Wiki source code of LSS Communication Protocol

Version 213.1 by Eric Nantel on 2024/11/21 09:18

Hide last authors
Eric Nantel 79.1 1 (% class="wikigeneratedid" id="HTableofContents" %)
Coleman Benson 100.1 2 **Page Contents**
Coleman Benson 67.1 3
RB1 64.5 4 {{toc depth="3"/}}
5
Coleman Benson 139.1 6 = Serial Protocol =
RB1 64.19 7
Eric Nantel 172.1 8 The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available.
Coleman Benson 1.1 9
Eric Nantel 213.1 10 In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on the Configure ID, or "CID" command [[here>>path:#HIdentificationNumber28ID29]]). Only the servo(s) which have been configured to a specific ID will act on a command sent to that ID. There is currently no CRC or checksum implemented as part of the protocol.
Coleman Benson 93.1 11
Eric Nantel 213.1 12 |(% colspan="2" %)(((
RB1 64.2 13 == Session ==
Eric Nantel 213.1 14 )))
15 |(% style="width:25px" %) |(((
16 A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.
Coleman Benson 1.1 17
Eric Nantel 213.1 18 **Note 1:** For a given session, the action related to a specific command overrides the stored value in EEPROM.
Coleman Benson 1.1 19
Eric Nantel 213.1 20 **Note 2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).
Coleman Benson 96.1 21
Eric Nantel 213.1 22 **Note 3:** You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r described below). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays.
23 )))
24
25 |(% colspan="2" %)(((
Coleman Benson 1.1 26 == Action Commands ==
Eric Nantel 213.1 27 )))
28 |(% style="width:25px" %) |(((
29 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HVirtualAngularPosition]] (described below). Action commands are sent serially to the servo's Rx pin and must be sent in the following format:
Coleman Benson 1.1 30
Eric Nantel 213.1 31 1. Start with a number sign **#** (Unicode Character: U+0023)
Coleman Benson 194.2 32 1. Servo ID number as an integer (assigning an ID described below)
33 1. Action command (one or more letters, no whitespace, capital or lowercase from the list below)
Coleman Benson 1.1 34 1. Action value in the correct units with no decimal
Eric Nantel 213.1 35 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
Coleman Benson 1.1 36
Eric Nantel 213.1 37 Ex: #5D1800<cr>
Coleman Benson 1.1 38
Eric Nantel 172.1 39 This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command.
Eric Nantel 213.1 40 )))
Coleman Benson 1.1 41
Eric Nantel 213.1 42 |(% colspan="2" %)(((
Eric Nantel 172.1 43 == Modifiers ==
Eric Nantel 213.1 44 )))
45 |(% style="width:25px" %) |(((
46 Modifiers can only be used with certain **action commands**. The format to include a modifier is:
Coleman Benson 1.1 47
Eric Nantel 213.1 48 1. Start with a number sign **#** (Unicode Character: U+0023)
Coleman Benson 1.1 49 1. Servo ID number as an integer
Coleman Benson 194.2 50 1. Action command (one to three letters, no spaces, capital or lowercase from a subset of action commands below)
Coleman Benson 1.1 51 1. Action value in the correct units with no decimal
Eric Nantel 213.1 52 1. Modifier command (one or two letters from the list of modifiers below)
Coleman Benson 1.1 53 1. Modifier value in the correct units with no decimal
Eric Nantel 213.1 54 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
Coleman Benson 1.1 55
Eric Nantel 213.1 56 Ex: #5D1800T1500<cr>
Coleman Benson 1.1 57
Eric Nantel 213.1 58 This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).
59 )))
Coleman Benson 1.1 60
Eric Nantel 213.1 61 |(% colspan="2" %)(((
Coleman Benson 1.1 62 == Query Commands ==
Eric Nantel 213.1 63 )))
64 |(% style="width:25px" %) |(((
65 Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:
Coleman Benson 1.1 66
Eric Nantel 213.1 67 1. Start with a number sign **#** (Unicode Character: U+0023)
Coleman Benson 1.1 68 1. Servo ID number as an integer
Eric Nantel 172.1 69 1. Query command (one to four letters, no spaces, capital or lower case)
Eric Nantel 213.1 70 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
Coleman Benson 1.1 71
Eric Nantel 213.1 72 Ex: #5QD<cr> Query the position in (tenth of) degrees for servo with ID #5
Coleman Benson 1.1 73
Coleman Benson 93.1 74 The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format:
Coleman Benson 1.1 75
Eric Nantel 172.1 76 1. Start with an asterisk * (Unicode Character: U+0023)
Coleman Benson 1.1 77 1. Servo ID number as an integer
Eric Nantel 172.1 78 1. Query command (one to four letters, no spaces, capital letters)
Coleman Benson 1.1 79 1. The reported value in the units described, no decimals.
Eric Nantel 213.1 80 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
Coleman Benson 1.1 81
Eric Nantel 213.1 82 There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:
Coleman Benson 93.1 83
Eric Nantel 213.1 84 Ex: *5QD1800<cr>
Coleman Benson 1.1 85
Eric Nantel 172.1 86 This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees).
Eric Nantel 213.1 87 )))
Coleman Benson 1.1 88
Eric Nantel 213.1 89 |(% colspan="2" %)(((
Coleman Benson 96.1 90 == Configuration Commands ==
Eric Nantel 213.1 91 )))
92 |(% style="width:25px" %) |(((
93 Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.
Coleman Benson 96.1 94
Eric Nantel 213.1 95 These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-radio-control-pwm/]]. Configuration commands are not cumulative. This means that if two of the same configuration commands are sent, one after the next, only the last configuration is used and stored.
Coleman Benson 96.1 96
Eric Nantel 213.1 97 The format to send a configuration command is identical to that of an action command:
Eric Nantel 172.1 98
Eric Nantel 213.1 99 1. Start with a number sign **#** (Unicode Character: U+0023)
Coleman Benson 96.1 100 1. Servo ID number as an integer
Eric Nantel 172.1 101 1. Configuration command (two to four letters, no spaces, capital or lower case)
Coleman Benson 96.1 102 1. Configuration value in the correct units with no decimal
Eric Nantel 213.1 103 1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)
Coleman Benson 96.1 104
Eric Nantel 213.1 105 Ex: #5CO-50<cr>
Coleman Benson 96.1 106
Eric Nantel 213.1 107 This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).
Coleman Benson 96.1 108
Eric Nantel 213.1 109 **Session vs Configuration Query**
Coleman Benson 1.1 110
Eric Nantel 213.1 111 By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:
Coleman Benson 1.1 112
Eric Nantel 213.1 113 Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.
Coleman Benson 1.1 114
Eric Nantel 213.1 115 After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:
Coleman Benson 1.1 116
Eric Nantel 213.1 117 #5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas
Coleman Benson 1.1 118
Eric Nantel 213.1 119 #5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM
120 )))
RB1 56.1 121
Eric Nantel 213.1 122 |(% colspan="2" %)(((
Coleman Benson 65.2 123 == Virtual Angular Position ==
Eric Nantel 213.1 124 )))
125 |(% style="width:25px" %) |(((
126 The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).
RB1 56.1 127
Eric Nantel 213.1 128 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-positions.jpg||alt="LSS-servo-positions.jpg"]]
RB1 56.1 129
Eric Nantel 213.1 130 In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:
RB1 56.1 131
Eric Nantel 213.1 132 #1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)
RB1 56.1 133
Eric Nantel 213.1 134 #1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)
RB1 56.1 135
Eric Nantel 213.1 136 #1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.
RB1 56.1 137
Eric Nantel 213.1 138 Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.
RB1 56.1 139
Eric Nantel 213.1 140 #1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.
RB1 56.1 141
Eric Nantel 213.1 142 #1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).
RB1 56.1 143
Eric Nantel 172.1 144 If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°].
Eric Nantel 213.1 145 )))
Coleman Benson 1.1 146
147 = Command List =
148
Eric Nantel 213.1 149 **Latest firmware version currently : 370**
Coleman Benson 99.1 150
Eric Nantel 213.1 151 |(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Communication Setup**>>path:#HCommunicationSetup]]
152 | |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
153 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Reset**>>path:#HReset]]|RESET| | | |✓| | |Soft reset. See command for details.
154 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Default** Configuration>>path:#HDefault26confirm]]|DEFAULT| | | |✓| | |Revert to firmware default values. See command for details
155 | |[[Firmware (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Update** Mode>>path:#HUpdate26confirm]]|UPDATE| | | |✓| | |Update firmware. See command for details.
156 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Confirm** Changes>>path:#HConfirm]]|CONFIRM| | | |✓| | |
157 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**hange to **RC**>>path:#HConfigureRCMode28CRC29]]| | |CRC| |✓| | |Change to RC mode 1 (position) or 2 (wheel).
158 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**ID** #>>path:#HIdentificationNumber28ID29]]| |QID|CID| |✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to.
159 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**B**audrate>>path:#HBaudRate]]| |QB|CB| |✓|115200| |Reset required after change.
Coleman Benson 94.1 160
Eric Nantel 213.1 161 |(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion**>>path:#HMotion]]
162 | |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
163 | |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**D**egrees>>path:#HPositioninDegrees28D29]]|D|QD/QDT| | |✓| |1/10°|
164 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in **D**egrees (relative)>>path:#H28Relative29MoveinDegrees28MD29]]|MD| | | |✓| |1/10°|
165 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **D**egrees>>path:#HWheelModeinDegrees28WD29]]|WD|QWD/QVT| | |✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation"
166 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**W**heel mode in **R**PM>>path:#HWheelModeinRPM28WR29]]|WR|QWR| | |✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation"
167 | |[[Position in (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**P**WM>>path:#HPositioninPWM28P29]]|P|QP| | |✓| |us|Inherited from SSC-32 serial protocol
168 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**ove in PWM (relative)>>path:#H28Relative29MoveinPWM28M29]]|M| | | |✓| |us|
169 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**R**aw **D**uty-cycle **M**ove>>path:#HRawDuty-cycleMove28RDM29]]|RDM|QMD| | |✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW
170 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery Status>>path:#HQueryStatus28Q29]]| |Q| | |✓| |1 to 8 integer|See command description for details
171 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**L**imp>>path:#HLimp28L29]]|L| | | |✓| | |
172 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**H**alt & Hold>>path:#HHalt26Hold28H29]]|H| | | |✓| | |
Coleman Benson 94.1 173
Eric Nantel 213.1 174 |(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Motion Setup**>>path:#HMotionSetup]]
175 | |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
176 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**E**nable **M**otion Profile>>path:#HEnableMotionProfile28EM29]]|EM|QEM|CEM| |✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile
177 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**ilter **P**osition **C**ount>>path:#HFilterPositionCount28FPC29]]|FPC|QFPC|CFPC|✓|✓|5| |Affects motion only when motion profile is disabled (EM0)
178 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**O**rigin Offset>>path:#HOriginOffset28O29]]|O|QO|CO|✓|✓|0|1/10°|
179 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **R**ange>>path:#HAngularRange28AR29]]|AR|QAR|CAR|✓|✓|1800|1/10°|
180 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **S**tiffness>>path:#HAngularStiffness28AS29]]|AS|QAS|CAS|✓|✓|0|-4 to +4 integer|Suggested values are between 0 to +4
181 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **H**olding Stiffness>>path:#HAngularHoldingStiffness28AH29]]|AH|QAH|CAH|✓|✓|4|-10 to +10 integer|
182 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **A**cceleration>>path:#HAngularAcceleration28AA29]]|AA|QAA|CAA| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
183 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**A**ngular **D**eceleration>>path:#HAngularDeceleration28AD29]]|AD|QAD|CAD| |✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1).
184 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**G**yre Direction>>path:#HGyreDirection28G29]]|G|QG|CG|✓|✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)
185 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**F**irst Position (**D**eg)>>path:#HFirstPosition]]| |QFD|CFD|✓|✓|No value|1/10°|Reset required after change.
186 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**M**aximum **M**otor **D**uty>>path:#HMaximumMotorDuty28MMD29]]|MMD|QMMD| | |✓|1023|255 to 1023 integer|
187 | |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HMaximumSpeedinDegrees28SD29]]|SD|QSD|CSD|✓|✓|Max|0.1°/s|SD overwrites SR / CSD overwrites CSR and vice-versa
188 | |[[Maximum (% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **R**PM>>path:#HMaximumSpeedinRPM28SR29]]|SR|QSR|CSR|✓|✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa
Coleman Benson 1.1 189
Eric Nantel 213.1 190 |(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Modifiers**>>path:#HModifiers]]
191 | |**Description**|**Modifier**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
192 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed>>path:#HSpeed28S2CSD29modifier]]|S|QS| | |✓| |uS/s |For P action command
193 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**S**peed in **D**egrees>>path:#HSpeed28S2CSD29modifier]]|SD| | | |✓| |0.1°/s|For D and MD action commands
194 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**T**imed move>>path:#HTimedmove28T29modifier]]|T| | | |✓| |ms|Modifier only for P, D and MD. Time can change based on load
195 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **H**old>>path:#HCurrentHalt26Hold28CH29modifier]]|CH| | | |✓| |mA|Modifier for D, MD, WD and WR
196 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**urrent **L**imp>>path:#HCurrentLimp28CL29modifier]]|CL| | | |✓| |mA|Modifier for D, MD, WD and WR
Coleman Benson 93.1 197
Eric Nantel 213.1 198 |(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Telemetry**>>path:#HTelemetry]]
199 | |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
200 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **V**oltage>>path:#HQueryVoltage28QV29]]| |QV| | |✓| |mV|
201 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **T**emperature>>path:#HQueryTemperature28QT29]]| |QT| | |✓| |1/10°C|
202 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **C**urrent>>path:#HQueryCurrent28QC29]]| |QC| | |✓| |mA|
203 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **M**odel **S**tring>>path:#HQueryModelString28QMS29]]| |QMS| | |✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)
204 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**Q**uery **F**irmware Version>>path:#HQueryFirmware28QF29]]| |QF| | |✓| | |
Coleman Benson 93.1 205
Eric Nantel 213.1 206 |(% colspan="10" %)[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**RGB LED**>>path:#HRGBLED]]
207 | |**Description**|**Action**|**Query**|**Config**|**RC**|**Serial**|**Default**|**Unit**|**Notes**
208 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**LED** Color>>path:#HLEDColor28LED29]]|LED|QLED|CLED|✓|✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White
209 | |[[(% class="wikiinternallink wikiinternallink wikiinternallink wikiinternallink" %)**C**onfigure **L**ED **B**linking>>path:#HConfigureLEDBlinking28CLB29]]| | |CLB|✓|✓| |0 to 63 integer|Reset required after change. See command for details.
Coleman Benson 96.1 210
Eric Nantel 213.1 211 = Details =
Coleman Benson 1.1 212
Eric Nantel 213.1 213 == Communication Setup ==
Coleman Benson 1.1 214
Eric Nantel 213.1 215 |(% colspan="2" %)(((
216 ====== Reset ======
217 )))
218 |(% style="width:30px" %) |(((
219 Ex: #5RESET<cr>
Coleman Benson 1.1 220
Eric Nantel 213.1 221 This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/#HSession]], note #2 for more details.
222 )))
Coleman Benson 1.1 223
Eric Nantel 213.1 224 |(% colspan="2" %)(((
225 ====== Default & confirm ======
226 )))
227 |(% style="width:30px" %) |(((
228 Ex: #5DEFAULT<cr>
Coleman Benson 1.1 229
Eric Nantel 213.1 230 This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.
Coleman Benson 1.1 231
Eric Nantel 213.1 232 Ex: #5DEFAULT<cr> followed by #5CONFIRM<cr>
Coleman Benson 1.1 233
Eric Nantel 213.1 234 Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.
Coleman Benson 1.1 235
Eric Nantel 213.1 236 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
237 )))
Coleman Benson 1.1 238
Eric Nantel 213.1 239 |(% colspan="2" %)(((
240 ====== Update & confirm ======
241 )))
242 |(% style="width:30px" %) |(((
243 Ex: #5UPDATE<cr>
Coleman Benson 1.1 244
Eric Nantel 213.1 245 This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.
Coleman Benson 72.1 246
Eric Nantel 213.1 247 Ex: #5UPDATE<cr> followed by #5CONFIRM<cr>
Coleman Benson 1.1 248
Eric Nantel 213.1 249 Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.
Coleman Benson 1.1 250
Eric Nantel 213.1 251 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
252 )))
Coleman Benson 1.1 253
Eric Nantel 213.1 254 |(% colspan="2" %)(((
255 ====== Confirm ======
256 )))
257 |(% style="width:30px" %) |(((
258 Ex: #5CONFIRM<cr>
RB1 161.1 259
Eric Nantel 213.1 260 This command is used to confirm changes after a Default or Update command.
Coleman Benson 129.1 261
Eric Nantel 213.1 262 **Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.
263 )))
Brahim Daouas 185.1 264
Eric Nantel 213.1 265 |(% colspan="2" %)(((
266 ====== Configure RC Mode (**CRC**) ======
267 )))
268 |(% style="width:30px" %) |(((
269 This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.
Brahim Daouas 185.1 270
Eric Nantel 213.1 271 Ex: #5CRC1<cr>
Brahim Daouas 185.1 272
Eric Nantel 213.1 273 Change to RC position mode.
Brahim Daouas 185.1 274
Eric Nantel 213.1 275 Ex: #5CRC2<cr>
Coleman Benson 129.1 276
Eric Nantel 213.1 277 Change to RC continuous rotation (wheel) mode.
Coleman Benson 129.1 278
Eric Nantel 213.1 279 Ex: #5CRC*<cr>
Coleman Benson 1.1 280
Eric Nantel 213.1 281 Where * is any value other than 1 or 2 (or no value): stay in smart mode
Coleman Benson 1.1 282
Eric Nantel 213.1 283 Ex: #5CRC2<cr>
Coleman Benson 1.1 284
Eric Nantel 213.1 285 This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.
Coleman Benson 1.1 286
Eric Nantel 213.1 287 **Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/lynxmotion-smart-servo/lss-button-menu/]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.
288 )))
Coleman Benson 1.1 289
Eric Nantel 213.1 290 |(% colspan="2" %)(((
291 ====== Identification Number (**ID**) ======
292 )))
293 |(% style="width:30px" %) |(((
294 A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.
Coleman Benson 1.1 295
Eric Nantel 213.1 296 Query Identification (**QID**)
Coleman Benson 1.1 297
Eric Nantel 213.1 298 EX: #254QID<cr> might return *QID5<cr>
Coleman Benson 1.1 299
Eric Nantel 213.1 300 When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.
Coleman Benson 1.1 301
Eric Nantel 213.1 302 Configure ID (**CID**)
Coleman Benson 1.1 303
Eric Nantel 213.1 304 Ex: #4CID5<cr>
Coleman Benson 1.1 305
Eric Nantel 213.1 306 Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.
307 )))
Coleman Benson 1.1 308
Eric Nantel 213.1 309 |(% colspan="2" %)(((
310 ====== Baud Rate ======
311 )))
312 |(% style="width:30px" %) |(((
313 A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps, 921.6 kbps. Servos are shipped with a baud rate set to 115200.
Coleman Benson 1.1 314
Eric Nantel 213.1 315 Query Baud Rate (**QB**)
Coleman Benson 1.1 316
Eric Nantel 213.1 317 Ex: #5QB<cr> might return *5QB115200<cr>Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.
Coleman Benson 1.1 318
Eric Nantel 213.1 319 Configure Baud Rate (**CB**)
Coleman Benson 1.1 320
Eric Nantel 213.1 321 **Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.
Coleman Benson 1.1 322
Eric Nantel 213.1 323 Ex: #5CB9600<cr>
Coleman Benson 1.1 324
Eric Nantel 213.1 325 Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.
326 )))
Coleman Benson 1.1 327
Eric Nantel 213.1 328 |(% colspan="2" %)(((
Eric Nantel 207.1 329 ====== __Automatic Baud Rate__ ======
Eric Nantel 213.1 330 )))
331 |(% style="width:30px" %) |(((
332 This option allows the LSS to listen to it's serial input and select the right baudrate automatically.
Eric Nantel 207.1 333
Eric Nantel 213.1 334 Query Automatic Baud Rate (**QABR**)
Eric Nantel 208.1 335
Eric Nantel 213.1 336 Ex: #5QABR<cr> might return *5ABR0<cr>
Eric Nantel 208.1 337
Eric Nantel 213.1 338 Enable Baud Rate (**ABR**)
Eric Nantel 208.2 339
Eric Nantel 213.1 340 Ex: #5QABR1<cr>
Eric Nantel 208.1 341
Eric Nantel 213.1 342 Enable baudrate detection on first byte received after power-up.
Eric Nantel 208.1 343
Eric Nantel 213.1 344 Ex: #5QABR2,30<cr>Enable baudrate detection on first byte received after power-up. If no data for 30 seconds enable detection again on next byte.
Eric Nantel 209.1 345
Eric Nantel 213.1 346 Warning: ABR doesnt work well with LSS Config at the moment.
347 )))
Eric Nantel 207.1 348
Eric Nantel 172.1 349 == Motion ==
Coleman Benson 1.1 350
Eric Nantel 213.1 351 |(% colspan="2" %)(((
Eric Nantel 172.1 352 ====== __Position in Degrees (**D**)__ ======
Eric Nantel 213.1 353 )))
354 |(% style="width:30px" %) |(((
355 Ex: #5D1456<cr>
Coleman Benson 1.1 356
Eric Nantel 213.1 357 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction.
Coleman Benson 1.1 358
Eric Nantel 213.1 359 Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above).
Coleman Benson 1.1 360
Eric Nantel 213.1 361 Query Position in Degrees (**QD**)
Coleman Benson 1.1 362
Eric Nantel 213.1 363 Ex: #5QD<cr> might return *5QD132<cr>
Coleman Benson 1.1 364
Eric Nantel 213.1 365 This means the servo is located at 13.2 degrees.
Coleman Benson 1.1 366
Eric Nantel 213.1 367 Query Target Position in Degrees (**QDT**)
Coleman Benson 1.1 368
Eric Nantel 213.1 369 Ex: #5QDT<cr> might return *5QDT6783<cr>
Coleman Benson 1.1 370
Eric Nantel 172.1 371 The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used.
Eric Nantel 213.1 372 )))
Coleman Benson 1.1 373
Eric Nantel 213.1 374 |(% colspan="2" %)(((
375 ====== (Relative) Move in Degrees (**MD**) ======
376 )))
377 |(% style="width:30px" %) |(((
378 Ex: #5MD123<cr>
Coleman Benson 1.1 379
Eric Nantel 172.1 380 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction.
Eric Nantel 213.1 381 )))
Coleman Benson 1.1 382
Eric Nantel 213.1 383 |(% colspan="2" %)(((
384 ====== Wheel Mode in Degrees (**WD**) ======
385 )))
386 |(% style="width:30px" %) |(((
387 Ex: #5WD90<cr>
Coleman Benson 1.1 388
Eric Nantel 213.1 389 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).
Coleman Benson 1.1 390
Eric Nantel 213.1 391 Query Wheel Mode in Degrees (**QWD**)
Coleman Benson 1.1 392
Eric Nantel 213.1 393 Ex: #5QWD<cr> might return *5QWD90<cr>
Coleman Benson 1.1 394
Eric Nantel 172.1 395 The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
Eric Nantel 213.1 396 )))
Coleman Benson 98.5 397
Eric Nantel 213.1 398 |(% colspan="2" %)(((
399 ====== Wheel Mode in RPM (**WR**) ======
400 )))
401 |(% style="width:30px" %) |(((
402 Ex: #5WR40<cr>
Coleman Benson 98.5 403
Eric Nantel 213.1 404 This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).
Coleman Benson 98.5 405
Eric Nantel 213.1 406 Query Wheel Mode in RPM (**QWR**)
Coleman Benson 1.1 407
Eric Nantel 213.1 408 Ex: #5QWR<cr> might return *5QWR40<cr>
Coleman Benson 1.1 409
Eric Nantel 172.1 410 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise).
Eric Nantel 213.1 411 )))
Coleman Benson 1.1 412
Eric Nantel 213.1 413 |(% colspan="2" %)(((
414 ====== Position in PWM (**P**) ======
415 )))
416 |(% style="width:30px" %) |(((
417 Ex: #5P2334<cr>
Coleman Benson 1.1 418
Eric Nantel 213.1 419 The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>url:https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.
Coleman Benson 1.1 420
Eric Nantel 213.1 421 Query Position in Pulse (**QP**)
Coleman Benson 1.1 422
Eric Nantel 213.1 423 Ex: #5QP<cr> might return *5QP2334
Coleman Benson 1.1 424
Eric Nantel 213.1 425 This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position).
426 )))
Coleman Benson 1.1 427
Eric Nantel 213.1 428 |(% colspan="2" %)(((
Eric Nantel 172.1 429 ====== __(Relative) Move in PWM (**M**)__ ======
Eric Nantel 213.1 430 )))
431 |(% style="width:30px" %) |(((
432 Ex: #5M1500<cr>
Coleman Benson 1.1 433
Eric Nantel 172.1 434 The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction.
Eric Nantel 213.1 435 )))
Coleman Benson 1.1 436
Eric Nantel 213.1 437 |(% colspan="2" %)(((
438 ====== Raw Duty-cycle Move (**RDM**) ======
439 )))
440 |(% style="width:30px" %) |(((
441 Ex: #5RDM512<cr>
Coleman Benson 1.1 442
Eric Nantel 213.1 443 The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.
Coleman Benson 1.1 444
Eric Nantel 213.1 445 The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).
Coleman Benson 1.1 446
Eric Nantel 213.1 447 Query Move in Duty-cycle (**QMD**)
Coleman Benson 1.1 448
Eric Nantel 213.1 449 Ex: #5QMD<cr> might return *5QMD512
Coleman Benson 1.1 450
Eric Nantel 172.1 451 This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle.
Eric Nantel 213.1 452 )))
Coleman Benson 1.1 453
Eric Nantel 213.1 454 |(% colspan="2" %)(((
455 ====== Query Status (**Q**) ======
456 )))
457 |(% style="width:30px" %) |(((
458 The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.
Coleman Benson 1.1 459
Eric Nantel 213.1 460 Ex: #5Q<cr> might return *5Q6<cr>
Coleman Benson 1.1 461
Eric Nantel 213.1 462 which indicates the motor is holding a position.
463 )))
Coleman Benson 1.1 464
Eric Nantel 213.1 465 |(% style="width:30px" %) |***Value returned (Q)**|**Status**|**Detailed description**
Eric Nantel 172.1 466 | |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state
467 | |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely
468 | |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command
469 | |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed
470 | |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed
471 | |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position.
Coleman Benson 205.1 472 | |ex: *5Q6<cr>|6: Holding|Keeping current position (in EM0 mode, return will nornally be holding)
Eric Nantel 172.1 473 | |ex: *5Q7<cr>|7: Outside limits|{More details coming soon}
474 | |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting
475 | |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled)
476 | |ex: *5Q10<cr>|10: Safe Mode|(((
477 A safety limit has been exceeded (temperature, peak current or extended high current draw).
Coleman Benson 1.1 478
Eric Nantel 172.1 479 Send a Q1 command to know which limit has been reached (described below).
480 )))
Coleman Benson 1.1 481
Eric Nantel 213.1 482 |(% style="width:30px" %) |(% colspan="3" rowspan="1" %)If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.
483 | |***Value returned (Q1)**|**Status**|**Detailed description**
Eric Nantel 172.1 484 | |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong
485 | |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long
486 | |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source
487 | |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely.
Coleman Benson 1.1 488
Eric Nantel 213.1 489 |(% colspan="2" %)(((
490 ====== Limp (**L**) ======
491 )))
492 |(% style="width:30px" %) |(((
493 Ex: #5L<cr>
Coleman Benson 1.1 494
Eric Nantel 213.1 495 This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>.
496 )))
Coleman Benson 1.1 497
Eric Nantel 213.1 498 |(% colspan="2" %)(((
499 ====== Halt & Hold (**H**) ======
500 )))
501 |(% style="width:30px" %) |(((
502 Example: #5H<cr>
RB1 25.1 503
Eric Nantel 172.1 504 This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.)
Eric Nantel 213.1 505 )))
Coleman Benson 15.1 506
Eric Nantel 172.1 507 == Motion Setup ==
Coleman Benson 1.1 508
Eric Nantel 213.1 509 |(% colspan="2" %)(((
510 ====== Enable Motion Profile (**EM**) ======
511 )))
512 |(% style="width:30px" %) |(((
513 EM1 (Enable Motion Profile #1) is the default mode of the LSS and is an easy way to control the servo's position with a single (serial) position command. This mode uses a trapezoidal motion profile which takes care of acceleration, constant speed travel and deceleration. Once the actual position is within a certain value of the target, it switches to a holding algorithm. The LSS commands for Angular Acceleration and Deceleration (AA/CAA/AD/CAD) Angular Stiffness (AS/CAS) and Angular holding stiffness (AH/CAH) affect this motion profile. Modifiers like SD/S and T can be used in EM1.
Coleman Benson 1.1 514
Eric Nantel 213.1 515 Ex: #5EM1<cr>
Coleman Benson 196.2 516
Eric Nantel 213.1 517 This command enables a trapezoidal motion profile for servo #5
Coleman Benson 1.1 518
Eric Nantel 213.1 519 Ex: #5EM0<cr>
Coleman Benson 1.1 520
Coleman Benson 204.1 521 This command will disable the built-in trapezoidal motion profile. As such, the servo will move at full speed to the target position using the D/MD action commands. Modifiers like SD/S or T cannot be used in EM0 mode. By default the Filter Position Counter, or "FPC" is active in EM0 mode to smooth out its operation. EM0 is suggested for applications where an external controller will be determining all incremental intermediate positions of the servo's motion, effectively replacing a trajectory manager. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) repeats the last position command. Note that in EM0 mode, the servo will effectively always be in status: Holding (if using the query status command).
Coleman Benson 1.1 522
Eric Nantel 213.1 523 Query Motion Profile (**QEM**)
Coleman Benson 198.2 524
Eric Nantel 213.1 525 Ex: #5QEM<cr> might return *5QEM1<cr>
Coleman Benson 1.1 526
Eric Nantel 213.1 527 This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.
Coleman Benson 1.1 528
Eric Nantel 213.1 529 Configure Motion Profile (**CEM**)
Coleman Benson 1.1 530
Eric Nantel 213.1 531 Ex: #5CEM0<cr>
Coleman Benson 98.4 532
Eric Nantel 172.1 533 This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
Eric Nantel 213.1 534 )))
Coleman Benson 98.4 535
Eric Nantel 213.1 536 |(% colspan="2" %)(((
537 ====== Filter Position Count (**FPC**) ======
538 )))
539 |(% style="width:30px" %) |(((
Coleman Benson 196.2 540 The FPC value relates to the depth of a first order filter (exponential weighted average) over the position change. This has the effect of slowing down both acceleration and deceleration while still allowing the LSS to try to reach the desired position at maximum power at all times. A smaller FPC value will reduce the smoothing effect and a larger value will increase it. To prevent having to send position commands continuously to reach the desired position in EM0/FPC active (FPC >= 2), an internal position engine (IPE) has been put in place, which is also active by default.
Coleman Benson 98.4 541
Eric Nantel 213.1 542 Ex: #5FPC10<cr>
Coleman Benson 98.4 543
Eric Nantel 213.1 544 This command allows the user to change the Filter Position Count value for that session.
Coleman Benson 98.4 545
Eric Nantel 213.1 546 Query Filter Position Count (**QFPC**)
Coleman Benson 98.4 547
Eric Nantel 213.1 548 Ex: #5QFPC<cr> might return *5QFPC10<cr>
Coleman Benson 98.4 549
Eric Nantel 213.1 550 This command will query the Filter Position Count value.
Coleman Benson 98.4 551
Eric Nantel 213.1 552 Configure Filter Position Count (**CFPC**)
553
554 Ex: #5CFPC10<cr>
555
Eric Nantel 172.1 556 This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle.
Eric Nantel 213.1 557 )))
Coleman Benson 1.1 558
Eric Nantel 213.1 559 |(% colspan="2" %)(((
560 ====== Origin Offset (**O**) ======
561 )))
562 |(% style="width:30px" %) |(((
563 Ex: #5O2400<cr>
Coleman Benson 1.1 564
Eric Nantel 213.1 565 This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).
Coleman Benson 1.1 566
Eric Nantel 213.1 567 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
Coleman Benson 1.1 568
Eric Nantel 213.1 569 In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:
Coleman Benson 1.1 570
Eric Nantel 213.1 571 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-origin.jpg||alt="LSS-servo-origin.jpg"]]
Coleman Benson 1.1 572
Eric Nantel 213.1 573 Origin Offset Query (**QO**)
Coleman Benson 1.1 574
Eric Nantel 213.1 575 Ex: #5QO<cr> might return *5QO-13
Coleman Benson 1.1 576
Eric Nantel 213.1 577 This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.
Coleman Benson 1.1 578
Eric Nantel 213.1 579 Configure Origin Offset (**CO**)
Coleman Benson 1.1 580
Eric Nantel 213.1 581 Ex: #5CO-24<cr>
Coleman Benson 1.1 582
Eric Nantel 172.1 583 This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.
Eric Nantel 213.1 584 )))
Coleman Benson 1.1 585
Eric Nantel 213.1 586 |(% colspan="2" %)Angular Range (**AR**)(((
587 ====== ======
588 )))
589 |(% style="width:30px" %) |(((
590 Ex: #5AR1800<cr>
Coleman Benson 93.1 591
Eric Nantel 213.1 592 This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:
Coleman Benson 1.1 593
Eric Nantel 213.1 594 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-default.jpg||alt="LSS-servo-default.jpg"]]
Coleman Benson 1.1 595
Eric Nantel 213.1 596 Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.
Coleman Benson 1.1 597
Eric Nantel 213.1 598 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar.jpg||alt="LSS-servo-ar.jpg"]]
Coleman Benson 1.1 599
Eric Nantel 213.1 600 Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:
Coleman Benson 1.1 601
Eric Nantel 213.1 602 [[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS-servo-ar-o-1.jpg||alt="LSS-servo-ar-o-1.jpg"]]
Coleman Benson 1.1 603
Eric Nantel 213.1 604 Query Angular Range (**QAR**)
Coleman Benson 1.1 605
Eric Nantel 213.1 606 Ex: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.
Coleman Benson 1.1 607
Eric Nantel 213.1 608 Configure Angular Range (**CAR**)
Coleman Benson 1.1 609
Eric Nantel 172.1 610 This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle.
Eric Nantel 213.1 611 )))
Coleman Benson 1.1 612
Eric Nantel 213.1 613 |(% colspan="2" %)(((
614 ====== Angular Stiffness (**AS**) ======
615 )))
616 |(% style="width:30px" %) |(((
617 The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.
Coleman Benson 1.1 618
Eric Nantel 213.1 619 A higher value of "angular stiffness":
Coleman Benson 1.1 620
Eric Nantel 172.1 621 * The more torque will be applied to try to keep the desired position against external input / changes
Eric Nantel 213.1 622 * The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position
Coleman Benson 1.1 623
Eric Nantel 213.1 624 A lower value on the other hand:
RB1 64.1 625
Eric Nantel 172.1 626 * Causes a slower acceleration to the travel speed, and a slower deceleration
Eric Nantel 213.1 627 * Allows the target position to deviate more from its position before additional torque is applied to bring it back
Coleman Benson 1.1 628
Eric Nantel 213.1 629 The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
Coleman Benson 1.1 630
Eric Nantel 213.1 631 Ex: #5AS-2<cr>
Coleman Benson 1.1 632
Eric Nantel 213.1 633 This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.
Coleman Benson 1.1 634
Eric Nantel 213.1 635 Ex: #5QAS<cr>
Coleman Benson 1.1 636
Eric Nantel 213.1 637 Queries the value being used.
Coleman Benson 1.1 638
Eric Nantel 213.1 639 Ex: #5CAS-2<cr>Writes the desired angular stiffness value to EEPROM.
640 )))
Coleman Benson 98.37 641
Eric Nantel 213.1 642 |(% colspan="2" %)(((
643 ====== Angular Holding Stiffness (**AH**) ======
644 )))
645 |(% style="width:30px" %) |(((
646 The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.
Coleman Benson 1.1 647
Eric Nantel 213.1 648 Ex: #5AH3<cr>
Coleman Benson 1.1 649
Eric Nantel 213.1 650 This sets the holding stiffness for servo #5 to 3 for that session.
Coleman Benson 110.1 651
Eric Nantel 213.1 652 Query Angular Holding Stiffness (**QAH**)
Coleman Benson 109.1 653
Eric Nantel 213.1 654 Ex: #5QAH<cr> might return *5QAH3<cr>
Coleman Benson 109.1 655
Eric Nantel 213.1 656 This returns the servo's angular holding stiffness value.
Coleman Benson 1.1 657
Eric Nantel 213.1 658 Configure Angular Holding Stiffness (**CAH**)
Coleman Benson 1.1 659
Eric Nantel 213.1 660 Ex: #5CAH2<cr>
Coleman Benson 1.1 661
Eric Nantel 213.1 662 This writes the angular holding stiffness of servo #5 to 2 to EEPROM.
663 )))
Coleman Benson 1.1 664
Eric Nantel 213.1 665 |(% colspan="2" %)(((
666 ====== Angular Acceleration (**AA**) ======
667 )))
668 |(% style="width:30px" %) |(((
669 The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
Coleman Benson 1.1 670
Eric Nantel 213.1 671 Ex: #5AA30<cr>
Coleman Benson 1.1 672
Eric Nantel 213.1 673 This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
Coleman Benson 1.1 674
Eric Nantel 213.1 675 Query Angular Acceleration (**QAA**)
Coleman Benson 1.1 676
Eric Nantel 213.1 677 Ex: #5QAA<cr> might return *5QAA30<cr>
Coleman Benson 1.1 678
Eric Nantel 213.1 679 This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).
Coleman Benson 42.1 680
Eric Nantel 213.1 681 Configure Angular Acceleration (**CAA**)
Coleman Benson 42.1 682
Eric Nantel 213.1 683 Ex: #5CAA30<cr>
RB1 50.1 684
Eric Nantel 213.1 685 This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
686 )))
Coleman Benson 42.1 687
Eric Nantel 213.1 688 |(% colspan="2" %)(((
689 ====== Angular Deceleration (**AD**) ======
690 )))
691 |(% style="width:30px" %) |(((
692 The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.
Coleman Benson 1.1 693
Eric Nantel 213.1 694 Ex: #5AD30<cr>
Coleman Benson 102.1 695
Eric Nantel 213.1 696 This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).
Coleman Benson 98.36 697
Eric Nantel 213.1 698 Query Angular Deceleration (**QAD**)
Coleman Benson 1.1 699
Eric Nantel 213.1 700 Ex: #5QAD<cr> might return *5QAD30<cr>
Coleman Benson 1.1 701
Eric Nantel 213.1 702 This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).
Coleman Benson 1.1 703
Eric Nantel 213.1 704 Configure Angular Deceleration (**CAD**)
Coleman Benson 1.1 705
Eric Nantel 213.1 706 Ex: #5CAD30<cr>
Coleman Benson 1.1 707
Eric Nantel 213.1 708 This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM.
709 )))
Coleman Benson 1.1 710
Eric Nantel 213.1 711 |(% colspan="2" %)(((
712 ====== Gyre Direction (**G**) ======
713 )))
714 |(% style="width:30px" %) |(((
715 "Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.
Coleman Benson 1.1 716
Eric Nantel 213.1 717 Ex: #5G-1<cr>
Coleman Benson 13.1 718
Eric Nantel 213.1 719 This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.
Coleman Benson 1.1 720
Eric Nantel 213.1 721 Query Gyre Direction (**QG**)
Coleman Benson 1.1 722
Eric Nantel 213.1 723 Ex: #5QG<cr> might return *5QG-1<cr>
Coleman Benson 1.1 724
Eric Nantel 213.1 725 The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.
Coleman Benson 1.1 726
Eric Nantel 213.1 727 Configure Gyre (**CG**)
Coleman Benson 12.1 728
Eric Nantel 213.1 729 Ex: #5CG-1<cr>
Coleman Benson 98.2 730
Eric Nantel 213.1 731 This changes the gyre direction as described above and also writes to EEPROM.
732 )))
Coleman Benson 98.37 733
Eric Nantel 213.1 734 |(% colspan="2" %)(((
735 ====== First Position ======
736 )))
737 |(% style="width:30px" %) |(((
738 In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800.
Coleman Benson 113.1 739
Eric Nantel 213.1 740 Query First Position in Degrees (**QFD**)
Coleman Benson 98.2 741
Eric Nantel 213.1 742 Ex: #5QFD<cr> might return *5QFD900<cr>
Coleman Benson 98.2 743
Eric Nantel 213.1 744 The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.
Coleman Benson 98.2 745
Eric Nantel 213.1 746 Configure First Position in Degrees (**CFD**)
Coleman Benson 98.2 747
Eric Nantel 213.1 748 Ex: #5CFD900<cr>
Coleman Benson 98.2 749
Eric Nantel 213.1 750 This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr>
751 )))
Coleman Benson 98.2 752
Eric Nantel 213.1 753 |(% colspan="2" %)(((
754 ====== Maximum Motor Duty (**MMD**) ======
755 )))
756 |(% style="width:30px" %) |(((
757 This command allows the user to limit the duty cycle value sent from the servo's MCU to the DC Motor driver. The duty cycle limit value can be within the range of 255 to 1023. The default value is 1023. A typical use-case for this command is active compliance.
Coleman Benson 98.2 758
Eric Nantel 213.1 759 Ex: #5MMD512<cr>
Coleman Benson 98.2 760
Eric Nantel 213.1 761 This will set the duty-cycle to 512 for servo with ID 5 for that session.
Coleman Benson 98.2 762
Eric Nantel 213.1 763 Query Maximum Motor Duty (**QMMD**)
Coleman Benson 98.2 764
Eric Nantel 213.1 765 Ex: #5QMMDD<cr> might return *5QMMD512<cr>
Coleman Benson 98.2 766
Eric Nantel 213.1 767 This command returns the configured limit of the duty cycle value sent from the servo's MCU to the Motor Controller. The default value is 1023.
768 )))
Coleman Benson 98.2 769
Eric Nantel 213.1 770 |(% colspan="2" %)(((
771 ====== Maximum Speed in Degrees (**SD**) ======
772 )))
773 |(% style="width:30px" %) |(((
774 Ex: #5SD1800<cr>
Brahim Daouas 185.2 775
Eric Nantel 213.1 776 This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
Brahim Daouas 185.2 777
Eric Nantel 213.1 778 Query Speed in Degrees (**QSD**)
Brahim Daouas 190.2 779
Eric Nantel 213.1 780 Ex: #5QSD<cr> might return *5QSD1800<cr>
Brahim Daouas 190.2 781
Eric Nantel 213.1 782 By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
783 )))
Brahim Daouas 185.2 784
Eric Nantel 213.1 785 |(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)**
786 | |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command)
787 | |ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
788 | |ex: #5QSD2<cr>|Instantaneous speed (same as QWD)
789 | |ex: #5QSD3<cr>|Target travel speed
Brahim Daouas 185.2 790
Eric Nantel 213.1 791 |(% style="width:30px" %) |(((
792 Configure Speed in Degrees (**CSD**)
Brahim Daouas 185.2 793
Eric Nantel 213.1 794 Ex: #5CSD1800<cr>
Coleman Benson 98.2 795
Eric Nantel 213.1 796 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.
797 )))
Coleman Benson 98.2 798
Eric Nantel 213.1 799 |(% colspan="2" %)(((
800 ====== Maximum Speed in RPM (**SR**) ======
801 )))
802 |(% style="width:30px" %) |(((
803 Ex: #5SR45<cr>
Coleman Benson 98.2 804
Eric Nantel 213.1 805 This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.
Coleman Benson 98.2 806
Eric Nantel 213.1 807 Query Speed in RPM (**QSR**)
Coleman Benson 98.2 808
Eric Nantel 213.1 809 Ex: #5QSR<cr> might return *5QSR45<cr>
Coleman Benson 98.2 810
Eric Nantel 213.1 811 By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:
812 )))
Coleman Benson 98.2 813
Eric Nantel 213.1 814 |(% style="width:30px" %) |**Command sent**|**Returned value (1/10 °)**
815 | |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command)
816 | |ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR)
817 | |ex: #5QSR2<cr>|Instantaneous speed (same as QWD)
818 | |ex: #5QSR3<cr>|Target travel speed
Coleman Benson 98.2 819
Eric Nantel 213.1 820 |(((
821 Configure Speed in RPM (**CSR**)
Coleman Benson 98.2 822
Eric Nantel 213.1 823 Ex: #5CSR45<cr>
Coleman Benson 98.2 824
Eric Nantel 213.1 825 Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.
826 )))|
Coleman Benson 98.2 827
Eric Nantel 213.1 828 == Modifiers ==
Coleman Benson 98.2 829
Eric Nantel 213.1 830 |(% colspan="2" %)(((
831 ====== Speed (**S**, **SD**) modifier ======
832 )))
833 |(% style="width:30px" %) |(((
834 Ex: #5P1500S750<cr>
Coleman Benson 98.2 835
Eric Nantel 213.1 836 Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
Coleman Benson 111.1 837
Eric Nantel 213.1 838 Ex: #5D0SD180<cr>
Coleman Benson 111.1 839
Eric Nantel 213.1 840 Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in tenths of degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 18 degrees per second.
Coleman Benson 111.1 841
Eric Nantel 213.1 842 Query Speed (**QS**)
Coleman Benson 111.1 843
Eric Nantel 213.1 844 Ex: #5QS<cr> might return *5QS300<cr>
Coleman Benson 111.1 845
Eric Nantel 213.1 846 This command queries the current speed in microseconds per second.
847 )))
Coleman Benson 98.2 848
Eric Nantel 213.1 849 |(% colspan="2" %)(((
850 ====== Timed move (**T**) modifier ======
851 )))
852 |(% style="width:30px" %) |(((
853
Coleman Benson 98.2 854
Eric Nantel 213.1 855 Example: #5P1500T2500<cr>
Coleman Benson 111.1 856
Eric Nantel 213.1 857 Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.
Coleman Benson 111.1 858
Eric Nantel 213.1 859 **Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.
860 )))
Coleman Benson 111.1 861
Eric Nantel 213.1 862 |(% colspan="2" %)(((
863 ====== Current Halt & Hold (**CH**) modifier ======
864 )))
865 |(% style="width:30px" %) |(((
866 Example: #5D1423CH400<cr>
Coleman Benson 111.1 867
Eric Nantel 213.1 868 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.
Coleman Benson 111.1 869
Eric Nantel 213.1 870 This modifier can be added to the following actions: D; MD; WD; WR.
871 )))
Coleman Benson 98.2 872
Eric Nantel 213.1 873 |(% colspan="2" %)(((
874 ====== Current Limp (**CL**) modifier ======
875 )))
876 |(% style="width:30px" %) |(((
877 Example: #5D1423CL400<cr>
Coleman Benson 98.2 878
Eric Nantel 213.1 879 This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.
Coleman Benson 115.1 880
Eric Nantel 213.1 881 This modifier can be added to the following actions: D; MD; WD; WR.
882 )))
883
Eric Nantel 172.1 884 == Telemetry ==
Coleman Benson 98.2 885
Eric Nantel 213.1 886 |(% colspan="2" %)(((
887 ====== Query Voltage (**QV**) ======
888 )))
889 |(% style="width:30px" %) |(((
890 Ex: #5QV<cr> might return *5QV11200<cr>
Coleman Benson 98.2 891
Eric Nantel 213.1 892 The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.
893 )))
Coleman Benson 98.37 894
Eric Nantel 213.1 895 |(% colspan="2" %)(((
896 ====== Query Current (**QC**) ======
897 )))
898 |(% style="width:30px" %) |(((
899
Coleman Benson 98.2 900
Eric Nantel 213.1 901 Ex: #5QC<cr> might return *5QC140<cr>
Coleman Benson 108.1 902
Eric Nantel 213.1 903 The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.
904 )))
RB1 140.1 905
Eric Nantel 213.1 906 |(% colspan="2" %)(((
907 ====== Query Model String (**QMS**) ======
908 )))
909 |(% style="width:30px" %) |(((
910
Coleman Benson 148.1 911
Eric Nantel 213.1 912 Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr>
Coleman Benson 148.1 913
Eric Nantel 213.1 914 This reply means that the servo model is LSS-HS1: a high speed servo, first revision.
915 )))
Coleman Benson 148.1 916
Eric Nantel 213.1 917 |(% colspan="2" %)(((
918 ====== Query Firmware (**QF**) ======
919 )))
920 |(% style="width:30px" %) |(((
921 Ex: #5QF<cr> might return *5QF368<cr>
Coleman Benson 148.1 922
Eric Nantel 213.1 923 The number in the reply represents the firmware version, in this example being 368.
Coleman Benson 148.1 924
Eric Nantel 213.1 925 The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14
926 )))
Coleman Benson 148.1 927
Eric Nantel 172.1 928 == RGB LED ==
Coleman Benson 148.1 929
Eric Nantel 213.1 930 |(% colspan="2" %)(((
931 ====== LED Color (**LED**) ======
932 )))
933 |(% style="width:30px" %) |(((
934
Eric Nantel 172.1 935
Eric Nantel 213.1 936 Ex: #5LED3<cr>
Eric Nantel 172.1 937
Eric Nantel 213.1 938 This action sets the servo's RGB LED color for that session.
Eric Nantel 172.1 939
Eric Nantel 213.1 940 The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.
Eric Nantel 172.1 941
Eric Nantel 213.1 942 0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;
Eric Nantel 172.1 943
Eric Nantel 213.1 944 Query LED Color (**QLED**)
Eric Nantel 172.1 945
Eric Nantel 213.1 946 Ex: #5QLED<cr> might return *5QLED5<cr>
RB1 140.1 947
Eric Nantel 213.1 948 This simple query returns the indicated servo's LED color.
Coleman Benson 143.1 949
Eric Nantel 213.1 950 Configure LED Color (**CLED**)
951
952 Ex: #5CLED3<cr>
953
954 Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.
955 )))
956
957 |(% colspan="2" %)(((
958 ====== Configure LED Blinking (**CLB**) ======
959 )))
960 |(% style="width:30px" %) |(((
961
962
963 This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:
964 )))
965
966 |(% style="width:30px" %) |(% style="width:200px" %)**Blink While:**|(% style="width:50px" %)**#**|
967 | |No blinking|0|
968 | |Limp|1|
969 | |Holding|2|
970 | |Accelerating|4|
971 | |Decelerating|8|
972 | |Free|16|
973 | |Travelling|32|
974 | |Always blink|63|
975
976 |(% style="width:30px" %) |(((
977 To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:
978
979 Ex: #5CLB0 to turn off all blinking (LED always solid)
980
981 Ex: #5CLB1 only blink when limp (1)
982
983 Ex: #5CLB2 only blink when holding (2)
984
985 Ex: #5CLB12 only blink when accel or decel (accel 4 + decel 8 = 12)
986
987 Ex: #5CLB48 only blink when free or travel (free 16 + travel 32 = 48)
988
989 Ex: #5CLB63 blink in all status (1 + 2 + 4 + 8 + 16 + 32)
990
991 RESETTING the servo is needed.
992 )))
993
994 |(% colspan="2" style="width:30px" %)(((
995 ====== RGB LED Patterns ======
996 )))
997 |(% style="width:30px" %) |(((
998 The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>url:https://wiki.lynxmotion.com/info/wiki/lynxmotion/view/ses-v2/lynxmotion-smart-servo/lss-button-menu/]]
999 )))
1000 |(% style="width:30px" %) |[[image:https://wiki.lynxmotion.com/info/wiki/lynxmotion/download/ses-v2/lynxmotion-smart-servo/lss-communication-protocol/WebHome/LSS%20-%20LED%20Patterns.png||alt="LSS - LED Patterns.png"]]
Copyright RobotShop 2018