Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (1 modified, 0 added, 0 removed)
Details
- Page properties
-
- Content
-
... ... @@ -13,8 +13,6 @@ 13 13 14 14 A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 15 15 16 -Note that for a given session, the action related to a specific commands overrides the stored value in EEPROM. 17 - 18 18 == Action Commands == 19 19 20 20 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format: ... ... @@ -47,6 +47,20 @@ 47 47 This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds. 48 48 ))) 49 49 48 +== Configuration Commands == 49 + 50 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 51 + 52 +1. Start with a number sign # (U+0023) 53 +1. Servo ID number as an integer 54 +1. Configuration command (two to three letters, no spaces, capital or lower case) 55 +1. Configuration value in the correct units with no decimal 56 +1. End with a control / carriage return '<cr>' 57 + 58 +Ex: #5CO-50<cr> 59 + 60 +This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below. 61 + 50 50 == Query Commands == 51 51 52 52 Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format: ... ... @@ -77,20 +77,6 @@ 77 77 78 78 This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees). 79 79 80 -== Configuration Commands == 81 - 82 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 83 - 84 -1. Start with a number sign # (U+0023) 85 -1. Servo ID number as an integer 86 -1. Configuration command (two to three letters, no spaces, capital or lower case) 87 -1. Configuration value in the correct units with no decimal 88 -1. End with a control / carriage return '<cr>' 89 - 90 -Ex: #5CO-50<cr> 91 - 92 -This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below. 93 - 94 94 **Session vs Configuration Query** 95 95 96 96 By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: ... ... @@ -128,70 +128,69 @@ 128 128 129 129 = Command List = 130 130 131 -|= #|=Description|= Action|= Query|= Config|= Session|=RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value132 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | |133 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | |134 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29 modifier"]]| T| | | ||135 -| 4|[[**S**peed>>||anchor="H4.Speed28S29 modifier"]]| S| | | ||136 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | |137 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO|CO| ✓|✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((129 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 130 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 131 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 132 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %) 133 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 134 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 135 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 138 138 0 139 139 ))) 140 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓|✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((138 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 141 141 1800 142 142 ))) 143 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | |✓|microseconds|(% style="width:510px" %)(((141 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(% style="width:510px" %)((( 144 144 Inherited from SSC-32 serial protocol 145 145 )))|(% style="text-align:center; width:113px" %) 146 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD / QDT| | ||✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)147 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | |✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)148 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | |✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)149 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12. MaxSpeedinDegrees28SD29"]]| SD| QSD|CSD|✓|✓| ✓|tenths of degrees per second |(% style="width:510px" %)(((144 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 145 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 146 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 147 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)((( 150 150 QSD: Add modifier "2" for instantaneous speed. 151 151 152 152 SD overwrites SR / CSD overwrites CSR and vice-versa. 153 153 )))|(% style="text-align:center; width:113px" %)Max per servo 154 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13. MaxSpeedinRPM28SR29"]]| SR| QSR|CSR|✓|✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((152 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 155 155 QSR: Add modifier "2" for instantaneous speed 156 156 157 157 SR overwrites SD / CSR overwrites CSD and vice-versa. 158 158 )))|(% style="text-align:center; width:113px" %)Max per servo 159 -| 1 4|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| LED| QLED| CLED|✓|✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7160 -| 1 5|[[**G**yredirection (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]|G| QG| CG|✓|✓| ✓|none |(% style="width:510px" %)Gyre/rotationdirection:1= CW (clockwise)-1= CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1161 -| 1 6|[[**ID**#>>||anchor="H16.IdentificationNumber28ID29"]]| | QID| CID| ||✓|none (integerfrom 0 to 250)|(% style="width:510px" %)Note:ID 254 is a "broadcast" which all servos respond to.|(% style="text-align:center; width:113px" %)0162 -| 1 7|[[**B**audrate>>||anchor="H17.BaudRate"]]| | QB| CB| ||✓|none(integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600163 -| 18|[[**F**irst Position (**P**ulse)>>||anchor="H18.FirstPosition28Pulse2928FP29"]]| | QFP|CFP |X|✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)(((157 +| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7 158 +| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0 159 +| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600 160 +| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 161 +| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)((( 164 164 Limp 165 165 ))) 166 -| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstPosition28Degrees2928FD29"]]| | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 167 -| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 168 -| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 169 -| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 170 -| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 171 -| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 172 -| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 173 -| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 174 -| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | |CRC|✓| | ✓|none|(% style="width:510px" %)((( 175 -Change to RC mode 1 (position) or 2 (wheel). 164 +| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 165 +| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 166 +| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 167 +| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 168 +| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 169 +| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 170 +| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 171 +| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 172 +| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 173 +| 30a|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1| | ✓|none|(% style="width:510px" %)((( 174 +Puts the servo into RC mode. To revert to smart mode, use the button menu. 176 176 )))|(% style="text-align:center; width:113px" %)Serial 177 -| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 178 -| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 179 -| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 176 +| 30b|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2| | ✓| |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 177 +| 31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 178 +| 32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 179 +| 33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 180 180 181 181 == Advanced == 182 182 183 -|= #|=Description|= Action|= Query|= Config|= Session|=RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value184 -| A1|[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]| AS|QAS|CAS|✓|✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0185 -| A2|[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|AH|QAH|CAH|✓|| ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1186 -| A3|[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|AA|QAA|CAA|✓|| ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)187 -| A4|[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|AD|QAD|CAD|✓|| ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %)188 -| A5|[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|EM|QEM| | ||✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %)189 -| A6|[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]| | | CLB||✓| |none (integer from 0 to 63)|(% style="width:510px" %)(((190 - 0=Noblinking,63=Always blink;183 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 184 +| 1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0 185 +| 2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1 186 +| 3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 187 +| 4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 188 +| 5|[[**E**nable **M**otion Control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %) 189 +| 6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center; width:113px" %) 190 +| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 191 191 192 -Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 193 -)))|(% style="text-align:center; width:113px" %) 194 - 195 195 == Details == 196 196 197 197 ====== __1. Limp (**L**)__ ====== ... ... @@ -204,17 +204,17 @@ 204 204 205 205 Example: #5H<cr> 206 206 207 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angularposition.204 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position. 208 208 209 -====== __3. Timed move (**T**) modifier__ ======206 +====== __3. Timed move (**T**)__ ====== 210 210 211 211 Example: #5P1500T2500<cr> 212 212 213 -Timed move can be used only as a modifier for a position (P , D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensurethat the move is performed entirely at the desired velocity, though differences in torquemay cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.210 +Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 214 214 215 215 Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 216 216 217 -====== __4. Speed (**S**) modifier__ ======214 +====== __4. Speed (**S**)__ ====== 218 218 219 219 Example: #5P1500S750<cr> 220 220 ... ... @@ -230,11 +230,11 @@ 230 230 231 231 Example: #5O2400<cr> 232 232 233 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session.As withall action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).230 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position. The setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. Note that for a given session, the O command overrides the CO command. In the first image, the origin at factory offset '0' (centered). 234 234 235 235 [[image:LSS-servo-default.jpg]] 236 236 237 -In the second image, the origin, a ndthecorrespondingangular range (explained below) have been shifted by+240.0 degrees:234 +In the second image, the origina, as well as the angular range (explained below) have been shifted by 240.0 degrees: 238 238 239 239 [[image:LSS-servo-origin.jpg]] 240 240 ... ... @@ -242,33 +242,33 @@ 242 242 243 243 Example: #5QO<cr> Returns: *5QO-13 244 244 245 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.242 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. 246 246 247 247 Configure Origin Offset (**CO**) 248 248 249 249 Example: #5CO-24<cr> 250 250 251 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.248 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. 252 252 253 253 ====== __7. Angular Range (**AR**)__ ====== 254 254 255 255 Example: #5AR1800<cr> 256 256 257 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image belowshows a standard-180.0 to +180.0 range,with no offset:254 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). In the first image, 258 258 259 259 [[image:LSS-servo-default.jpg]] 260 260 261 - Below, the angular rangeis restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.258 +Here, the angular range has been restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 262 262 263 263 [[image:LSS-servo-ar.jpg]] 264 264 265 - Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action commandre used to move both the center and limit the angular range:262 +The angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) an be used to move both the center and limit the angular range: 266 266 267 267 [[image:LSS-servo-ar-o-1.jpg]] 268 268 269 269 Query Angular Range (**QAR**) 270 270 271 -Example: #5QAR<cr> might return *5AR 1800, indicating the total angular range is 180.0 degrees.268 +Example: #5QAR<cr> might return *5AR2756 272 272 273 273 Configure Angular Range (**CAR**) 274 274 ... ... @@ -301,13 +301,6 @@ 301 301 302 302 This means the servo is located at 13.2 degrees. 303 303 304 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 305 -Query Target Position in Degrees (**QDT**) 306 - 307 -Ex: #5QDT<cr> might return *5QDT6783<cr> 308 - 309 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 310 - 311 311 ====== __10. Wheel Mode in Degrees (**WD**)__ ====== 312 312 313 313 Ex: #5WD900<cr> ... ... @@ -332,22 +332,22 @@ 332 332 333 333 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 334 334 335 -====== __12. MaxSpeed in Degrees (**SD**)__ ======325 +====== __12. Speed in Degrees (**SD**)__ ====== 336 336 337 337 Ex: #5SD1800<cr> 338 338 339 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage.TheSDaction command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD)received is what the servo uses for that session.329 +This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session. 340 340 341 341 Query Speed in Degrees (**QSD**) 342 342 343 343 Ex: #5QSD<cr> might return *5QSD1800<cr> 344 344 345 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a nSD/SR command is processed.335 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed. 346 346 If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 347 347 348 348 |**Command sent**|**Returned value (1/10 °)** 349 349 |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 350 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM(set by CSD/CSR)340 +|ex: #5QSD1<cr>|Configured maximum speed (set by CSD/CSR) 351 351 |ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 352 352 |ex: #5QSD3<cr>|Target travel speed 353 353 ... ... @@ -357,22 +357,22 @@ 357 357 358 358 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 359 359 360 -====== __13. MaxSpeed in RPM (**SR**)__ ======350 +====== __13. Speed in RPM (**SR**)__ ====== 361 361 362 362 Ex: #5SD45<cr> 363 363 364 -This command sets the servo's maximum speed for motionreceived is what the servo uses for that session.354 +This command sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session. 365 365 366 366 Query Speed in Degrees (**QSR**) 367 367 368 368 Ex: #5QSR<cr> might return *5QSR45<cr> 369 369 370 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a nSD/SR command is processed.360 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed. 371 371 If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 372 372 373 373 |**Command sent**|**Returned value (1/10 °)** 374 374 |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 375 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM(set by CSD/CSR)365 +|ex: #5QSR1<cr>|Configured maximum speed (set by CSD/CSR) 376 376 |ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 377 377 |ex: #5QSR3<cr>|Target travel speed 378 378 ... ... @@ -380,10 +380,70 @@ 380 380 381 381 Ex: #5CSR45<cr> 382 382 383 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.373 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 384 384 385 -====== __14. LED Color (**LED**)__ ======375 +====== __14. Angular Stiffness (**AS**)__ ====== 386 386 377 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 378 + 379 +A positive value of "angular stiffness": 380 + 381 +* The more torque will be applied to try to keep the desired position against external input / changes 382 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 383 + 384 +A negative value on the other hand: 385 + 386 +* Causes a slower acceleration to the travel speed, and a slower deceleration 387 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back 388 + 389 +The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior. 390 + 391 +Ex: #5AS-2<cr> 392 + 393 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 394 + 395 +Ex: #5QAS<cr> 396 + 397 +Queries the value being used. 398 + 399 +Ex: #5CAS<cr> 400 + 401 +Writes the desired angular stiffness value to memory. 402 + 403 +====== __15. Angular Hold Stiffness (**AH**)__ ====== 404 + 405 +The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 406 + 407 +Ex: #5AH3<cr> 408 + 409 +This sets the holding stiffness for servo #5 to 3 for that session. 410 + 411 +Query Angular Hold Stiffness (**QAH**) 412 + 413 +Ex: #5QAH<cr> might return *5QAH3<cr> 414 + 415 +This returns the servo's angular holding stiffness value. 416 + 417 +Configure Angular Hold Stiffness (**CAH**) 418 + 419 +Ex: #5CAH2<cr> 420 + 421 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM 422 + 423 +====== __15b: Angular Acceleration (**AA**)__ ====== 424 + 425 +{More details to come} 426 + 427 +====== __15c: Angular Deceleration (**AD**)__ ====== 428 + 429 +{More details to come} 430 + 431 +====== __15d: Motion Control (**EM**)__ ====== 432 + 433 +{More details to come} 434 + 435 +====== __16. RGB LED (**LED**)__ ====== 436 + 387 387 Ex: #5LED3<cr> 388 388 389 389 This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. ... ... @@ -398,66 +398,79 @@ 398 398 399 399 Configure LED Color (**CLED**) 400 400 401 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 451 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 402 402 403 -====== __1 5.Gyre RotationDirection (**G**)__ ======453 +====== __16b. Configure LED Blinking (**CLB**)__ ====== 404 404 405 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 455 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 456 +You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 406 406 407 - Ex:#5G-1<cr>458 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 408 408 409 -This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 460 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 461 +Ex: #5CLB1<cr> only blink when limp 462 +Ex: #5CLB2<cr> only blink when holding 463 +Ex: #5CLB12<cr> only blink when accel or decel 464 +Ex: #5CLB48<cr> only blink when free or travel 465 +Ex: #5CLB63<cr> blink in all status 410 410 411 - QueryGyreDirection(**QG**)467 +====== __17. Identification Number__ ====== 412 412 413 - Ex:#5QG<cr>might return*5QG-1<cr>469 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 414 414 415 -The value returned above means the servo is in a counter-clockwise gyration. 416 - 417 -Configure Gyre (**CG**) 418 - 419 -Ex: #5CG-1<cr> 420 - 421 -This changes the gyre direction as described above and also writes to EEPROM. 422 - 423 -====== __16. Identification Number (**ID**)__ ====== 424 - 425 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate). 426 - 427 427 Query Identification (**QID**) 428 428 429 429 EX: #254QID<cr> might return *QID5<cr> 430 430 431 -When using the query ID command, it is best to only have one servo connected and thus receive only one reply .This isuseful when you are not sure of the servo's ID, but don't want to changeit. Using the broadcast command (ID 254)with only one servo will have that servo reply with its ID number (assuming the query is sent. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.475 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply using the broadcast command (ID 254). Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 432 432 433 433 Configure ID (**CID**) 434 434 435 435 Ex: #4CID5<cr> 436 436 437 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.481 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. 438 438 439 -====== __1 7. Baud Rate__ ======483 +====== __18. Baud Rate__ ====== 440 440 441 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 485 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 486 +\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. 442 442 443 443 Query Baud Rate (**QB**) 444 444 445 445 Ex: #5QB<cr> might return *5QB9600<cr> 446 446 447 - Since the command to querymust be done at the servo's existingbaudrate, it cansimplybe usedto confirm the CB configuration commandwas correctly receivedbefore the servo is power cycledand the new baud rate takes effect.492 +Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled. 448 448 449 449 Configure Baud Rate (**CB**) 450 450 451 -Important Note: the servo's current session retains the given baud rate and the new baud rate will only takeeffectwhen the servo is power cycled/ RESET.496 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled. 452 452 453 453 Ex: #5CB9600<cr> 454 454 455 455 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 456 456 457 -====== __1 8.FirstPosition(Pulse) (**FP**)__ ======502 +====== __19. Gyre Rotation Direction__ ====== 458 458 459 - In certain cases,a usermight want to havetheservomove toaspecificangleupon power up; werefertothis as "firstposition" (a.k.a."initial position").The factorydefaulthasno first positionvaluestoredinEEPROMandthereforeuponpowerup,theservoremainslimp until a position (orhold command) is assigned.FPandFD are differentinthatFPisusedforRC modeonly,whereas FDisused forsmart modeonly.504 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 460 460 506 +{images showing before and after with AR and Origin offset} 507 + 508 +Query Gyre Direction (**QG**) 509 + 510 +Ex: #5QG<cr> might return *5QG-1<cr> 511 + 512 +The value returned above means the servo is in a counter-clockwise gyration. 513 + 514 +Configure Gyre (**CG**) 515 + 516 +Ex: #5CG-1<cr> 517 + 518 +This changes the gyre direction as described above and also writes to EEPROM. 519 + 520 +====== __20. First / Initial Position (pulse)__ ====== 521 + 522 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 523 + 461 461 Query First Position in Pulses (**QFP**) 462 462 463 463 Ex: #5QFP<cr> might return *5QFP1550<cr> ... ... @@ -468,11 +468,11 @@ 468 468 469 469 Ex: #5CP1550<cr> 470 470 471 -This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number (Ex. #5CFP<cr>) results in the servo remaining limp upon power up (i.e. disabled).534 +This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 472 472 473 -====== __1 9. First(**FD**)__ ======536 +====== __21. First / Initial Position (Degrees)__ ====== 474 474 475 -In certain cases, a user might want to have the servo move to a specific angle upon power up ; we refer to this as "first position"(a.k.a."initial position").The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.538 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 476 476 477 477 Query First Position in Degrees (**QFD**) 478 478 ... ... @@ -484,34 +484,44 @@ 484 484 485 485 Ex: #5CD64<cr> 486 486 487 -This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up.550 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up. 488 488 489 -====== __2 0. QueryModelString (**QMS**)__ ======552 +====== __22. Query Target Position in Degrees (**QDT**)__ ====== 490 490 554 +Ex: #5QDT<cr> might return *5QDT6783<cr> 555 + 556 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 557 + 558 +====== __23. Query Model String (**QMS**)__ ====== 559 + 491 491 Ex: #5QMS<cr> might return *5QMSLSS-HS1cr> 492 492 493 -This reply means the servo model 562 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 494 494 495 -====== __2 1. QuerySerialNumber(**QN**)__ ======564 +====== __23b. Query Model (**QM**)__ ====== 496 496 497 -Ex: #5Q N<cr> might return *5QN12345678<cr>566 +Ex: #5QM<cr> might return *5QM68702699520cr> 498 498 499 -Th e numberintheresponse (12345678) wouldbe'sserialnumber which issetand shouldnot bechangedbytheuser.568 +This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision. 500 500 501 -====== __2 2. QueryFirmware (**QF**)__ ======570 +====== __24. Query Serial Number (**QN**)__ ====== 502 502 503 -Ex: #5Q F<cr> might return *5QF411<cr>572 +Ex: #5QN<cr> might return *5QN~_~_<cr> 504 504 505 -The number ly represents thefirmwaresion,inthis examplebeing411.574 +The number in the response is the servo's serial number which is set and cannot be changed. 506 506 507 -====== __2 3. QueryStatus(**Q**)__ ======576 +====== __25. Query Firmware (**QF**)__ ====== 508 508 509 - Thestatus query describedwhat the servois currently doing. Thequery returnsan integer which must be looked up in the table below.578 +Ex: #5QF<cr> might return *5QF11<cr> 510 510 580 +The integer in the reply represents the firmware version with one decimal, in this example being 1.1 581 + 582 +====== __26. Query Status (**Q**)__ ====== 583 + 511 511 Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 512 512 513 513 |*Value returned|**Status**|**Detailed description** 514 -|ex: *5Q0<cr>|Unknown|LSS is unsure / unknown state587 +|ex: *5Q0<cr>|Unknown|LSS is unsure 515 515 |ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely 516 516 |ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 517 517 |ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed ... ... @@ -523,56 +523,55 @@ 523 523 |ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 524 524 |ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 525 525 526 -====== __2 4. Query Voltage (**QV**)__ ======599 +====== __27. Query Voltage (**QV**)__ ====== 527 527 528 528 Ex: #5QV<cr> might return *5QV11200<cr> 529 529 530 530 The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 531 531 532 -====== __2 5. Query Temperature (**QT**)__ ======605 +====== __28. Query Temperature (**QT**)__ ====== 533 533 534 534 Ex: #5QT<cr> might return *5QT564<cr> 535 535 536 536 The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 537 537 538 -====== __2 6. Query Current (**QC**)__ ======611 +====== __29. Query Current (**QC**)__ ====== 539 539 540 540 Ex: #5QC<cr> might return *5QC140<cr> 541 541 542 542 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 543 543 544 -====== __ 27.ConfigureRC Mode (**CRC**)__ ======617 +====== __30. RC Mode (**CRC**)__ ====== 545 545 546 546 This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 547 547 548 548 |**Command sent**|**Note** 622 +|ex: #5CRC<cr>|Stay in smart mode. 549 549 |ex: #5CRC1<cr>|Change to RC position mode. 550 550 |ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 551 -|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode.625 +|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode. 552 552 553 -EX: #5CRC 2<cr>627 +EX: #5CRC<cr> 554 554 555 - Thiscommand would place the servo in RC wheel mode after a RESET or power cycle.Note that after aRESETor power cycle, the servo will be in RC mode and will not reply to serial commands.629 +====== __31. RESET__ ====== 556 556 557 -====== __28. **RESET**__ ====== 558 - 559 559 Ex: #5RESET<cr> or #5RS<cr> 560 560 561 561 This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 562 562 563 -====== __2 9.**DEFAULT**& CONFIRM__ ======635 +====== __32. DEFAULT & CONFIRM__ ====== 564 564 565 565 Ex: #5DEFAULT<cr> 566 566 567 -This command sets in motion the reset ofall values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.639 +This command sets in motion the reset all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 568 568 569 569 EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 570 570 571 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will e xitthecommand.643 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 572 572 573 573 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 574 574 575 -====== __3 0.**UPDATE**& CONFIRM__ ======647 +====== __33. UPDATE & CONFIRM__ ====== 576 576 577 577 Ex: #5UPDATE<cr> 578 578 ... ... @@ -583,89 +583,3 @@ 583 583 Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 584 584 585 585 Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 586 - 587 -= Advanced = 588 - 589 -====== __A1. Angular Stiffness (**AS**)__ ====== 590 - 591 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units. 592 - 593 -A positive value of "angular stiffness": 594 - 595 -* The more torque will be applied to try to keep the desired position against external input / changes 596 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 597 - 598 -A negative value on the other hand: 599 - 600 -* Causes a slower acceleration to the travel speed, and a slower deceleration 601 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back 602 - 603 -The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 604 - 605 -Ex: #5AS-2<cr> 606 - 607 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 608 - 609 -Ex: #5QAS<cr> 610 - 611 -Queries the value being used. 612 - 613 -Ex: #5CAS<cr> 614 - 615 -Writes the desired angular stiffness value to memory. 616 - 617 -====== __A2. Angular Holding Stiffness (**AH**)__ ====== 618 - 619 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 620 - 621 -Ex: #5AH3<cr> 622 - 623 -This sets the holding stiffness for servo #5 to 3 for that session. 624 - 625 -Query Angular Hold Stiffness (**QAH**) 626 - 627 -Ex: #5QAH<cr> might return *5QAH3<cr> 628 - 629 -This returns the servo's angular holding stiffness value. 630 - 631 -Configure Angular Hold Stiffness (**CAH**) 632 - 633 -Ex: #5CAH2<cr> 634 - 635 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM 636 - 637 -====== __A3: Angular Acceleration (**AA**)__ ====== 638 - 639 -{More details to come} 640 - 641 -====== __A4: Angular Deceleration (**AD**)__ ====== 642 - 643 -{More details to come} 644 - 645 -====== __A5: Motion Control (**EM**)__ ====== 646 - 647 -{More details to come} 648 - 649 -====== __A6. Configure LED Blinking (**CLB**)__ ====== 650 - 651 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. Here is the list and their associated value: 652 - 653 -(% style="width:195px" %) 654 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 655 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 656 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1 657 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2 658 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 659 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 660 -|(% style="width:134px" %)Free|(% style="width:58px" %)16 661 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 662 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63 663 - 664 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 665 - 666 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 667 -Ex: #5CLB1<cr> only blink when limp (1) 668 -Ex: #5CLB2<cr> only blink when holding (2) 669 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12) 670 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48) 671 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)