Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -131,8 +131,8 @@ 131 131 |= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 132 132 | 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 133 133 | 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 134 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %) 135 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 134 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %) 135 +| 4|[[**S**peed>>||anchor="H4.Speed28S29modifier"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 136 136 | 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 137 137 | 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 138 138 0 ... ... @@ -143,52 +143,50 @@ 143 143 | 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | | ✓|microseconds|(% style="width:510px" %)((( 144 144 Inherited from SSC-32 serial protocol 145 145 )))|(% style="text-align:center; width:113px" %) 146 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 146 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 147 147 | 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 148 148 | 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 149 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD|✓| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)((( 149 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| SD| QSD|CSD|✓| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)((( 150 150 QSD: Add modifier "2" for instantaneous speed. 151 151 152 152 SD overwrites SR / CSD overwrites CSR and vice-versa. 153 153 )))|(% style="text-align:center; width:113px" %)Max per servo 154 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 154 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 155 155 QSR: Add modifier "2" for instantaneous speed 156 156 157 157 SR overwrites SD / CSR overwrites CSD and vice-versa. 158 158 )))|(% style="text-align:center; width:113px" %)Max per servo 159 -| 14|[[**LED** Color>>||anchor="H1 6.RGBLED28LED29"]]| LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7160 -| 15|[[** ID**#>>||anchor="H17.IdentificationNumber"]]| | QID| CID|(integer from 0 to 250)|(% style="width:510px" %)Note:ID254 is a "broadcast"whichallservosrespondto.|(% style="text-align:center; width:113px" %)0161 -| 16|[[** B**audrate>>||anchor="H18.BaudRate"]]|B| QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600162 -| 17|[[** G**yredirection (**G**)>>||anchor="H19.GyreRotationDirection"]]|G| QG| CG|✓|✓| ✓|none |(% style="width:510px" %)Gyre/ rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1163 -| 18|[[**F**irst Position (**P**ulse)>>||anchor="H 20.First2InitialPosition28pulse29"]]| | QFP|CFP |159 +| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7 160 +| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 161 +| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0 162 +| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600 163 +| 18|[[**F**irst Position (**P**ulse)>>||anchor="H18.FirstPosition28Pulse2928FP29"]]| | QFP|CFP |X| ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)((( 164 164 Limp 165 165 ))) 166 -| 19|[[**F**irst Position (**D**eg)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| | ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 167 -| 20|[[**T**arget (**D**eg) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 168 -| 21|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 169 -| 22|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 170 -| 23|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 171 -| 24|[[**Q**uery (gen. status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 172 -| 25|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 173 -| 26|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 174 -| 27|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 175 -| 28|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1|✓| | ✓|none|(% style="width:510px" %)((( 176 -Change to RC position mode. To revert to smart mode, use the button menu. 166 +| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstPosition28Degrees2928FD29"]]| | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 167 +| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 168 +| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 169 +| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 170 +| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 171 +| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 172 +| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 173 +| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 174 +| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | |CRC|✓| | ✓|none|(% style="width:510px" %)((( 175 +Change to RC mode 1 (position) or 2 (wheel). 177 177 )))|(% style="text-align:center; width:113px" %)Serial 178 -| 29|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2|✓| | ✓| |(% style="width:510px" %)Change to RC wheel mode. To revert to smart mode, use the button menu.|(% style="text-align:center; width:113px" %)Serial 179 -| 30|[[**RESET**>>||anchor="H31.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 180 -| 31|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 181 -| 32|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 177 +| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 178 +| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 179 +| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 182 182 183 183 == Advanced == 184 184 185 185 |= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 186 -| A1|[[**A**ngular **S**tiffness>>||anchor="H1 4.AngularStiffness28AS29"]]| AS|QAS|CAS|✓| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0187 -| A2|[[**A**ngular **H**olding Stiffness>>||anchor="H 15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH|✓| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1188 -| A3|[[**A**ngular **A**cceleration>>||anchor="H 15b:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)189 -| A4|[[**A**ngular **D**eceleration>>||anchor="H 15c:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)190 -| A5|[[**E**nable **M**otion Control>>||anchor="H 15d:MotionControl28MC29"]]|EM|QEM| | | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %)191 -| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="H 16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| | ✓| |none (integer from 0 to 63)|(% style="width:510px" %)(((184 +| A1|[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]| AS|QAS|CAS|✓| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0 185 +| A2|[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|AH|QAH|CAH|✓| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1 186 +| A3|[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 187 +| A4|[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 188 +| A5|[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|EM|QEM| | | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %) 189 +| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]| | | CLB| | ✓| |none (integer from 0 to 63)|(% style="width:510px" %)((( 192 192 0=No blinking, 63=Always blink; 193 193 194 194 Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; ... ... @@ -208,7 +208,7 @@ 208 208 209 209 This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position. 210 210 211 -====== __3. Timed move (**T**)__ ====== 209 +====== __3. Timed move (**T**) modifier__ ====== 212 212 213 213 Example: #5P1500T2500<cr> 214 214 ... ... @@ -216,7 +216,7 @@ 216 216 217 217 Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 218 218 219 -====== __4. Speed (**S**)__ ====== 217 +====== __4. Speed (**S**) modifier__ ====== 220 220 221 221 Example: #5P1500S750<cr> 222 222 ... ... @@ -303,6 +303,13 @@ 303 303 304 304 This means the servo is located at 13.2 degrees. 305 305 304 +(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 305 +Query Target Position in Degrees (**QDT**) 306 + 307 +Ex: #5QDT<cr> might return *5QDT6783<cr> 308 + 309 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 310 + 306 306 ====== __10. Wheel Mode in Degrees (**WD**)__ ====== 307 307 308 308 Ex: #5WD900<cr> ... ... @@ -377,10 +377,8 @@ 377 377 378 378 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 379 379 380 -====== ====== 385 +====== __14. LED Color (**LED**)__ ====== 381 381 382 -====== __16. RGB LED (**LED**)__ ====== 383 - 384 384 Ex: #5LED3<cr> 385 385 386 386 This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. ... ... @@ -395,65 +395,66 @@ 395 395 396 396 Configure LED Color (**CLED**) 397 397 398 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 401 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 399 399 400 -====== __1 7.IdentificationNumber__ ======403 +====== __15. Gyre Rotation Direction (**G**)__ ====== 401 401 402 - A servo'sidentificationnumbercannot beset"onthe fly"andmust beconfiguredvia the CID command describedbelow. Thefactory default ID numberfor all servos is 0. Since smartservosare intended to be daisychained,inordertoresponddifferently from oneanother, the usermustset differentidentificationnumbers. Servoswith the sameIDandbaudratewillallreceiveandreacttothe samecommands.405 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 403 403 404 - QueryIdentification (**QID**)407 +Ex: #5G-1<cr> 405 405 406 - EX:#254QID<cr>might return*QID5<cr>409 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 407 407 408 - Whenusing thequeryID command, it is best to onlyhave one servo connectedand thus receive only onereply using the broadcastcommand(ID 254). Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.411 +Query Gyre Direction (**QG**) 409 409 410 - ConfigureID (**CID**)413 +Ex: #5QG<cr> might return *5QG-1<cr> 411 411 412 - Ex:#4CID5<cr>415 +The value returned above means the servo is in a counter-clockwise gyration. 413 413 414 - Setting a servo's ID in EEPROM is done via theCID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo aftertheir ID is set, thoughyou arefree to use whatever alternative method you like.417 +Configure Gyre (**CG**) 415 415 416 - ======__18. Baud Rate__ ======419 +Ex: #5CG-1<cr> 417 417 418 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 419 -\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. 421 +This changes the gyre direction as described above and also writes to EEPROM. 420 420 421 - QueryBaudRate (**QB**)423 +====== __16. Identification Number (**ID**)__ ====== 422 422 423 - Ex:#5QB<cr>might return*5QB9600<cr>425 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate). 424 424 425 -Query ingthe baudrateis used simply to confirmthe CB configurationcommand before the servo is power cycled.427 +Query Identification (**QID**) 426 426 427 - ConfigureBaudRate (**CB**)429 +EX: #254QID<cr> might return *QID5<cr> 428 428 429 -I mportantNote:the servo'scurrent session retains thegivenbaudrateandthe newbaudrate will only be inplacewhen the servoispowercycled.431 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 430 430 431 - Ex: #5CB9600<cr>433 +Configure ID (**CID**) 432 432 433 - Sendingthis command will change the baud rate associated with servoIDto 9600 bits per second.435 +Ex: #4CID5<cr> 434 434 435 - ======__19.GyreRotation Direction__======437 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect. 436 436 437 - "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW=1; CCW=-1.The factorydefaultis clockwise(CW).439 +====== __17. Baud Rate__ ====== 438 438 439 - {images showing before and afterwithARandOrigin offset}441 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 440 440 441 -Query GyreDirection(**QG**)443 +Query Baud Rate (**QB**) 442 442 443 -Ex: #5Q G<cr> might return *5QG-1<cr>445 +Ex: #5QB<cr> might return *5QB9600<cr> 444 444 445 - Thevaluereturned above meansthe servo isounter-clockwisegyration.447 +Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect. 446 446 447 -Configure Gyre (**CG**)449 +Configure Baud Rate (**CB**) 448 448 449 - Ex:#5CG-1<cr>451 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET. 450 450 451 - Thischanges the gyre direction as described above and also writes to EEPROM.453 +Ex: #5CB9600<cr> 452 452 453 - ======__20. First/ InitialPosition(pulse)__======455 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 454 454 455 - Incertain cases, a user might want to have the servo move to a specific angle upon power up.We refer to this as "firstposition".The factory default has no first position value stored in EEPROM and thereforeupon power up, the servo remainslimp until a position (or hold command)is assigned.FPand FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.457 +====== __18. First Position (Pulse) (**FP**)__ ====== 456 456 459 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 460 + 457 457 Query First Position in Pulses (**QFP**) 458 458 459 459 Ex: #5QFP<cr> might return *5QFP1550<cr> ... ... @@ -464,11 +464,11 @@ 464 464 465 465 Ex: #5CP1550<cr> 466 466 467 -This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 471 +This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number (Ex. #5CFP<cr>) results in the servo remaining limp upon power up (i.e. disabled). 468 468 469 -====== __ 21. First/ InitialPosition (Degrees)__ ======473 +====== __19. First Position (Degrees) (**FD**)__ ====== 470 470 471 -In certain cases, a user might want to have the servo move to a specific angle upon power up . We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.475 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 472 472 473 473 Query First Position in Degrees (**QFD**) 474 474 ... ... @@ -480,44 +480,34 @@ 480 480 481 481 Ex: #5CD64<cr> 482 482 483 -This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up. 487 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. 484 484 485 -====== __2 2. QueryTargetPositionin Degrees(**QDT**)__ ======489 +====== __20. Query Model String (**QMS**)__ ====== 486 486 487 -Ex: #5QDT<cr> might return *5QDT6783<cr> 488 - 489 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 490 - 491 -====== __23. Query Model String (**QMS**)__ ====== 492 - 493 493 Ex: #5QMS<cr> might return *5QMSLSS-HS1cr> 494 494 495 -This reply means the servo model 493 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 496 496 497 -====== __2 3b. QueryModel (**QM**)__ ======495 +====== __21. Query Serial Number (**QN**)__ ====== 498 498 499 -Ex: #5Q M<cr> might return *5QM68702699520cr>497 +Ex: #5QN<cr> might return *5QN12345678<cr> 500 500 501 -Th is replymeanstheservomodelis0xFFF000000 or100, meaninga high speed servo,firstrevision.499 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user. 502 502 503 -====== __2 4. QuerySerial Number (**QN**)__ ======501 +====== __22. Query Firmware (**QF**)__ ====== 504 504 505 -Ex: #5Q N<cr> might return *5QN~_~_<cr>503 +Ex: #5QF<cr> might return *5QF411<cr> 506 506 507 -The number sponseis theservo'sserialnumberwhich issetandcannotbechanged.505 +The number in the reply represents the firmware version, in this example being 411. 508 508 509 -====== __2 5. QueryFirmware(**QF**)__ ======507 +====== __23. Query Status (**Q**)__ ====== 510 510 511 - Ex:#5QF<cr>mightreturn*5QF11<cr>509 +The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. 512 512 513 -The integer in the reply represents the firmware version with one decimal, in this example being 1.1 514 - 515 -====== __26. Query Status (**Q**)__ ====== 516 - 517 517 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 518 518 519 519 |*Value returned|**Status**|**Detailed description** 520 -|ex: *5Q0<cr>|Unknown|LSS is unsure 514 +|ex: *5Q0<cr>|Unknown|LSS is unsure / unknown state 521 521 |ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely 522 522 |ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 523 523 |ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed ... ... @@ -529,55 +529,56 @@ 529 529 |ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 530 530 |ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 531 531 532 -====== __2 7. Query Voltage (**QV**)__ ======526 +====== __24. Query Voltage (**QV**)__ ====== 533 533 534 534 Ex: #5QV<cr> might return *5QV11200<cr> 535 535 536 536 The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 537 537 538 -====== __2 8. Query Temperature (**QT**)__ ======532 +====== __25. Query Temperature (**QT**)__ ====== 539 539 540 540 Ex: #5QT<cr> might return *5QT564<cr> 541 541 542 542 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 543 543 544 -====== __2 9. Query Current (**QC**)__ ======538 +====== __26. Query Current (**QC**)__ ====== 545 545 546 546 Ex: #5QC<cr> might return *5QC140<cr> 547 547 548 548 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 549 549 550 -====== __ 30. RC Mode (**CRC**)__ ======544 +====== __27. Configure RC Mode (**CRC**)__ ====== 551 551 552 552 This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 553 553 554 554 |**Command sent**|**Note** 555 -|ex: #5CRC<cr>|Stay in smart mode. 556 556 |ex: #5CRC1<cr>|Change to RC position mode. 557 557 |ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 558 -|ex: #5CRC*<cr>|Where * is any number or value .Stay in smart mode.551 +|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode. 559 559 560 -EX: #5CRC<cr> 553 +EX: #5CRC2<cr> 561 561 562 - ======__31. RESET__======555 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. 563 563 557 +====== __28. **RESET**__ ====== 558 + 564 564 Ex: #5RESET<cr> or #5RS<cr> 565 565 566 566 This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 567 567 568 -====== __ 32. DEFAULT & CONFIRM__ ======563 +====== __29. **DEFAULT** & CONFIRM__ ====== 569 569 570 570 Ex: #5DEFAULT<cr> 571 571 572 -This command sets in motion the reset all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 567 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 573 573 574 574 EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 575 575 576 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leavethefirmware action.571 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command. 577 577 578 578 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 579 579 580 -====== __3 3. UPDATE & CONFIRM__ ======575 +====== __30. **UPDATE** & CONFIRM__ ====== 581 581 582 582 Ex: #5UPDATE<cr> 583 583 ... ... @@ -589,9 +589,11 @@ 589 589 590 590 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 591 591 587 += Advanced = 588 + 592 592 ====== __A1. Angular Stiffness (**AS**)__ ====== 593 593 594 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 591 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units. 595 595 596 596 A positive value of "angular stiffness": 597 597 ... ... @@ -603,7 +603,7 @@ 603 603 * Causes a slower acceleration to the travel speed, and a slower deceleration 604 604 * Allows the target position to deviate more from its position before additional torque is applied to bring it back 605 605 606 -The default value iszeroandthe effect becomes extremeby-4, +4. Thereareno units, onlyintegersbetween-4to4.603 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 607 607 608 608 Ex: #5AS-2<cr> 609 609 ... ... @@ -617,9 +617,9 @@ 617 617 618 618 Writes the desired angular stiffness value to memory. 619 619 620 -====== __A2. Angular Holding 617 +====== __A2. Angular Holding Stiffness (**AH**)__ ====== 621 621 622 -The angular holding stiffness determines the servo's ability to hold a desired position under load. Valuescanbe from-10to10, withthedefaultbeing0.Notethat negative valuesmean the finalpositioncan beeasilydeflected.619 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 623 623 624 624 Ex: #5AH3<cr> 625 625 ... ... @@ -651,14 +651,24 @@ 651 651 652 652 ====== __A6. Configure LED Blinking (**CLB**)__ ====== 653 653 654 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 655 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 651 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. Here is the list and their associated value: 656 656 653 +(% style="width:195px" %) 654 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 655 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 656 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1 657 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2 658 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 659 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 660 +|(% style="width:134px" %)Free|(% style="width:58px" %)16 661 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 662 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63 663 + 657 657 To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 658 658 659 659 Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 660 -Ex: #5CLB1<cr> only blink when limp 661 -Ex: #5CLB2<cr> only blink when holding 662 -Ex: #5CLB12<cr> only blink when accel or decel 663 -Ex: #5CLB48<cr> only blink when free or travel 664 -Ex: #5CLB63<cr> blink in all status 667 +Ex: #5CLB1<cr> only blink when limp (1) 668 +Ex: #5CLB2<cr> only blink when holding (2) 669 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12) 670 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48) 671 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)