Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -79,7 +79,7 @@ 79 79 80 80 == Configuration Commands == 81 81 82 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not .In theCommand tablebelow, thecolumn"Session"denotesifthe configurationcommandaffects the session..Not all action commands have a corresponding configurationcommandandvice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command:82 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 83 83 84 84 1. Start with a number sign # (U+0023) 85 85 1. Servo ID number as an integer ... ... @@ -128,65 +128,71 @@ 128 128 129 129 = Command List = 130 130 131 -|= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 131 +|= #|=Description|= Action|= Query|= Config|=((( 132 +Config Affects 133 + 134 +Session 135 +)))|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 132 132 | 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 133 133 | 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 134 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29 modifier"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)135 -| 4|[[**S**peed>>||anchor="H4.Speed28S29 modifier"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)138 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %) 139 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 136 136 | 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 137 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO|CO| ✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((141 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| | ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 138 138 0 139 139 ))) 140 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((144 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| | ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 141 141 1800 142 142 ))) 143 143 | 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | | ✓|microseconds|(% style="width:510px" %)((( 144 144 Inherited from SSC-32 serial protocol 145 145 )))|(% style="text-align:center; width:113px" %) 146 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)150 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 147 147 | 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 148 148 | 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 149 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12. MaxSpeedinDegrees28SD29"]]| SD| QSD|CSD|✓| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)(((153 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| | ✓| ✓|tenths of degrees per second |(% style="width:510px" %)((( 150 150 QSD: Add modifier "2" for instantaneous speed. 151 151 152 152 SD overwrites SR / CSD overwrites CSR and vice-versa. 153 153 )))|(% style="text-align:center; width:113px" %)Max per servo 154 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13. MaxSpeedinRPM28SR29"]]| SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((158 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| | ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 155 155 QSR: Add modifier "2" for instantaneous speed 156 156 157 157 SR overwrites SD / CSR overwrites CSD and vice-versa. 158 158 )))|(% style="text-align:center; width:113px" %)Max per servo 159 -| 1 4|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7160 -| 1 5|[[**G**yredirection (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]|G| QG| CG|✓|✓| ✓|none |(% style="width:510px" %)Gyre/rotationdirection:1= CW (clockwise)-1= CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1161 -| 1 6|[[**ID**#>>||anchor="H16.IdentificationNumber28ID29"]]| | QID| CID| | | ✓|none (integerfrom 0 to 250)|(% style="width:510px" %)Note:ID 254 is a "broadcast" which all servos respond to.|(% style="text-align:center; width:113px" %)0162 -| 1 7|[[**B**audrate>>||anchor="H17.BaudRate"]]| | QB| CB| | | ✓|none(integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600163 -| 18|[[**F**irst Position (**P**ulse)>>||anchor="H18.FirstPosition28Pulse2928FP29"]]| | QFP|CFP |X| ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((163 +| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| | ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7 164 +| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0 165 +| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600 166 +| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| | ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 167 +| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)((( 164 164 Limp 165 165 ))) 166 -| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstPosition28Degrees2928FD29"]]| | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 167 -| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 168 -| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 169 -| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 170 -| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 171 -| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 172 -| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 173 -| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 174 -| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | |CRC|✓| | ✓|none|(% style="width:510px" %)((( 175 -Change to RC mode 1 (position) or 2 (wheel). 170 +| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| | ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 171 +| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 172 +| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 173 +| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 174 +| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 175 +| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 176 +| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 177 +| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 178 +| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 179 +| 30a|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1| | | ✓|none|(% style="width:510px" %)((( 180 +Puts the servo into RC mode. To revert to smart mode, use the button menu. 176 176 )))|(% style="text-align:center; width:113px" %)Serial 177 -| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 178 -| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 179 -| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 182 +| 30b|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2| | | ✓| |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 183 +| 31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 184 +| 32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 185 +| 33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 180 180 181 181 == Advanced == 182 182 183 -|= #|=Description|= Action|= Query|= Config|= Session|=RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value184 -| A1|[[**A**ngular **S**tiffness>>||anchor="H A1.AngularStiffness28AS29"]]| AS|QAS|CAS|✓|✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0185 -| A2|[[**A**ngular **H**olding Stiffness>>||anchor="H A2.AngularHoldingStiffness28AH29"]]|AH|QAH|CAH|✓|| ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1186 -| A3|[[**A**ngular **A**cceleration>>||anchor="H A3:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓|| ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)187 -| A4|[[**A**ngular **D**eceleration>>||anchor="H A4:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓|| ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)188 -| A5|[[**E**nable **M**otion Control>>||anchor="H A5:MotionControl28EM29"]]|EM|QEM| | ||✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %)189 -| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="H A6.ConfigureLEDBlinking28CLB29"]]| | | CLB||✓| |none (integer from 0 to 63)|(% style="width:510px" %)(((189 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 190 +| A1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0 191 +| A2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1 192 +| A3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 193 +| A4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 194 +| A5|[[**E**nable **M**otion Control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %) 195 +| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)((( 190 190 0=No blinking, 63=Always blink; 191 191 192 192 Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; ... ... @@ -206,7 +206,7 @@ 206 206 207 207 This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position. 208 208 209 -====== __3. Timed move (**T**) modifier__ ======215 +====== __3. Timed move (**T**)__ ====== 210 210 211 211 Example: #5P1500T2500<cr> 212 212 ... ... @@ -214,7 +214,7 @@ 214 214 215 215 Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 216 216 217 -====== __4. Speed (**S**) modifier__ ======223 +====== __4. Speed (**S**)__ ====== 218 218 219 219 Example: #5P1500S750<cr> 220 220 ... ... @@ -301,13 +301,6 @@ 301 301 302 302 This means the servo is located at 13.2 degrees. 303 303 304 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 305 -Query Target Position in Degrees (**QDT**) 306 - 307 -Ex: #5QDT<cr> might return *5QDT6783<cr> 308 - 309 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 310 - 311 311 ====== __10. Wheel Mode in Degrees (**WD**)__ ====== 312 312 313 313 Ex: #5WD900<cr> ... ... @@ -332,22 +332,22 @@ 332 332 333 333 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 334 334 335 -====== __12. MaxSpeed in Degrees (**SD**)__ ======334 +====== __12. Speed in Degrees (**SD**)__ ====== 336 336 337 337 Ex: #5SD1800<cr> 338 338 339 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage.TheSDaction command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD)received is what the servo uses for that session.338 +This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session. 340 340 341 341 Query Speed in Degrees (**QSD**) 342 342 343 343 Ex: #5QSD<cr> might return *5QSD1800<cr> 344 344 345 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a nSD/SR command is processed.344 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed. 346 346 If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 347 347 348 348 |**Command sent**|**Returned value (1/10 °)** 349 349 |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 350 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM(set by CSD/CSR)349 +|ex: #5QSD1<cr>|Configured maximum speed (set by CSD/CSR) 351 351 |ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 352 352 |ex: #5QSD3<cr>|Target travel speed 353 353 ... ... @@ -357,22 +357,22 @@ 357 357 358 358 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 359 359 360 -====== __13. MaxSpeed in RPM (**SR**)__ ======359 +====== __13. Speed in RPM (**SR**)__ ====== 361 361 362 362 Ex: #5SD45<cr> 363 363 364 -This command sets the servo's maximum speed for motionreceived is what the servo uses for that session.363 +This command sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session. 365 365 366 366 Query Speed in Degrees (**QSR**) 367 367 368 368 Ex: #5QSR<cr> might return *5QSR45<cr> 369 369 370 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a nSD/SR command is processed.369 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed. 371 371 If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 372 372 373 373 |**Command sent**|**Returned value (1/10 °)** 374 374 |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 375 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM(set by CSD/CSR)374 +|ex: #5QSR1<cr>|Configured maximum speed (set by CSD/CSR) 376 376 |ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 377 377 |ex: #5QSR3<cr>|Target travel speed 378 378 ... ... @@ -380,10 +380,70 @@ 380 380 381 381 Ex: #5CSR45<cr> 382 382 383 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.382 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 384 384 385 -====== __14. LED Color (**LED**)__ ======384 +====== __14. Angular Stiffness (**AS**)__ ====== 386 386 386 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 387 + 388 +A positive value of "angular stiffness": 389 + 390 +* The more torque will be applied to try to keep the desired position against external input / changes 391 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 392 + 393 +A negative value on the other hand: 394 + 395 +* Causes a slower acceleration to the travel speed, and a slower deceleration 396 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back 397 + 398 +The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior. 399 + 400 +Ex: #5AS-2<cr> 401 + 402 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 403 + 404 +Ex: #5QAS<cr> 405 + 406 +Queries the value being used. 407 + 408 +Ex: #5CAS<cr> 409 + 410 +Writes the desired angular stiffness value to memory. 411 + 412 +====== __15. Angular Hold Stiffness (**AH**)__ ====== 413 + 414 +The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 415 + 416 +Ex: #5AH3<cr> 417 + 418 +This sets the holding stiffness for servo #5 to 3 for that session. 419 + 420 +Query Angular Hold Stiffness (**QAH**) 421 + 422 +Ex: #5QAH<cr> might return *5QAH3<cr> 423 + 424 +This returns the servo's angular holding stiffness value. 425 + 426 +Configure Angular Hold Stiffness (**CAH**) 427 + 428 +Ex: #5CAH2<cr> 429 + 430 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM 431 + 432 +====== __15b: Angular Acceleration (**AA**)__ ====== 433 + 434 +{More details to come} 435 + 436 +====== __15c: Angular Deceleration (**AD**)__ ====== 437 + 438 +{More details to come} 439 + 440 +====== __15d: Motion Control (**EM**)__ ====== 441 + 442 +{More details to come} 443 + 444 +====== __16. RGB LED (**LED**)__ ====== 445 + 387 387 Ex: #5LED3<cr> 388 388 389 389 This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. ... ... @@ -398,66 +398,79 @@ 398 398 399 399 Configure LED Color (**CLED**) 400 400 401 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 460 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 402 402 403 -====== __1 5.Gyre RotationDirection (**G**)__ ======462 +====== __16b. Configure LED Blinking (**CLB**)__ ====== 404 404 405 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 464 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 465 +You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 406 406 407 - Ex:#5G-1<cr>467 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 408 408 409 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 469 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 470 +Ex: #5CLB1<cr> only blink when limp 471 +Ex: #5CLB2<cr> only blink when holding 472 +Ex: #5CLB12<cr> only blink when accel or decel 473 +Ex: #5CLB48<cr> only blink when free or travel 474 +Ex: #5CLB63<cr> blink in all status 410 410 411 - QueryGyreDirection(**QG**)476 +====== __17. Identification Number__ ====== 412 412 413 - Ex:#5QG<cr>might return*5QG-1<cr>478 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 414 414 415 -The value returned above means the servo is in a counter-clockwise gyration. 416 - 417 -Configure Gyre (**CG**) 418 - 419 -Ex: #5CG-1<cr> 420 - 421 -This changes the gyre direction as described above and also writes to EEPROM. 422 - 423 -====== __16. Identification Number (**ID**)__ ====== 424 - 425 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate). 426 - 427 427 Query Identification (**QID**) 428 428 429 429 EX: #254QID<cr> might return *QID5<cr> 430 430 431 -When using the query ID command, it is best to only have one servo connected and thus receive only one reply .This isuseful when you are not sure of the servo's ID, but don't want to changeit. Using the broadcast command (ID 254)with only one servo will have that servo reply with its ID number (assuming the query is sent. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.484 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply using the broadcast command (ID 254). Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 432 432 433 433 Configure ID (**CID**) 434 434 435 435 Ex: #4CID5<cr> 436 436 437 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.490 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. 438 438 439 -====== __1 7. Baud Rate__ ======492 +====== __18. Baud Rate__ ====== 440 440 441 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 494 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 495 +\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. 442 442 443 443 Query Baud Rate (**QB**) 444 444 445 445 Ex: #5QB<cr> might return *5QB9600<cr> 446 446 447 - Since the command to querymust be done at the servo's existingbaudrate, it cansimplybe usedto confirm the CB configuration commandwas correctly receivedbefore the servo is power cycledand the new baud rate takes effect.501 +Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled. 448 448 449 449 Configure Baud Rate (**CB**) 450 450 451 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only takeeffectwhen the servo is power cycled/ RESET.505 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled. 452 452 453 453 Ex: #5CB9600<cr> 454 454 455 455 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 456 456 457 -====== __1 8.FirstPosition(Pulse) (**FP**)__ ======511 +====== __19. Gyre Rotation Direction__ ====== 458 458 459 - In certain cases,a usermight want to havetheservomove toaspecificangleupon power up; werefertothis as "firstposition" (a.k.a."initial position").The factorydefaulthasno first positionvaluestoredinEEPROMandthereforeuponpowerup,theservoremainslimp until a position (orhold command) is assigned.FPandFD are differentinthatFPisusedforRC modeonly,whereas FDisused forsmart modeonly.513 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 460 460 515 +{images showing before and after with AR and Origin offset} 516 + 517 +Query Gyre Direction (**QG**) 518 + 519 +Ex: #5QG<cr> might return *5QG-1<cr> 520 + 521 +The value returned above means the servo is in a counter-clockwise gyration. 522 + 523 +Configure Gyre (**CG**) 524 + 525 +Ex: #5CG-1<cr> 526 + 527 +This changes the gyre direction as described above and also writes to EEPROM. 528 + 529 +====== __20. First / Initial Position (pulse)__ ====== 530 + 531 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 532 + 461 461 Query First Position in Pulses (**QFP**) 462 462 463 463 Ex: #5QFP<cr> might return *5QFP1550<cr> ... ... @@ -468,11 +468,11 @@ 468 468 469 469 Ex: #5CP1550<cr> 470 470 471 -This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number (Ex. #5CFP<cr>) results in the servo remaining limp upon power up (i.e. disabled).543 +This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 472 472 473 -====== __1 9. First(**FD**)__ ======545 +====== __21. First / Initial Position (Degrees)__ ====== 474 474 475 -In certain cases, a user might want to have the servo move to a specific angle upon power up ; we refer to this as "first position"(a.k.a."initial position").The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.547 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 476 476 477 477 Query First Position in Degrees (**QFD**) 478 478 ... ... @@ -484,27 +484,39 @@ 484 484 485 485 Ex: #5CD64<cr> 486 486 487 -This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up.559 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up. 488 488 489 -====== __2 0. QueryModelString (**QMS**)__ ======561 +====== __22. Query Target Position in Degrees (**QDT**)__ ====== 490 490 563 +Ex: #5QDT<cr> might return *5QDT6783<cr> 564 + 565 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 566 + 567 +====== __23. Query Model String (**QMS**)__ ====== 568 + 491 491 Ex: #5QMS<cr> might return *5QMSLSS-HS1cr> 492 492 493 493 This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 494 494 495 -====== __2 1. QuerySerialNumber(**QN**)__ ======573 +====== __23b. Query Model (**QM**)__ ====== 496 496 575 +Ex: #5QM<cr> might return *5QM68702699520cr> 576 + 577 +This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision. 578 + 579 +====== __24. Query Serial Number (**QN**)__ ====== 580 + 497 497 Ex: #5QN<cr> might return *5QN~_~_<cr> 498 498 499 499 The number in the response is the servo's serial number which is set and cannot be changed. 500 500 501 -====== __2 2. Query Firmware (**QF**)__ ======585 +====== __25. Query Firmware (**QF**)__ ====== 502 502 503 503 Ex: #5QF<cr> might return *5QF11<cr> 504 504 505 505 The integer in the reply represents the firmware version with one decimal, in this example being 1.1 506 506 507 -====== __2 3. Query Status (**Q**)__ ======591 +====== __26. Query Status (**Q**)__ ====== 508 508 509 509 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 510 510 ... ... @@ -521,25 +521,25 @@ 521 521 |ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 522 522 |ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 523 523 524 -====== __2 4. Query Voltage (**QV**)__ ======608 +====== __27. Query Voltage (**QV**)__ ====== 525 525 526 526 Ex: #5QV<cr> might return *5QV11200<cr> 527 527 528 528 The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 529 529 530 -====== __2 5. Query Temperature (**QT**)__ ======614 +====== __28. Query Temperature (**QT**)__ ====== 531 531 532 532 Ex: #5QT<cr> might return *5QT564<cr> 533 533 534 534 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 535 535 536 -====== __2 6. Query Current (**QC**)__ ======620 +====== __29. Query Current (**QC**)__ ====== 537 537 538 538 Ex: #5QC<cr> might return *5QC140<cr> 539 539 540 540 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 541 541 542 -====== __ 27.ConfigureRC Mode (**CRC**)__ ======626 +====== __30. RC Mode (**CRC**)__ ====== 543 543 544 544 This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 545 545 ... ... @@ -551,15 +551,13 @@ 551 551 552 552 EX: #5CRC<cr> 553 553 554 -====== ====== 638 +====== __31. RESET__ ====== 555 555 556 -====== __28. **RESET**__ ====== 557 - 558 558 Ex: #5RESET<cr> or #5RS<cr> 559 559 560 560 This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 561 561 562 -====== __2 9.**DEFAULT**& CONFIRM__ ======644 +====== __32. DEFAULT & CONFIRM__ ====== 563 563 564 564 Ex: #5DEFAULT<cr> 565 565 ... ... @@ -571,7 +571,7 @@ 571 571 572 572 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 573 573 574 -====== __3 0.**UPDATE**& CONFIRM__ ======656 +====== __33. UPDATE & CONFIRM__ ====== 575 575 576 576 Ex: #5UPDATE<cr> 577 577 ... ... @@ -582,77 +582,3 @@ 582 582 Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 583 583 584 584 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 585 - 586 -====== __A1. Angular Stiffness (**AS**)__ ====== 587 - 588 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 589 - 590 -A positive value of "angular stiffness": 591 - 592 -* The more torque will be applied to try to keep the desired position against external input / changes 593 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 594 - 595 -A negative value on the other hand: 596 - 597 -* Causes a slower acceleration to the travel speed, and a slower deceleration 598 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back 599 - 600 -The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior. 601 - 602 -Ex: #5AS-2<cr> 603 - 604 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 605 - 606 -Ex: #5QAS<cr> 607 - 608 -Queries the value being used. 609 - 610 -Ex: #5CAS<cr> 611 - 612 -Writes the desired angular stiffness value to memory. 613 - 614 -====== __A2. Angular Holding Stiffness (**AH**)__ ====== 615 - 616 -The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 617 - 618 -Ex: #5AH3<cr> 619 - 620 -This sets the holding stiffness for servo #5 to 3 for that session. 621 - 622 -Query Angular Hold Stiffness (**QAH**) 623 - 624 -Ex: #5QAH<cr> might return *5QAH3<cr> 625 - 626 -This returns the servo's angular holding stiffness value. 627 - 628 -Configure Angular Hold Stiffness (**CAH**) 629 - 630 -Ex: #5CAH2<cr> 631 - 632 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM 633 - 634 -====== __A3: Angular Acceleration (**AA**)__ ====== 635 - 636 -{More details to come} 637 - 638 -====== __A4: Angular Deceleration (**AD**)__ ====== 639 - 640 -{More details to come} 641 - 642 -====== __A5: Motion Control (**EM**)__ ====== 643 - 644 -{More details to come} 645 - 646 -====== __A6. Configure LED Blinking (**CLB**)__ ====== 647 - 648 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 649 -You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 650 - 651 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 652 - 653 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 654 -Ex: #5CLB1<cr> only blink when limp 655 -Ex: #5CLB2<cr> only blink when holding 656 -Ex: #5CLB12<cr> only blink when accel or decel 657 -Ex: #5CLB48<cr> only blink when free or travel 658 -Ex: #5CLB63<cr> blink in all status