Last modified by Eric Nantel on 2024/11/21 09:43

From version < 98.1 >
edited by Coleman Benson
on 2019/02/01 16:13
To version < 98.2 >
edited by Coleman Benson
on 2019/02/05 11:13
< >
Change comment: There is no comment for this version

Summary

Details

Page properties
Content
... ... @@ -79,7 +79,7 @@
79 79  
80 80  == Configuration Commands ==
81 81  
82 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
82 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:
83 83  
84 84  1. Start with a number sign # (U+0023)
85 85  1. Servo ID number as an integer
... ... @@ -156,29 +156,29 @@
156 156  
157 157  SR overwrites SD / CSR overwrites CSD and vice-versa.
158 158  )))|(% style="text-align:center; width:113px" %)Max per servo
159 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
160 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0
161 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
162 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
163 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((
159 +| 14|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7
160 +| 15|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0
161 +| 16|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600
162 +| 17|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1
163 +| 18|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((
164 164  Limp
165 165  )))
166 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| | ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp
167 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
168 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %)
169 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
170 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
171 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
172 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
173 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
174 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
175 -| 30a|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1| | | ✓|none|(% style="width:510px" %)(((
176 -Puts the servo into RC mode. To revert to smart mode, use the button menu.
166 +| 19|[[**F**irst Position (**D**eg)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| | ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp
167 +| 20|[[**T**arget (**D**eg) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
168 +| 21|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %)
169 +| 22|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %)
170 +| 23|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
171 +| 24|[[**Q**uery (gen. status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %)
172 +| 25|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
173 +| 26|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %)
174 +| 27|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
175 +| 28|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1|| | ✓|none|(% style="width:510px" %)(((
176 +Change to RC position mode. To revert to smart mode, use the button menu.
177 177  )))|(% style="text-align:center; width:113px" %)Serial
178 -| 30b|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2| | | ✓| |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)
179 -| 31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
180 -| 32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
181 -| 33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
178 +| 29|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2|| | ✓| |(% style="width:510px" %)Change to RC wheel mode. To revert to smart mode, use the button menu.|(% style="text-align:center; width:113px" %)Serial
179 +| 30|[[**RESET**>>||anchor="H31.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %)
180 +| 31|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %)
181 +| 32|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %)
182 182  
183 183  == Advanced ==
184 184  
... ... @@ -327,22 +327,22 @@
327 327  
328 328  The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
329 329  
330 -====== __12. Speed in Degrees (**SD**)__ ======
330 +====== __12. Max Speed in Degrees (**SD**)__ ======
331 331  
332 332  Ex: #5SD1800<cr>
333 333  
334 -This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
334 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
335 335  
336 336  Query Speed in Degrees (**QSD**)
337 337  
338 338  Ex: #5QSD<cr> might return *5QSD1800<cr>
339 339  
340 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed.
340 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed.
341 341  If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
342 342  
343 343  |**Command sent**|**Returned value (1/10 °)**
344 344  |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
345 -|ex: #5QSD1<cr>|Configured maximum speed  (set by CSD/CSR)
345 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
346 346  |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
347 347  |ex: #5QSD3<cr>|Target travel speed
348 348  
... ... @@ -352,22 +352,22 @@
352 352  
353 353  Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
354 354  
355 -====== __13. Speed in RPM (**SR**)__ ======
355 +====== __13. Max Speed in RPM (**SR**)__ ======
356 356  
357 357  Ex: #5SD45<cr>
358 358  
359 -This command sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session.
359 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
360 360  
361 361  Query Speed in Degrees (**QSR**)
362 362  
363 363  Ex: #5QSR<cr> might return *5QSR45<cr>
364 364  
365 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed.
365 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed.
366 366  If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
367 367  
368 368  |**Command sent**|**Returned value (1/10 °)**
369 369  |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
370 -|ex: #5QSR1<cr>|Configured maximum speed  (set by CSD/CSR)
370 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
371 371  |ex: #5QSR2<cr>|Instantaneous speed (same as QWR)
372 372  |ex: #5QSR3<cr>|Target travel speed
373 373  
... ... @@ -375,68 +375,10 @@
375 375  
376 376  Ex: #5CSR45<cr>
377 377  
378 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
378 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
379 379  
380 -====== __14. Angular Stiffness (**AS**)__ ======
380 +====== ======
381 381  
382 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
383 -
384 -A positive value of "angular stiffness":
385 -
386 -* The more torque will be applied to try to keep the desired position against external input / changes
387 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
388 -
389 -A negative value on the other hand:
390 -
391 -* Causes a slower acceleration to the travel speed, and a slower deceleration
392 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back
393 -
394 -The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior.
395 -
396 -Ex: #5AS-2<cr>
397 -
398 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
399 -
400 -Ex: #5QAS<cr>
401 -
402 -Queries the value being used.
403 -
404 -Ex: #5CAS<cr>
405 -
406 -Writes the desired angular stiffness value to memory.
407 -
408 -====== __15. Angular Hold Stiffness (**AH**)__ ======
409 -
410 -The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
411 -
412 -Ex: #5AH3<cr>
413 -
414 -This sets the holding stiffness for servo #5 to 3 for that session.
415 -
416 -Query Angular Hold Stiffness (**QAH**)
417 -
418 -Ex: #5QAH<cr> might return *5QAH3<cr>
419 -
420 -This returns the servo's angular holding stiffness value.
421 -
422 -Configure Angular Hold Stiffness (**CAH**)
423 -
424 -Ex: #5CAH2<cr>
425 -
426 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM
427 -
428 -====== __15b: Angular Acceleration (**AA**)__ ======
429 -
430 -{More details to come}
431 -
432 -====== __15c: Angular Deceleration (**AD**)__ ======
433 -
434 -{More details to come}
435 -
436 -====== __15d: Motion Control (**EM**)__ ======
437 -
438 -{More details to come}
439 -
440 440  ====== __16. RGB LED (**LED**)__ ======
441 441  
442 442  Ex: #5LED3<cr>
... ... @@ -455,20 +455,6 @@
455 455  
456 456  Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well.
457 457  
458 -====== __16b. Configure LED Blinking (**CLB**)__ ======
459 -
460 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details).
461 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
462 -
463 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
464 -
465 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
466 -Ex: #5CLB1<cr> only blink when limp
467 -Ex: #5CLB2<cr> only blink when holding
468 -Ex: #5CLB12<cr> only blink when accel or decel
469 -Ex: #5CLB48<cr> only blink when free or travel
470 -Ex: #5CLB63<cr> blink in all status
471 -
472 472  ====== __17. Identification Number__ ======
473 473  
474 474  A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
... ... @@ -660,3 +660,77 @@
660 660  Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
661 661  
662 662  Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
591 +
592 +====== __A1. Angular Stiffness (**AS**)__ ======
593 +
594 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes.
595 +
596 +A positive value of "angular stiffness":
597 +
598 +* The more torque will be applied to try to keep the desired position against external input / changes
599 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
600 +
601 +A negative value on the other hand:
602 +
603 +* Causes a slower acceleration to the travel speed, and a slower deceleration
604 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back
605 +
606 +The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior.
607 +
608 +Ex: #5AS-2<cr>
609 +
610 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
611 +
612 +Ex: #5QAS<cr>
613 +
614 +Queries the value being used.
615 +
616 +Ex: #5CAS<cr>
617 +
618 +Writes the desired angular stiffness value to memory.
619 +
620 +====== __A2. Angular Holding Stiffness (**AH**)__ ======
621 +
622 +The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected.
623 +
624 +Ex: #5AH3<cr>
625 +
626 +This sets the holding stiffness for servo #5 to 3 for that session.
627 +
628 +Query Angular Hold Stiffness (**QAH**)
629 +
630 +Ex: #5QAH<cr> might return *5QAH3<cr>
631 +
632 +This returns the servo's angular holding stiffness value.
633 +
634 +Configure Angular Hold Stiffness (**CAH**)
635 +
636 +Ex: #5CAH2<cr>
637 +
638 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM
639 +
640 +====== __A3: Angular Acceleration (**AA**)__ ======
641 +
642 +{More details to come}
643 +
644 +====== __A4: Angular Deceleration (**AD**)__ ======
645 +
646 +{More details to come}
647 +
648 +====== __A5: Motion Control (**EM**)__ ======
649 +
650 +{More details to come}
651 +
652 +====== __A6. Configure LED Blinking (**CLB**)__ ======
653 +
654 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details).
655 +You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;
656 +
657 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
658 +
659 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)
660 +Ex: #5CLB1<cr> only blink when limp
661 +Ex: #5CLB2<cr> only blink when holding
662 +Ex: #5CLB12<cr> only blink when accel or decel
663 +Ex: #5CLB48<cr> only blink when free or travel
664 +Ex: #5CLB63<cr> blink in all status
Copyright RobotShop 2018