Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2024/11/21 09:43
Change comment: There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -13,8 +13,6 @@ 13 13 14 14 A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 15 15 16 -Note that for a given session, the action related to a specific commands overrides the stored value in EEPROM. 17 - 18 18 == Action Commands == 19 19 20 20 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format: ... ... @@ -47,6 +47,20 @@ 47 47 This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds. 48 48 ))) 49 49 48 +== Configuration Commands == 49 + 50 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 51 + 52 +1. Start with a number sign # (U+0023) 53 +1. Servo ID number as an integer 54 +1. Configuration command (two to three letters, no spaces, capital or lower case) 55 +1. Configuration value in the correct units with no decimal 56 +1. End with a control / carriage return '<cr>' 57 + 58 +Ex: #5CO-50<cr> 59 + 60 +This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below. 61 + 50 50 == Query Commands == 51 51 52 52 Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format: ... ... @@ -77,20 +77,6 @@ 77 77 78 78 This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees). 79 79 80 -== Configuration Commands == 81 - 82 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 83 - 84 -1. Start with a number sign # (U+0023) 85 -1. Servo ID number as an integer 86 -1. Configuration command (two to three letters, no spaces, capital or lower case) 87 -1. Configuration value in the correct units with no decimal 88 -1. End with a control / carriage return '<cr>' 89 - 90 -Ex: #5CO-50<cr> 91 - 92 -This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below. 93 - 94 94 **Session vs Configuration Query** 95 95 96 96 By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: ... ... @@ -128,72 +128,72 @@ 128 128 129 129 = Command List = 130 130 131 -|= #|=Description|= Action|= Query|= Config|= Session|=RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value132 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | |133 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | |134 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | |135 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | |persecond|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)136 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | |137 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO|CO| ✓|✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((129 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 130 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 131 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 132 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %) 133 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds / second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 134 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 135 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 138 138 0 139 139 ))) 140 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓|✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((138 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 141 141 1800 142 142 ))) 143 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | |✓|microseconds|(% style="width:510px" %)(((141 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(% style="width:510px" %)((( 144 144 Inherited from SSC-32 serial protocol 145 145 )))|(% style="text-align:center; width:113px" %) 146 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | |✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)147 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | |✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)148 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | |✓|revolutionsperminute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)149 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| ✓|✓| ✓|tenths of degrees per second |(% style="width:510px" %)(((144 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 145 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 146 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 147 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)((( 150 150 QSD: Add modifier "2" for instantaneous speed. 151 151 152 152 SD overwrites SR / CSD overwrites CSR and vice-versa. 153 153 )))|(% style="text-align:center; width:113px" %)Max per servo 154 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓|✓| ✓|revolutionsperminute (rpm)|(% style="width:510px" %)(((152 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓| ✓|rpm|(% style="width:510px" %)((( 155 155 QSR: Add modifier "2" for instantaneous speed 156 156 157 157 SR overwrites SD / CSR overwrites CSD and vice-versa. 158 158 )))|(% style="text-align:center; width:113px" %)Max per servo 159 -| 1 4|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED|✓|✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7160 -| 1 5|[[**G**yredirection (**G**)>>||anchor="H19.GyreRotationDirection"]]|G| QG| CG|✓|✓| ✓|none |(% style="width:510px" %)Gyre/rotationdirection:1= CW (clockwise)-1= CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1161 -| 1 6|[[**ID**#>>||anchor="H17.IdentificationNumber"]]| | QID| CID| ||✓|none (integerfrom 0 to 250)|(% style="width:510px" %)Note:ID 254 is a "broadcast" which all servos respond to.|(% style="text-align:center; width:113px" %)0162 -| 1 7|[[**B**audrate>>||anchor="H18.BaudRate"]]| | QB| CB| ||✓|none(integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600163 -| 18|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP |X|✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((157 +| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7 158 +| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0 159 +| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600 160 +| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 161 +| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)((( 164 164 Limp 165 165 ))) 166 -| 19|[[**F**irst Position (**D**eg)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 167 -| 20|[[**T**arget (**D**eg) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 168 -| 21|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 169 -| 22|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 170 -| 23|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 171 -| 24|[[**Q**uery (gen. status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 172 -| 25|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 173 -| 26|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 174 -| 27|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 175 -| 28|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1|✓| | ✓|none|(% style="width:510px" %)((( 176 -Change to RC position mode. To revert to smart mode, use the button menu. 164 +| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 165 +| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 166 +| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)|(% style="width:510px" %) Recommended to determine the model|(% style="text-align:center; width:113px" %) 167 +| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)|(% style="width:510px" %) Returns a raw value representing the three model inputs (36 bit)|(% style="text-align:center; width:113px" %) 168 +| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 169 +| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 170 +| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 171 +| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 172 +| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 173 +| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 174 +| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|(% style="width:510px" %)((( 175 +CRC: Add modifier "1" for RC-position mode. 176 +CRC: Add modifier "2" for RC-wheel mode. 177 +Any other value for the modifier results in staying in smart mode. 178 +Puts the servo into RC mode. To revert to smart mode, use the button menu. 177 177 )))|(% style="text-align:center; width:113px" %)Serial 178 -| 29|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2|✓| | ✓| |(% style="width:510px" %)Change to RC wheel mode. To revert to smart mode, use the button menu.|(% style="text-align:center; width:113px" %)Serial 179 -| 30|[[**RESET**>>||anchor="H31.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 180 -| 31|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 181 -| 32|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 180 +|31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 181 +|32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 182 +|33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 182 182 183 183 == Advanced == 184 184 185 -|= #|=Description|= Action|= Query|= Config|= Session|=RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value186 -| A1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS|✓|✓| ✓|none(integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0187 -| A2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH|✓|| ✓|none(integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1188 -| A3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓|| ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)189 -| A4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓|| ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)190 -| A5|[[**E**nable **M**otionControl>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | ||✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %)191 -| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB||✓| |none (integer from 0 to 63)|(% style="width:510px" %)(((192 - 0=Noblinking,63=Always blink;186 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 187 +| 1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS|CAS| ✓| ✓|none|(% style="width:510px" %)-4 to +4, but suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0 188 +| 2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|(% style="width:510px" %)-10 to +10, with default as 0. |(% style="text-align:center; width:113px" %)1 189 +| 3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 190 +| 4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 191 +| 5|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles|(% style="text-align:center; width:113px" %) 192 +| 6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center; width:113px" %) 193 +| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 193 193 194 -Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 195 -)))|(% style="text-align:center; width:113px" %) 196 - 197 197 == Details == 198 198 199 199 ====== __1. Limp (**L**)__ ====== ... ... @@ -206,17 +206,17 @@ 206 206 207 207 Example: #5H<cr> 208 208 209 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angularposition.207 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position. 210 210 211 -====== __3. Timed move (**T**) modifier__ ======209 +====== __3. Timed move (**T**)__ ====== 212 212 213 213 Example: #5P1500T2500<cr> 214 214 215 -Timed move can be used only as a modifier for a position (P , D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensurethat the move is performed entirely at the desired velocity, though differences in torquemay cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.213 +Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 216 216 217 217 Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 218 218 219 -====== __4. Speed (**S**) modifier__ ======217 +====== __4. Speed (**S**)__ ====== 220 220 221 221 Example: #5P1500S750<cr> 222 222 ... ... @@ -232,11 +232,11 @@ 232 232 233 233 Example: #5O2400<cr> 234 234 235 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session.As withall action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).233 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position. The setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. Note that for a given session, the O command overrides the CO command. In the first image, the origin at factory offset '0' (centered). 236 236 237 237 [[image:LSS-servo-default.jpg]] 238 238 239 -In the second image, the origin, a ndthecorrespondingangular range (explained below) have been shifted by+240.0 degrees:237 +In the second image, the origina, as well as the angular range (explained below) have been shifted by 240.0 degrees: 240 240 241 241 [[image:LSS-servo-origin.jpg]] 242 242 ... ... @@ -244,33 +244,33 @@ 244 244 245 245 Example: #5QO<cr> Returns: *5QO-13 246 246 247 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.245 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. 248 248 249 249 Configure Origin Offset (**CO**) 250 250 251 251 Example: #5CO-24<cr> 252 252 253 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.251 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. 254 254 255 255 ====== __7. Angular Range (**AR**)__ ====== 256 256 257 257 Example: #5AR1800<cr> 258 258 259 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image belowshows a standard-180.0 to +180.0 range,with no offset:257 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). In the first image, 260 260 261 261 [[image:LSS-servo-default.jpg]] 262 262 263 - Below, the angular rangeis restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.261 +Here, the angular range has been restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 264 264 265 265 [[image:LSS-servo-ar.jpg]] 266 266 267 - Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action commandre used to move both the center and limit the angular range:265 +The angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) an be used to move both the center and limit the angular range: 268 268 269 269 [[image:LSS-servo-ar-o-1.jpg]] 270 270 271 271 Query Angular Range (**QAR**) 272 272 273 -Example: #5QAR<cr> might return *5AR 1800, indicating the total angular range is 180.0 degrees.271 +Example: #5QAR<cr> might return *5AR2756 274 274 275 275 Configure Angular Range (**CAR**) 276 276 ... ... @@ -327,22 +327,22 @@ 327 327 328 328 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 329 329 330 -====== __12. MaxSpeed in Degrees (**SD**)__ ======328 +====== __12. Speed in Degrees (**SD**)__ ====== 331 331 332 332 Ex: #5SD1800<cr> 333 333 334 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage.TheSDaction command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD)received is what the servo uses for that session.332 +This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session. 335 335 336 336 Query Speed in Degrees (**QSD**) 337 337 338 338 Ex: #5QSD<cr> might return *5QSD1800<cr> 339 339 340 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a nSD/SR command is processed.338 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed. 341 341 If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 342 342 343 343 |**Command sent**|**Returned value (1/10 °)** 344 344 |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 345 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM(set by CSD/CSR)343 +|ex: #5QSD1<cr>|Configured maximum speed (set by CSD/CSR) 346 346 |ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 347 347 |ex: #5QSD3<cr>|Target travel speed 348 348 ... ... @@ -352,22 +352,22 @@ 352 352 353 353 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 354 354 355 -====== __13. MaxSpeed in RPM (**SR**)__ ======353 +====== __13. Speed in RPM (**SR**)__ ====== 356 356 357 357 Ex: #5SD45<cr> 358 358 359 -This command sets the servo's maximum speed for motionreceived is what the servo uses for that session.357 +This command sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session. 360 360 361 361 Query Speed in Degrees (**QSR**) 362 362 363 363 Ex: #5QSR<cr> might return *5QSR45<cr> 364 364 365 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a nSD/SR command is processed.363 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed. 366 366 If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 367 367 368 368 |**Command sent**|**Returned value (1/10 °)** 369 369 |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 370 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM(set by CSD/CSR)368 +|ex: #5QSR1<cr>|Configured maximum speed (set by CSD/CSR) 371 371 |ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 372 372 |ex: #5QSR3<cr>|Target travel speed 373 373 ... ... @@ -375,10 +375,70 @@ 375 375 376 376 Ex: #5CSR45<cr> 377 377 378 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.376 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 379 379 380 -====== __14. LED Color (**LED**)__ ======378 +====== __14. Angular Stiffness (**AS**)__ ====== 381 381 380 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 381 + 382 +A positive value of "angular stiffness": 383 + 384 +* The more torque will be applied to try to keep the desired position against external input / changes 385 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 386 + 387 +A negative value on the other hand: 388 + 389 +* Causes a slower acceleration to the travel speed, and a slower deceleration 390 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back 391 + 392 +The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior. 393 + 394 +Ex: #5AS-2<cr> 395 + 396 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 397 + 398 +Ex: #5QAS<cr> 399 + 400 +Queries the value being used. 401 + 402 +Ex: #5CAS<cr> 403 + 404 +Writes the desired angular stiffness value to memory. 405 + 406 +====== __15. Angular Hold Stiffness (**AH**)__ ====== 407 + 408 +The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 409 + 410 +Ex: #5AH3<cr> 411 + 412 +This sets the holding stiffness for servo #5 to 3 for that session. 413 + 414 +Query Angular Hold Stiffness (**QAH**) 415 + 416 +Ex: #5QAH<cr> might return *5QAH3<cr> 417 + 418 +This returns the servo's angular holding stiffness value. 419 + 420 +Configure Angular Hold Stiffness (**CAH**) 421 + 422 +Ex: #5CAH2<cr> 423 + 424 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM 425 + 426 +====== __15b: Angular Acceleration (**AA**)__ ====== 427 + 428 +{More details to come} 429 + 430 +====== __15c: Angular Deceleration (**AD**)__ ====== 431 + 432 +{More details to come} 433 + 434 +====== __15d: Motion Control (**EM**)__ ====== 435 + 436 +{More details to come} 437 + 438 +====== __16. RGB LED (**LED**)__ ====== 439 + 382 382 Ex: #5LED3<cr> 383 383 384 384 This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. ... ... @@ -393,50 +393,63 @@ 393 393 394 394 Configure LED Color (**CLED**) 395 395 396 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 454 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 397 397 398 -====== __1 5.Identification Number (**ID**#)__ ======456 +====== __16b. Configure LED Blinking (**CLB**)__ ====== 399 399 400 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate). 458 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 459 +You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 401 401 461 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 462 + 463 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 464 +Ex: #5CLB1<cr> only blink when limp 465 +Ex: #5CLB2<cr> only blink when holding 466 +Ex: #5CLB12<cr> only blink when accel or decel 467 +Ex: #5CLB48<cr> only blink when free or travel 468 +Ex: #5CLB63<cr> blink in all status 469 + 470 +====== __17. Identification Number__ ====== 471 + 472 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 473 + 402 402 Query Identification (**QID**) 403 403 404 404 EX: #254QID<cr> might return *QID5<cr> 405 405 406 -When using the query ID command, it is best to only have one servo connected and thus receive only one reply .This isuseful when you are not sure of the servo's ID, but don't want to changeit. Using the broadcast command (ID 254)with only one servo will have that servo reply with its ID number (assuming the query is sent. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.478 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply using the broadcast command (ID 254). Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 407 407 408 408 Configure ID (**CID**) 409 409 410 410 Ex: #4CID5<cr> 411 411 412 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.484 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. 413 413 414 -====== __1 6. Baud Rate(B)__ ======486 +====== __18. Baud Rate__ ====== 415 415 416 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 488 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 489 +\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. 417 417 418 418 Query Baud Rate (**QB**) 419 419 420 420 Ex: #5QB<cr> might return *5QB9600<cr> 421 421 422 - Since the command to querymust be done at the servo's existingbaudrate, it cansimplybe usedto confirm the CB configuration commandwas correctly receivedbefore the servo is power cycledand the new baud rate takes effect.495 +Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled. 423 423 424 424 Configure Baud Rate (**CB**) 425 425 426 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only takeeffectwhen the servo is power cycled/ RESET.499 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled. 427 427 428 428 Ex: #5CB9600<cr> 429 429 430 430 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 431 431 432 -====== __1 7. Gyre Rotation Direction(**G**)__ ======505 +====== __19. Gyre Rotation Direction__ ====== 433 433 434 434 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 435 435 436 - Ex:#5G-1<cr>509 +{images showing before and after with AR and Origin offset} 437 437 438 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 439 - 440 440 Query Gyre Direction (**QG**) 441 441 442 442 Ex: #5QG<cr> might return *5QG-1<cr> ... ... @@ -449,9 +449,9 @@ 449 449 450 450 This changes the gyre direction as described above and also writes to EEPROM. 451 451 452 -====== __ 18. First Position (Pulse)(**FP**)__ ======523 +====== __20. First / Initial Position (pulse)__ ====== 453 453 454 -In certain cases, a user might want to have the servo move to a specific angle upon power up ; we refer to this as "first position"(a.k.a."initial position").The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.525 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 455 455 456 456 Query First Position in Pulses (**QFP**) 457 457 ... ... @@ -463,11 +463,11 @@ 463 463 464 464 Ex: #5CP1550<cr> 465 465 466 -This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 537 +This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 467 467 468 -====== __1 9. First / Initial Position (Degrees)(**FD**)__ ======539 +====== __21. First / Initial Position (Degrees)__ ====== 469 469 470 -In certain cases, a user might want to have the servo move to a specific angle upon power up ; we refer to this as "first position"(a.k.a."initial position").The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.541 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 471 471 472 472 Query First Position in Degrees (**QFD**) 473 473 ... ... @@ -587,77 +587,3 @@ 587 587 Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 588 588 589 589 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 590 - 591 -====== __A1. Angular Stiffness (**AS**)__ ====== 592 - 593 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 594 - 595 -A positive value of "angular stiffness": 596 - 597 -* The more torque will be applied to try to keep the desired position against external input / changes 598 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 599 - 600 -A negative value on the other hand: 601 - 602 -* Causes a slower acceleration to the travel speed, and a slower deceleration 603 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back 604 - 605 -The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior. 606 - 607 -Ex: #5AS-2<cr> 608 - 609 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 610 - 611 -Ex: #5QAS<cr> 612 - 613 -Queries the value being used. 614 - 615 -Ex: #5CAS<cr> 616 - 617 -Writes the desired angular stiffness value to memory. 618 - 619 -====== __A2. Angular Holding Stiffness (**AH**)__ ====== 620 - 621 -The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 622 - 623 -Ex: #5AH3<cr> 624 - 625 -This sets the holding stiffness for servo #5 to 3 for that session. 626 - 627 -Query Angular Hold Stiffness (**QAH**) 628 - 629 -Ex: #5QAH<cr> might return *5QAH3<cr> 630 - 631 -This returns the servo's angular holding stiffness value. 632 - 633 -Configure Angular Hold Stiffness (**CAH**) 634 - 635 -Ex: #5CAH2<cr> 636 - 637 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM 638 - 639 -====== __A3: Angular Acceleration (**AA**)__ ====== 640 - 641 -{More details to come} 642 - 643 -====== __A4: Angular Deceleration (**AD**)__ ====== 644 - 645 -{More details to come} 646 - 647 -====== __A5: Motion Control (**EM**)__ ====== 648 - 649 -{More details to come} 650 - 651 -====== __A6. Configure LED Blinking (**CLB**)__ ====== 652 - 653 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 654 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 655 - 656 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 657 - 658 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 659 -Ex: #5CLB1<cr> only blink when limp 660 -Ex: #5CLB2<cr> only blink when holding 661 -Ex: #5CLB12<cr> only blink when accel or decel 662 -Ex: #5CLB48<cr> only blink when free or travel 663 -Ex: #5CLB63<cr> blink in all status