limp 467 -Ex: #5CLB2<cr> only blink when holding 468 -Ex: #5CLB12<cr> only blink when accel or decel 469 -Ex: #5CLB48<cr> only blink when free or travel 470 -Ex: #5CLB63<cr> blink in all status 471 - 472 -====== __17. Identification Number__ ====== 473 - 474 474 A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 475 475 476 476 Query Identification (**QID**) ... ... @@ -485,7 +485,7 @@ 485 485 486 486 Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. 487 487 488 - ======__18. Baud Rate__======457 +__18. Baud Rate__ 489 489 490 490 A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 491 491 \*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. ... ... @@ -498,13 +498,11 @@ 498 498 499 499 Configure Baud Rate (**CB**) 500 500 501 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled. 502 - 503 503 Ex: #5CB9600<cr> 504 504 505 505 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 506 506 507 - ======__19. Gyre Rotation Direction__======474 +__19. Gyre Rotation Direction__ 508 508 509 509 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 510 510 ... ... @@ -522,7 +522,7 @@ 522 522 523 523 This changes the gyre direction as described above and also writes to EEPROM. 524 524 525 - ======__20. First / Initial Position (pulse)__======492 +__20. First / Initial Position (pulse)__ 526 526 527 527 In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 528 528 ... ... @@ -538,7 +538,7 @@ 538 538 539 539 This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 540 540 541 - ======__21. First / Initial Position (Degrees)__======508 +__21. First / Initial Position (Degrees)__ 542 542 543 543 In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 544 544 ... ... @@ -554,37 +554,37 @@ 554 554 555 555 This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up. 556 556 557 - ======__22. Query Target Position in Degrees (**QDT**)__======524 +__22. Query Target Position in Degrees (**QDT**)__ 558 558 559 559 Ex: #5QDT<cr> might return *5QDT6783<cr> 560 560 561 561 The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 562 562 563 - ======__23. Query Model String (**QMS**)__======530 +__23. Query Model String (**QMS**)__ 564 564 565 565 Ex: #5QMS<cr> might return *5QMSLSS-HS1cr> 566 566 567 567 This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 568 568 569 - ======__23b. Query Model (**QM**)__======536 +__23b. Query Model (**QM**)__ 570 570 571 571 Ex: #5QM<cr> might return *5QM68702699520cr> 572 572 573 573 This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision. 574 574 575 - ======__24. Query Serial Number (**QN**)__======542 +__24. Query Serial Number (**QN**)__ 576 576 577 577 Ex: #5QN<cr> might return *5QN~_~_<cr> 578 578 579 579 The number in the response is the servo's serial number which is set and cannot be changed. 580 580 581 - ======__25. Query Firmware (**QF**)__======548 +__25. Query Firmware (**QF**)__ 582 582 583 583 Ex: #5QF<cr> might return *5QF11<cr> 584 584 585 585 The integer in the reply represents the firmware version with one decimal, in this example being 1.1 586 586 587 - ======__26. Query Status (**Q**)__======554 +__26. Query Status (**Q**)__ 588 588 589 589 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 590 590 ... ... @@ -594,32 +594,32 @@ 594 594 |ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 595 595 |ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed 596 596 |ex: *5Q4<cr>|Traveling|Moving at a stable speed 597 -|ex: *5Q5<cr>|Decelerating|Decreasing fromtravel speed towardsfinal position.564 +|ex: *5Q5<cr>|Deccelerating|Decreasing speed towards travel speed towards rest 598 598 |ex: *5Q6<cr>|Holding|Keeping current position 599 599 |ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque 600 -|ex: *5Q8<cr>|Outside limits| {More details coming soon}567 +|ex: *5Q8<cr>|Outside limits|More details coming soon 601 601 |ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 602 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 569 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maxiumum duty and still cannot move (i.e.: stalled) 603 603 604 - ======__27. Query Voltage (**QV**)__======571 +__27. Query Voltage (**QV**)__ 605 605 606 606 Ex: #5QV<cr> might return *5QV11200<cr> 607 607 608 608 The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 609 609 610 - ======__28. Query Temperature (**QT**)__======577 +__28. Query Temperature (**QT**)__ 611 611 612 612 Ex: #5QT<cr> might return *5QT564<cr> 613 613 614 614 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 615 615 616 - ======__29. Query Current (**QC**)__======583 +__29. Query Current (**QC**)__ 617 617 618 618 Ex: #5QC<cr> might return *5QC140<cr> 619 619 620 620 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 621 621 622 - ======__30. RC Mode (**CRC**)__======589 +__30. RC Mode (**CRC**)__ 623 623 624 624 This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 625 625 ... ... @@ -631,13 +631,13 @@ 631 631 632 632 EX: #5CRC<cr> 633 633 634 - ======__31. RESET__======601 +__31. RESET__ 635 635 636 636 Ex: #5RESET<cr> or #5RS<cr> 637 637 638 638 This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 639 639 640 - ======__32. DEFAULT & CONFIRM__======607 +__32. DEFAULT & CONFIRM__ 641 641 642 642 Ex: #5DEFAULT<cr> 643 643 ... ... @@ -649,7 +649,7 @@ 649 649 650 650 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 651 651 652 - ======__33. UPDATE & CONFIRM__======619 +__33. UPDATE & CONFIRM__ 653 653 654 654 Ex: #5UPDATE<cr> 655 655
- XWiki.XWikiRights[0]
-
- Allow/Deny
-
... ... @@ -1,1 +1,0 @@ 1 -1 - Groups
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.XWikiAdminGroup - Levels
-
... ... @@ -1,1 +1,0 @@ 1 -view
- XWiki.XWikiRights[1]
-
- Allow/Deny
-
... ... @@ -1,1 +1,0 @@ 1 -1 - Groups
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.XWikiAdminGroup - Levels
-
... ... @@ -1,1 +1,0 @@ 1 -view
- XWiki.XWikiRights[2]
-
- Allow/Deny
-
... ... @@ -1,1 +1,0 @@ 1 -1 - Groups
-
... ... @@ -1,1 +1,0 @@ 1 -XWiki.Profiles (Lynxmotion).BETA Testers - Levels
-
... ... @@ -1,1 +1,0 @@ 1 -view