Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -1,5 +1,5 @@ 1 1 (% class="wikigeneratedid" id="HTableofContents" %) 2 -** TableofContents**2 +**Page Contents** 3 3 4 4 {{toc depth="3"/}} 5 5 ... ... @@ -128,6 +128,8 @@ 128 128 129 129 = Command List = 130 130 131 +== Regular == 132 + 131 131 |= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 132 132 | 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 133 133 | 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) ... ... @@ -146,7 +146,7 @@ 146 146 | 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 147 147 | 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 148 148 | 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 149 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| SD| QSD|CSD|✓| ✓| ✓| tenths ofdegrees per second |(% style="width:510px" %)(((151 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)((( 150 150 QSD: Add modifier "2" for instantaneous speed. 151 151 152 152 SD overwrites SR / CSD overwrites CSR and vice-versa. ... ... @@ -181,7 +181,7 @@ 181 181 == Advanced == 182 182 183 183 |= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 184 -| A1|[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]| 186 +| A1|[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|AS|QAS|CAS|✓| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0 185 185 | A2|[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|AH|QAH|CAH|✓| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1 186 186 | A3|[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 187 187 | A4|[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) ... ... @@ -278,7 +278,7 @@ 278 278 279 279 Example: #5P2334<cr> 280 280 281 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected to end points. 283 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points. 282 282 283 283 Query Position in Pulse (**QP**) 284 284 ... ... @@ -456,7 +456,7 @@ 456 456 457 457 ====== __18. First Position (Pulse) (**FP**)__ ====== 458 458 459 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 461 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. If a first position pulse is assigned, the servo will move to that angle and hold there for up to 2 seconds before going limp should a new pulse not be received. 460 460 461 461 Query First Position in Pulses (**QFP**) 462 462 ... ... @@ -490,37 +490,52 @@ 490 490 491 491 Ex: #5QMS<cr> might return *5QMSLSS-HS1cr> 492 492 493 -This reply means the servo model 495 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 494 494 495 495 ====== __21. Query Serial Number (**QN**)__ ====== 496 496 497 -Ex: #5QN<cr> might return *5QN ~_~_<cr>499 +Ex: #5QN<cr> might return *5QN12345678<cr> 498 498 499 -The number in the response isthe servo's serial number which is set andcannot501 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user. 500 500 501 501 ====== __22. Query Firmware (**QF**)__ ====== 502 502 503 -Ex: #5QF<cr> might return *5QF11<cr> 505 +Ex: #5QF<cr> might return *5QF411<cr> 504 504 505 -The integerwith one decimal, in this example being 1.1507 +The number in the reply represents the firmware version, in this example being 411. 506 506 507 507 ====== __23. Query Status (**Q**)__ ====== 508 508 511 +The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses. 512 + 509 509 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 510 510 511 -|*Value returned|**Status**|**Detailed description** 512 -|ex: *5Q0<cr>|Unknown|LSS is unsure 513 -|ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely 514 -|ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 515 -|ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed 516 -|ex: *5Q4<cr>|Traveling|Moving at a stable speed 517 -|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position. 518 -|ex: *5Q6<cr>|Holding|Keeping current position 519 -|ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque 520 -|ex: *5Q8<cr>|Outside limits|{More details coming soon} 521 -|ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 522 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 515 +|***Value returned (Q)**|**Status**|**Detailed description** 516 +|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 517 +|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 518 +|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely 519 +|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 520 +|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 521 +|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 522 +|ex: *5Q6<cr>|6: Holding|Keeping current position 523 +|ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 524 +|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 525 +|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 526 +|ex: *5Q10<cr>|10: Safe Mode|((( 527 +A safety limit has been exceeded (temperature, peak current or extended high current draw). 523 523 529 +Send a Q1 command to know which limit has been reached (described below). 530 +))) 531 + 532 +(% class="wikigeneratedid" %) 533 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 534 + 535 +|***Value returned (Q1)**|**Status**|**Detailed description** 536 +|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 537 +|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 538 +|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 539 +|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 540 + 524 524 ====== __24. Query Voltage (**QV**)__ ====== 525 525 526 526 Ex: #5QV<cr> might return *5QV11200<cr> ... ... @@ -544,15 +544,16 @@ 544 544 This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 545 545 546 546 |**Command sent**|**Note** 547 -|ex: #5CRC<cr>|Stay in smart mode. 548 548 |ex: #5CRC1<cr>|Change to RC position mode. 549 549 |ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 550 -|ex: #5CRC*<cr>|Where * is any number or value .Stay in smart mode.566 +|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode. 551 551 552 -EX: #5CRC<cr> 568 +EX: #5CRC2<cr> 553 553 554 - ============570 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command. 555 555 572 +Important note:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:Lynxmotion Smart Servo (LSS).LSS - Button Menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe. 573 + 556 556 ====== __28. **RESET**__ ====== 557 557 558 558 Ex: #5RESET<cr> or #5RS<cr> ... ... @@ -563,11 +563,11 @@ 563 563 564 564 Ex: #5DEFAULT<cr> 565 565 566 -This command sets in motion the reset all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 584 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 567 567 568 568 EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 569 569 570 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leavethefirmware action.588 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command. 571 571 572 572 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 573 573 ... ... @@ -583,9 +583,11 @@ 583 583 584 584 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 585 585 604 += Advanced = 605 + 586 586 ====== __A1. Angular Stiffness (**AS**)__ ====== 587 587 588 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 608 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units. 589 589 590 590 A positive value of "angular stiffness": 591 591 ... ... @@ -597,7 +597,7 @@ 597 597 * Causes a slower acceleration to the travel speed, and a slower deceleration 598 598 * Allows the target position to deviate more from its position before additional torque is applied to bring it back 599 599 600 -The default value iszeroandthe effect becomes extremeby-4, +4. Thereareno units, onlyintegersbetween-4to4.620 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 601 601 602 602 Ex: #5AS-2<cr> 603 603 ... ... @@ -613,7 +613,7 @@ 613 613 614 614 ====== __A2. Angular Holding Stiffness (**AH**)__ ====== 615 615 616 -The angular holding stiffness determines the servo's ability to hold a desired position under load. Valuescanbe from-10to10, withthedefaultbeing0.Notethat negative valuesmean the finalpositioncan beeasilydeflected.636 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 617 617 618 618 Ex: #5AH3<cr> 619 619 ... ... @@ -645,14 +645,26 @@ 645 645 646 646 ====== __A6. Configure LED Blinking (**CLB**)__ ====== 647 647 648 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 649 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 668 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value: 650 650 670 +(% style="width:195px" %) 671 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 672 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 673 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1 674 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2 675 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 676 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 677 +|(% style="width:134px" %)Free|(% style="width:58px" %)16 678 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 679 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63 680 + 651 651 To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 652 652 653 653 Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 654 -Ex: #5CLB1<cr> only blink when limp 655 -Ex: #5CLB2<cr> only blink when holding 656 -Ex: #5CLB12<cr> only blink when accel or decel 657 -Ex: #5CLB48<cr> only blink when free or travel 658 -Ex: #5CLB63<cr> blink in all status 684 +Ex: #5CLB1<cr> only blink when limp (1) 685 +Ex: #5CLB2<cr> only blink when holding (2) 686 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12) 687 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48) 688 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32) 689 + 690 +RESETTING the servo is needed.