Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -131,8 +131,8 @@ 131 131 |= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 132 132 | 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 133 133 | 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 134 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29 modifier"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %)135 -| 4|[[**S**peed>>||anchor="H4.Speed28S29 modifier"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %)134 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %) 135 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 136 136 | 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 137 137 | 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 138 138 0 ... ... @@ -143,50 +143,52 @@ 143 143 | 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | | ✓|microseconds|(% style="width:510px" %)((( 144 144 Inherited from SSC-32 serial protocol 145 145 )))|(% style="text-align:center; width:113px" %) 146 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)146 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 147 147 | 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 148 148 | 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 149 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12. MaxSpeedinDegrees28SD29"]]| SD| QSD|CSD|✓| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)(((149 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD|✓| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)((( 150 150 QSD: Add modifier "2" for instantaneous speed. 151 151 152 152 SD overwrites SR / CSD overwrites CSR and vice-versa. 153 153 )))|(% style="text-align:center; width:113px" %)Max per servo 154 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13. MaxSpeedinRPM28SR29"]]| SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((154 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 155 155 QSR: Add modifier "2" for instantaneous speed 156 156 157 157 SR overwrites SD / CSR overwrites CSD and vice-versa. 158 158 )))|(% style="text-align:center; width:113px" %)Max per servo 159 -| 14|[[**LED** Color>>||anchor="H1 4.LEDColor28LED29"]]| LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7160 -| 15|[[** G**yredirection (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]|G| QG| CG|✓|✓| ✓|none |(% style="width:510px" %)Gyre/rotationdirection:1= CW (clockwise)-1= CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1161 -| 16|[[** ID**#>>||anchor="H16.IdentificationNumber28ID29"]]| | QID| CID| | | ✓|none (integerfrom 0 to 250)|(% style="width:510px" %)Note:ID 254 is a "broadcast" which all servos respond to.|(% style="text-align:center; width:113px" %)0162 -| 17|[[** B**audrate>>||anchor="H17.BaudRate"]]| | QB| CB|(integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600163 -| 18|[[**F**irst Position (**P**ulse)>>||anchor="H 18.FirstPosition28Pulse2928FP29"]]| | QFP|CFP |X| ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((159 +| 14|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7 160 +| 15|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0 161 +| 16|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600 162 +| 17|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 163 +| 18|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)((( 164 164 Limp 165 165 ))) 166 -| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstPosition28Degrees2928FD29"]]| | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 167 -| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 168 -| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 169 -| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 170 -| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 171 -| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 172 -| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 173 -| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 174 -| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | |CRC|✓| | ✓|none|(% style="width:510px" %)((( 175 -Change to RC mode 1 (position) or 2 (wheel). 166 +| 19|[[**F**irst Position (**D**eg)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| | ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 167 +| 20|[[**T**arget (**D**eg) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 168 +| 21|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 169 +| 22|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 170 +| 23|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 171 +| 24|[[**Q**uery (gen. status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 172 +| 25|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 173 +| 26|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 174 +| 27|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 175 +| 28|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1|✓| | ✓|none|(% style="width:510px" %)((( 176 +Change to RC position mode. To revert to smart mode, use the button menu. 176 176 )))|(% style="text-align:center; width:113px" %)Serial 177 -| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 178 -| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 179 -| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 178 +| 29|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2|✓| | ✓| |(% style="width:510px" %)Change to RC wheel mode. To revert to smart mode, use the button menu.|(% style="text-align:center; width:113px" %)Serial 179 +| 30|[[**RESET**>>||anchor="H31.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 180 +| 31|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 181 +| 32|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 180 180 181 181 == Advanced == 182 182 183 183 |= #|=Description|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 184 -| A1|[[**A**ngular **S**tiffness>>||anchor="H A1.AngularStiffness28AS29"]]| AS|QAS|CAS|✓| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0185 -| A2|[[**A**ngular **H**olding Stiffness>>||anchor="H A2.AngularHoldingStiffness28AH29"]]|AH|QAH|CAH|✓| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1186 -| A3|[[**A**ngular **A**cceleration>>||anchor="H A3:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)187 -| A4|[[**A**ngular **D**eceleration>>||anchor="H A4:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)188 -| A5|[[**E**nable **M**otion Control>>||anchor="H A5:MotionControl28EM29"]]|EM|QEM| | | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %)189 -| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="H A6.ConfigureLEDBlinking28CLB29"]]| | | CLB| | ✓| |none (integer from 0 to 63)|(% style="width:510px" %)(((186 +| A1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS|✓| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0 187 +| A2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH|✓| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1 188 +| A3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 189 +| A4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 190 +| A5|[[**E**nable **M**otion Control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %) 191 +| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| | ✓| |none (integer from 0 to 63)|(% style="width:510px" %)((( 190 190 0=No blinking, 63=Always blink; 191 191 192 192 Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; ... ... @@ -206,7 +206,7 @@ 206 206 207 207 This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position. 208 208 209 -====== __3. Timed move (**T**) modifier__ ======211 +====== __3. Timed move (**T**)__ ====== 210 210 211 211 Example: #5P1500T2500<cr> 212 212 ... ... @@ -214,7 +214,7 @@ 214 214 215 215 Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 216 216 217 -====== __4. Speed (**S**) modifier__ ======219 +====== __4. Speed (**S**)__ ====== 218 218 219 219 Example: #5P1500S750<cr> 220 220 ... ... @@ -301,13 +301,6 @@ 301 301 302 302 This means the servo is located at 13.2 degrees. 303 303 304 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 305 -Query Target Position in Degrees (**QDT**) 306 - 307 -Ex: #5QDT<cr> might return *5QDT6783<cr> 308 - 309 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 310 - 311 311 ====== __10. Wheel Mode in Degrees (**WD**)__ ====== 312 312 313 313 Ex: #5WD900<cr> ... ... @@ -382,8 +382,10 @@ 382 382 383 383 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 384 384 385 -====== __14.LEDColor (**LED**)__======380 +====== ====== 386 386 382 +====== __16. RGB LED (**LED**)__ ====== 383 + 387 387 Ex: #5LED3<cr> 388 388 389 389 This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. ... ... @@ -398,66 +398,65 @@ 398 398 399 399 Configure LED Color (**CLED**) 400 400 401 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 398 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 402 402 403 -====== __1 5.GyreRotation Direction(**G**)__ ======400 +====== __17. Identification Number__ ====== 404 404 405 - "Gyre"is definedasacircularcourse ormotion. The effect ofchangingthegyre directionisas ifyou were to usea mirrorimageofacircle.CW=1;CCW= -1. Thefactorydefaultis clockwise (CW).402 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 406 406 407 -Ex: #5G-1<cr> 408 - 409 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 410 - 411 -Query Gyre Direction (**QG**) 412 - 413 -Ex: #5QG<cr> might return *5QG-1<cr> 414 - 415 -The value returned above means the servo is in a counter-clockwise gyration. 416 - 417 -Configure Gyre (**CG**) 418 - 419 -Ex: #5CG-1<cr> 420 - 421 -This changes the gyre direction as described above and also writes to EEPROM. 422 - 423 -====== __16. Identification Number (**ID**)__ ====== 424 - 425 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate). 426 - 427 427 Query Identification (**QID**) 428 428 429 429 EX: #254QID<cr> might return *QID5<cr> 430 430 431 -When using the query ID command, it is best to only have one servo connected and thus receive only one reply .This isuseful when you are not sure of the servo's ID, but don't want to changeit. Using the broadcast command (ID 254)with only one servo will have that servo reply with its ID number (assuming the query is sent. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.408 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply using the broadcast command (ID 254). Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 432 432 433 433 Configure ID (**CID**) 434 434 435 435 Ex: #4CID5<cr> 436 436 437 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.414 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. 438 438 439 -====== __1 7. Baud Rate__ ======416 +====== __18. Baud Rate__ ====== 440 440 441 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 418 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 419 +\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. 442 442 443 443 Query Baud Rate (**QB**) 444 444 445 445 Ex: #5QB<cr> might return *5QB9600<cr> 446 446 447 - Since the command to querymust be done at the servo's existingbaudrate, it cansimplybe usedto confirm the CB configuration commandwas correctly receivedbefore the servo is power cycledand the new baud rate takes effect.425 +Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled. 448 448 449 449 Configure Baud Rate (**CB**) 450 450 451 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only takeeffectwhen the servo is power cycled/ RESET.429 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled. 452 452 453 453 Ex: #5CB9600<cr> 454 454 455 455 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 456 456 457 -====== __1 8.FirstPosition(Pulse) (**FP**)__ ======435 +====== __19. Gyre Rotation Direction__ ====== 458 458 459 - In certain cases,a usermight want to havetheservomove toaspecificangleupon power up; werefertothis as "firstposition" (a.k.a."initial position").The factorydefaulthasno first positionvaluestoredinEEPROMandthereforeuponpowerup,theservoremainslimp until a position (orhold command) is assigned.FPandFD are differentinthatFPisusedforRC modeonly,whereas FDisused forsmart modeonly.437 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 460 460 439 +{images showing before and after with AR and Origin offset} 440 + 441 +Query Gyre Direction (**QG**) 442 + 443 +Ex: #5QG<cr> might return *5QG-1<cr> 444 + 445 +The value returned above means the servo is in a counter-clockwise gyration. 446 + 447 +Configure Gyre (**CG**) 448 + 449 +Ex: #5CG-1<cr> 450 + 451 +This changes the gyre direction as described above and also writes to EEPROM. 452 + 453 +====== __20. First / Initial Position (pulse)__ ====== 454 + 455 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 456 + 461 461 Query First Position in Pulses (**QFP**) 462 462 463 463 Ex: #5QFP<cr> might return *5QFP1550<cr> ... ... @@ -468,11 +468,11 @@ 468 468 469 469 Ex: #5CP1550<cr> 470 470 471 -This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number (Ex. #5CFP<cr>) results in the servo remaining limp upon power up (i.e. disabled).467 +This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 472 472 473 -====== __1 9. First(**FD**)__ ======469 +====== __21. First / Initial Position (Degrees)__ ====== 474 474 475 -In certain cases, a user might want to have the servo move to a specific angle upon power up ; we refer to this as "first position"(a.k.a."initial position").The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.471 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 476 476 477 477 Query First Position in Degrees (**QFD**) 478 478 ... ... @@ -484,27 +484,39 @@ 484 484 485 485 Ex: #5CD64<cr> 486 486 487 -This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up.483 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up. 488 488 489 -====== __2 0. QueryModelString (**QMS**)__ ======485 +====== __22. Query Target Position in Degrees (**QDT**)__ ====== 490 490 487 +Ex: #5QDT<cr> might return *5QDT6783<cr> 488 + 489 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 490 + 491 +====== __23. Query Model String (**QMS**)__ ====== 492 + 491 491 Ex: #5QMS<cr> might return *5QMSLSS-HS1cr> 492 492 493 493 This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 494 494 495 -====== __2 1. QuerySerialNumber(**QN**)__ ======497 +====== __23b. Query Model (**QM**)__ ====== 496 496 499 +Ex: #5QM<cr> might return *5QM68702699520cr> 500 + 501 +This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision. 502 + 503 +====== __24. Query Serial Number (**QN**)__ ====== 504 + 497 497 Ex: #5QN<cr> might return *5QN~_~_<cr> 498 498 499 499 The number in the response is the servo's serial number which is set and cannot be changed. 500 500 501 -====== __2 2. Query Firmware (**QF**)__ ======509 +====== __25. Query Firmware (**QF**)__ ====== 502 502 503 503 Ex: #5QF<cr> might return *5QF11<cr> 504 504 505 505 The integer in the reply represents the firmware version with one decimal, in this example being 1.1 506 506 507 -====== __2 3. Query Status (**Q**)__ ======515 +====== __26. Query Status (**Q**)__ ====== 508 508 509 509 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 510 510 ... ... @@ -521,25 +521,25 @@ 521 521 |ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 522 522 |ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 523 523 524 -====== __2 4. Query Voltage (**QV**)__ ======532 +====== __27. Query Voltage (**QV**)__ ====== 525 525 526 526 Ex: #5QV<cr> might return *5QV11200<cr> 527 527 528 528 The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 529 529 530 -====== __2 5. Query Temperature (**QT**)__ ======538 +====== __28. Query Temperature (**QT**)__ ====== 531 531 532 532 Ex: #5QT<cr> might return *5QT564<cr> 533 533 534 534 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 535 535 536 -====== __2 6. Query Current (**QC**)__ ======544 +====== __29. Query Current (**QC**)__ ====== 537 537 538 538 Ex: #5QC<cr> might return *5QC140<cr> 539 539 540 540 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 541 541 542 -====== __ 27.ConfigureRC Mode (**CRC**)__ ======550 +====== __30. RC Mode (**CRC**)__ ====== 543 543 544 544 This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 545 545 ... ... @@ -551,15 +551,13 @@ 551 551 552 552 EX: #5CRC<cr> 553 553 554 -====== ====== 562 +====== __31. RESET__ ====== 555 555 556 -====== __28. **RESET**__ ====== 557 - 558 558 Ex: #5RESET<cr> or #5RS<cr> 559 559 560 560 This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 561 561 562 -====== __2 9.**DEFAULT**& CONFIRM__ ======568 +====== __32. DEFAULT & CONFIRM__ ====== 563 563 564 564 Ex: #5DEFAULT<cr> 565 565 ... ... @@ -571,7 +571,7 @@ 571 571 572 572 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 573 573 574 -====== __3 0.**UPDATE**& CONFIRM__ ======580 +====== __33. UPDATE & CONFIRM__ ====== 575 575 576 576 Ex: #5UPDATE<cr> 577 577 ... ... @@ -611,7 +611,7 @@ 611 611 612 612 Writes the desired angular stiffness value to memory. 613 613 614 -====== __A2. Angular Holding 620 +====== __A2. Angular Holding Stiffness (**AH**)__ ====== 615 615 616 616 The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 617 617