Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (3 modified, 0 added, 0 removed)
-
Attachments (0 modified, 0 added, 1 removed)
-
Objects (0 modified, 3 added, 0 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 - lynxmotion-smart-servo.WebHome1 +Lynxmotion Smart Servo (LSS).WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -xwiki:XWiki. RB11 +xwiki:XWiki.CBenson - Content
-
... ... @@ -1,9 +1,9 @@ 1 1 (% class="wikigeneratedid" id="HTableofContents" %) 2 -** Page Contents**2 +**Table of Contents** 3 3 4 4 {{toc depth="3"/}} 5 5 6 -= Serial Protocol = 6 += Serial Protocol Concept = 7 7 8 8 The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 RC servo controller and almost everything one might expect to be able to configure for a smart servo motor is available. 9 9 ... ... @@ -13,10 +13,6 @@ 13 13 14 14 A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 15 15 16 -Note #1: For a given session, the action related to a specific commands overrides the stored value in EEPROM. 17 -Note #2: During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s). 18 -You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended. 19 - 20 20 == Action Commands == 21 21 22 22 Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format: ... ... @@ -49,6 +49,20 @@ 49 49 This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds. 50 50 ))) 51 51 48 +== Configuration Commands == 49 + 50 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not (see each command for details). Not all action commands have a corresponding configuration and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 51 + 52 +1. Start with a number sign # (U+0023) 53 +1. Servo ID number as an integer 54 +1. Configuration command (two to three letters, no spaces, capital or lower case) 55 +1. Configuration value in the correct units with no decimal 56 +1. End with a control / carriage return '<cr>' 57 + 58 +Ex: #5CO-50<cr> 59 + 60 +This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below. 61 + 52 52 == Query Commands == 53 53 54 54 Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format: ... ... @@ -79,20 +79,6 @@ 79 79 80 80 This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees). 81 81 82 -== Configuration Commands == 83 - 84 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 85 - 86 -1. Start with a number sign # (U+0023) 87 -1. Servo ID number as an integer 88 -1. Configuration command (two to three letters, no spaces, capital or lower case) 89 -1. Configuration value in the correct units with no decimal 90 -1. End with a control / carriage return '<cr>' 91 - 92 -Ex: #5CO-50<cr> 93 - 94 -This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below. 95 - 96 96 **Session vs Configuration Query** 97 97 98 98 By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: ... ... @@ -130,76 +130,71 @@ 130 130 131 131 = Command List = 132 132 133 -== Regular == 134 - 135 -|= #|=Description|=Mod|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 136 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| | L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 137 -| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| | H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 138 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]|T| | | | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}. Time is estimated and can change based on load|(% style="text-align:center; width:113px" %) 139 -| 4|[[**S**peed>>||anchor="H4.Speed28S29modifier"]]|S| |QS| | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 140 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| | MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 141 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| | O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 129 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 130 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 131 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 132 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds|(% style="width:510px" %) Modifier only for {P, D, MD}|(% style="text-align:center; width:113px" %) 133 +| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds per second|(% style="width:510px" %) Modifier only {P}|(% style="text-align:center; width:113px" %) 134 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 135 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 142 142 0 143 143 ))) 144 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| |AR| QAR| CAR|✓|✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((138 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 145 145 1800 146 146 ))) 147 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| |P| QP| | ||✓|microseconds|(% style="width:510px" %)(((141 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|(% style="width:510px" %)((( 148 148 Inherited from SSC-32 serial protocol 149 149 )))|(% style="text-align:center; width:113px" %) 150 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| |D| QD/ QDT| | ||✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)151 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| |WD| QWD| | ||✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)152 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| |WR| QWR| | ||✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %)153 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12. MaxSpeedinDegrees28SD29"]]||SD| QSD|CSD|✓|✓| ✓|degrees per second(°/s)|(% style="width:510px" %)(((144 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 145 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 146 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 147 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD|CSD| ✓| ✓|tenths of degrees per second |(% style="width:510px" %)((( 154 154 QSD: Add modifier "2" for instantaneous speed. 155 155 156 156 SD overwrites SR / CSD overwrites CSR and vice-versa. 157 157 )))|(% style="text-align:center; width:113px" %)Max per servo 158 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13. MaxSpeedinRPM28SR29"]]||SR| QSR|CSR|✓|✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)(((152 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR|CSR| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 159 159 QSR: Add modifier "2" for instantaneous speed 160 160 161 161 SR overwrites SD / CSR overwrites CSD and vice-versa. 162 162 )))|(% style="text-align:center; width:113px" %)Max per servo 163 -| 1 4|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]||LED| QLED| CLED|✓|✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)0 (OFF)164 -| 1 5|[[**G**yredirection (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| |G|QG| CG|✓|✓| ✓|none |(% style="width:510px" %)Gyre/rotationdirection:1= CW (clockwise)-1= CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1165 -| 1 6|[[**ID**#>>||anchor="H16.IdentificationNumber28ID29"]]| ||QID| CID| ||✓|none (integerfrom 0 to 250)|(% style="width:510px" %)Note:ID 254 is a "broadcast" which all servos respond to.|(% style="text-align:center; width:113px" %)0166 -| 1 7|[[**B**audrate>>||anchor="H17.BaudRate"]]| ||QB| CB| ||✓|none(integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)115200167 -| 18|//{comingsoon}//| | | | | | || |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)(((168 - 157 +| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 0 to 8)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)7 158 +| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to|(% style="text-align:center; width:113px" %)0 159 +| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)9600 160 +| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 161 +| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none |(% style="width:510px" %)CFP overwrites CFD and vice-versa|(% style="text-align:center; width:113px" %)((( 162 +Limp 169 169 ))) 170 -| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstA0Position28Degrees29"]]| | | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)No Value 171 -| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)|(% style="text-align:center; width:113px" %) 172 -| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 173 -| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 174 -| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 175 -| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 176 -| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 177 -| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 178 -| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | | |CRC|✓| | ✓|none|(% style="width:510px" %)((( 179 -Change to RC mode 1 (position) or 2 (wheel). 164 +| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none |(% style="width:510px" %)CFD overwrites CFP and vice-versa|(% style="text-align:center; width:113px" %)Limp 165 +| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 166 +| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)|(% style="width:510px" %) Returns the type of servo (ST, HS, HT)|(% style="text-align:center; width:113px" %) 167 +| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 168 +| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 169 +| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 170 +| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 171 +| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 172 +| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 173 +| 30a|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Position| | |CRC1| | ✓|none|(% style="width:510px" %)((( 174 +Puts the servo into RC mode. To revert to smart mode, use the button menu. 180 180 )))|(% style="text-align:center; width:113px" %)Serial 181 -| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 182 -| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 183 -| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 176 +| 30b|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]] - Wheel| | |CRC2| | ✓| |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 177 +| 31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 178 +| 32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 179 +| 33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 184 184 185 185 == Advanced == 186 186 187 -|= #|= (% style="width: 182px;" %)Description|=(%style="width: 56px;" %)Mod|=(% style="width: 70px;" %)Action|=(%style="width: 71px;" %)Query|=(%style="width: 77px;" %)Config|=(%style="width:77px;" %)Session|=(%style="width: 56px;" %) RC|=(% style="width:151px;" %)Serial|= Units|=(% style="width:510px;" %)Notes188 -| A1|(% style="width:182px" %)[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|(%style="width:56px" %) |(% style="width:70px" %)AS|(% style="width:71px" %)QAS|(% style="width:77px" %)CAS|(%style="width:77px" %)✓|(%style="width:56px" %)✓|(% style="width:151px" %) ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4189 -| A2|(% style="width:182px" %)[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|(% style="width:56px" %) |(% style="width:70px" %)AH|(% style="width:71px" %)QAH|(% style="width:77px" %)CAH|(%style="width:77px" %)✓|(%style="width:56px" %) |(% style="width:151px" %)✓|none (integer -10 to +10)|(% style="width:510px" %)EffectisdifferentbetweenserialandRC190 -| A3|(% style="width:182px" %)[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|(% style="width:56px" %) |(% style="width:70px" %)AA|(% style="width:71px" %)QAA|(% style="width:77px" %)CAA|(%style="width:77px" %)✓|(%style="width:56px" %) |(% style="width:151px" %)✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared191 -| A4|(% style="width:182px" %)[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|(% style="width:56px" %) |(% style="width:70px" %)AD|(% style="width:71px" %)QAD|(% style="width:77px" %)CAD|(%style="width:77px" %)✓|(%style="width:56px" %) |(% style="width:151px" %)✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared192 -| A5|(% style="width:182px" %)[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|(% style="width:56px" %) |(% style="width:70px" %)EM|(% style="width:71px" %)QEM|(%style="width:77px" %)|(%style="width:77px" %)|(%style="width:56px" %) |(% style="width:151px" %)✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable193 -| A6|(% style="width:182px" %)[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]|(%style="width:56px"%)|(%style="width:70px"%)|(%style="width:71px"%)QLB|(% style="width:77px" %)CLB|(% style="width:77px"%)|(% style="width:56px"%) ✓|(% style="width:151px"%) ✓|none(integerfrom0 to 63)|(% style="width:510px" %)(((194 - 0=Noblinking,63=Always blink;183 +|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 184 +| 1|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS|QAS|CAS| ✓| ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4|(% style="text-align:center; width:113px" %)0 185 +| 2|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none (integer -10 to +10)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)1 186 +| 3|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 187 +| 4|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared|(% style="text-align:center; width:113px" %) 188 +| 5|[[**E**nable **M**otion Control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable|(% style="text-align:center; width:113px" %) 189 +| 6|[[**C**onfigure **L**ED **B**linking>>||anchor="H16b.ConfigureLEDBlinking28CLB29"]]| | | CLB| ✓| |none (integer from 0 to 63)|(% style="width:510px" %)0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel;|(% style="text-align:center; width:113px" %) 190 +| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 195 195 196 -Blink while: 1=Limp; 2=Holding; 4=Accel; 8=Decel; 16=Free 32=Travel; 197 -))) 198 -| A7|(% style="width:182px" %)[[**C**urrent **H**alt & **H**old>>||anchor="HA7.CurrentHalt26Hold28CH29"]]|(% style="width:56px" %)CH|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR 199 -| A8|(% style="width:182px" %)[[**C**urrent **L**imp>>||anchor="HA8.CurrentLimp28CL29"]]|(% style="width:56px" %)CL|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR 192 +== Details == 200 200 201 -== Details - Basic == 202 - 203 203 ====== __1. Limp (**L**)__ ====== 204 204 205 205 Example: #5L<cr> ... ... @@ -210,28 +210,22 @@ 210 210 211 211 Example: #5H<cr> 212 212 213 -This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angularposition.204 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that position. 214 214 215 -====== __3. Timed move (**T**) modifier__ ======206 +====== __3. Timed move (**T**)__ ====== 216 216 217 217 Example: #5P1500T2500<cr> 218 218 219 -Timed move can be used only as a modifier for a position (P , D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensurethat the move is performed entirely at the desired velocity, though differences in torquemay cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.210 +Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 220 220 221 221 Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 222 222 223 -====== __4. Speed (**S**) modifier__ ======214 +====== __4. Speed (**S**)__ ====== 224 224 225 225 Example: #5P1500S750<cr> 226 226 227 227 This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 228 228 229 -Query Speed (**QS**) 230 - 231 -Example: #5QS<cr> might return *5QS300<cr> 232 - 233 -This command queries the current speed in microseconds per second. 234 - 235 235 ====== __5. (Relative) Move in Degrees (**MD**)__ ====== 236 236 237 237 Example: #5MD123<cr> ... ... @@ -242,11 +242,11 @@ 242 242 243 243 Example: #5O2400<cr> 244 244 245 -This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session.As withall action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).230 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position. The setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. Note that for a given session, the O command overrides the CO command. In the first image, the origin at factory offset '0' (centered). 246 246 247 247 [[image:LSS-servo-default.jpg]] 248 248 249 -In the second image, the origin, a ndthecorrespondingangular range (explained below) have been shifted by+240.0 degrees:234 +In the second image, the origina, as well as the angular range (explained below) have been shifted by 240.0 degrees: 250 250 251 251 [[image:LSS-servo-origin.jpg]] 252 252 ... ... @@ -254,33 +254,33 @@ 254 254 255 255 Example: #5QO<cr> Returns: *5QO-13 256 256 257 -This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.242 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. 258 258 259 259 Configure Origin Offset (**CO**) 260 260 261 261 Example: #5CO-24<cr> 262 262 263 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero.248 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. 264 264 265 265 ====== __7. Angular Range (**AR**)__ ====== 266 266 267 267 Example: #5AR1800<cr> 268 268 269 -This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image belowshows a standard-180.0 to +180.0 range,with no offset:254 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). In the first image, 270 270 271 271 [[image:LSS-servo-default.jpg]] 272 272 273 - Below, the angular rangeis restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.258 +Here, the angular range has been restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 274 274 275 275 [[image:LSS-servo-ar.jpg]] 276 276 277 - Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action commandre used to move both the center and limit the angular range:262 +The angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) an be used to move both the center and limit the angular range: 278 278 279 279 [[image:LSS-servo-ar-o-1.jpg]] 280 280 281 281 Query Angular Range (**QAR**) 282 282 283 -Example: #5QAR<cr> might return *5AR 1800, indicating the total angular range is 180.0 degrees.268 +Example: #5QAR<cr> might return *5AR2756 284 284 285 285 Configure Angular Range (**CAR**) 286 286 ... ... @@ -290,7 +290,7 @@ 290 290 291 291 Example: #5P2334<cr> 292 292 293 -The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.278 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected to end points. 294 294 295 295 Query Position in Pulse (**QP**) 296 296 ... ... @@ -301,7 +301,7 @@ 301 301 302 302 ====== __9. Position in Degrees (**D**)__ ====== 303 303 304 -Example: #5D1456<cr> 289 +Example: #5PD1456<cr> 305 305 306 306 This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction. 307 307 ... ... @@ -313,13 +313,6 @@ 313 313 314 314 This means the servo is located at 13.2 degrees. 315 315 316 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 317 -Query Target Position in Degrees (**QDT**) 318 - 319 -Ex: #5QDT<cr> might return *5QDT6783<cr> 320 - 321 -The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 322 - 323 323 ====== __10. Wheel Mode in Degrees (**WD**)__ ====== 324 324 325 325 Ex: #5WD900<cr> ... ... @@ -344,22 +344,22 @@ 344 344 345 345 The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 346 346 347 -====== __12. MaxSpeed in Degrees (**SD**)__ ======325 +====== __12. Speed in Degrees (**SD**)__ ====== 348 348 349 349 Ex: #5SD1800<cr> 350 350 351 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage.TheSDaction command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD)received is what the servo uses for that session.329 +This command sets the servo's maximum speed for action commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session. 352 352 353 353 Query Speed in Degrees (**QSD**) 354 354 355 355 Ex: #5QSD<cr> might return *5QSD1800<cr> 356 356 357 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a nSD/SR command is processed.335 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed. 358 358 If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 359 359 360 360 |**Command sent**|**Returned value (1/10 °)** 361 361 |ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 362 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM(set by CSD/CSR)340 +|ex: #5QSD1<cr>|Configured maximum speed (set by CSD/CSR) 363 363 |ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 364 364 |ex: #5QSD3<cr>|Target travel speed 365 365 ... ... @@ -369,22 +369,22 @@ 369 369 370 370 Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 371 371 372 -====== __13. MaxSpeed in RPM (**SR**)__ ======350 +====== __13. Speed in RPM (**SR**)__ ====== 373 373 374 374 Ex: #5SD45<cr> 375 375 376 -This command sets the servo's maximum speed for motionreceived is what the servo uses for that session.354 +This command sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) is what the servo uses for that session. 377 377 378 378 Query Speed in Degrees (**QSR**) 379 379 380 380 Ex: #5QSR<cr> might return *5QSR45<cr> 381 381 382 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a nSD/SR command is processed.360 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed. 383 383 If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 384 384 385 385 |**Command sent**|**Returned value (1/10 °)** 386 386 |ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 387 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM(set by CSD/CSR)365 +|ex: #5QSR1<cr>|Configured maximum speed (set by CSD/CSR) 388 388 |ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 389 389 |ex: #5QSR3<cr>|Target travel speed 390 390 ... ... @@ -392,344 +392,288 @@ 392 392 393 393 Ex: #5CSR45<cr> 394 394 395 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.373 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 396 396 397 -====== __14. LED Color (**LED**)__ ======375 +====== __14. Angular Stiffness (**AS**)__ ====== 398 398 399 - Ex:#5LED3<cr>377 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. 400 400 401 - Thisactionsets theservo's RGB LED color for that session.The LED can beusedforaesthetics, or (based onser code) to provide visualstatusupdates. Usingtiming can create patterns.379 +A positive value of "angular stiffness": 402 402 403 -0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White; 381 +* The more torque will be applied to try to keep the desired position against external input / changes 382 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 404 404 405 - QueryLEDColor(**QLED**)384 +A negative value on the other hand: 406 406 407 -Ex: #5QLED<cr> might return *5QLED5<cr> 386 +* Causes a slower acceleration to the travel speed, and a slower deceleration 387 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back 408 408 409 -This simplequery returns theindicatedservo'sLEDcolor.389 +The default value is zero and the effect becomes extreme by -4, +4. There are no units, only integers between -4 to 4. Greater values produce increasingly erratic behavior. 410 410 411 - Configure LEDColor(**CLED**)391 +Ex: #5AS-2<cr> 412 412 413 - ConfiguringtheLED colorviatheCLEDcommandsets the startupcolor oftheservo afteraresetrpowercycle.Notethatitalsochanges the session'sLEDcolor immediatelyaswell.393 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 414 414 415 - ======__15. Gyre Rotation Direction (**G**)__ ======395 +Ex: #5QAS<cr> 416 416 417 - "Gyre" is defined as a circular courseormotion. Theeffectof changing thegyre direction isas if youwereto usea mirror imageof a circle. CW = 1; CCW = -1. The factory default isclockwise(CW).397 +Queries the value being used. 418 418 419 -Ex: #5 G-1<cr>399 +Ex: #5CAS<cr> 420 420 421 - This command will cause servo #5's positions to beinverted, effectively causingtheservo to rotate in the opposite direction given the same command.For example ina 2WD robot, servos are often physically installed back to back, thereforesetting one ofthe servos to anegative gyration, thesame wheel command (ex WR30) to bothservos will cause the robottomoveforward or backward rather than rotate.401 +Writes the desired angular stiffness value to memory. 422 422 423 - QueryGyreDirection (**QG**)403 +====== __15. Angular Hold Stiffness (**AH**)__ ====== 424 424 425 - Ex:#5QG<cr>might return*5QG-1<cr>405 +The angular holding stiffness determines the servo's ability to hold a desired position under load. Values can be from -10 to 10, with the default being 0. Note that negative values mean the final position can be easily deflected. 426 426 427 - Thevalue returned above means the servo is in acounter-clockwise gyration.407 +Ex: #5AH3<cr> 428 428 429 - ConfigureGyre(**CG**)409 +This sets the holding stiffness for servo #5 to 3 for that session. 430 430 431 - Ex:#5CG-1<cr>411 +Query Angular Hold Stiffness (**QAH**) 432 432 433 - Thischangesthegyredirectionas described above and also writes to EEPROM.413 +Ex: #5QAH<cr> might return *5QAH3<cr> 434 434 435 - ======__16. IdentificationNumber (**ID**)__ ======415 +This returns the servo's angular holding stiffness value. 436 436 437 - A servo's identification numbercannot beset "onthe fly" and must be configured via the CID command described below. The factorydefault ID number for allservos is 0.Since smartservos areintended to be daisy chained, in order to respond differently from oneanother, the user mustset different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands(assuming same baud rate).417 +Configure Angular Hold Stiffness (**CAH**) 438 438 439 - QueryIdentification (**QID**)419 +Ex: #5CAH2<cr> 440 440 441 - EX:#254QID<cr> mightreturn*QID5<cr>421 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM 442 442 443 - Whenusing the query ID command, it isbestto only have one servoconnected and thus receive only oneeply. This is useful when youare notsure of the servo's ID, but don't want to changeit. Using the broadcast command(ID 254)with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.423 +====== __15b: Angular Acceleration (**AA**)__ ====== 444 444 445 - ConfigureID(**CID**)425 +{More details to come} 446 446 447 - Ex:#4CID5<cr>427 +====== __15c: Angular Deceleration (**AD**)__ ====== 448 448 449 - Setting a servo's ID in EEPROMis done via the CID command. All servos connectedto the same serial bus will be assignedthat ID. In most situationseach servo mustbe setaunique ID, which means each servo must be connected individually to theserialbus and receive a unique CID number. Itis best todo this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternativemethod you like. The servo must be RESET or power cycled in order for the new ID to take effect.429 +{More details to come} 450 450 451 -====== __1 7. BaudRate__ ======431 +====== __15d: Motion Control (**EM**)__ ====== 452 452 453 - A servo's baudratecannot be set "on the fly" andmust beconfigured viathe CB command described below. The factory default baud rate for allservosis 115200. Since smartservosare intended to be daisychained, inorder to respond to the sameserial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200. The baud rates are currently restricted to those above.433 +{More details to come} 454 454 455 - QueryBaudRate(**QB**)435 +====== __16. RGB LED (**LED**)__ ====== 456 456 457 -Ex: #5 QB<cr>might return *5QB115200<cr>437 +Ex: #5LED3<cr> 458 458 459 - Sincethecommandtoquerythebaud ratemustbedoneattheservo'sexisting baud rate,itcansimplybe usedto confirmtheCB configurationcommand wascorrectlyreceivedbeforetheservoispowercycledandthe newbaudratetakeseffect.439 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. 460 460 461 - ConfigureBaudRate(**CB**)441 +0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6= 7=MAGENTA, 8=WHITE 462 462 463 - Important Note: the servo's current sessionretainsthegiven baud rate and the new baud rate willonly take effect when the servois powercycled / RESET.443 +Query LED Color (**QLED**) 464 464 465 -Ex: #5 CB9600<cr>445 +Ex: #5QLED<cr> might return *5QLED5<cr> 466 466 467 - Sending thiscommand will changethebaudrateassociatedwithservoID5 to 9600 bits per second.447 +This simple query returns the indicated servo's LED color. 468 468 469 - ====== __18. {//Comingsoon//}__======449 +Configure LED Color (**CLED**) 470 470 471 -Command co ming soon....451 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 472 472 473 -====== __1 9.First Position (Degrees)__ ======453 +====== __16b. Configure LED Blinking (**CLB**)__ ====== 474 474 475 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. 455 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). 456 +You can turn on or off blinking for various LSS status. Here is the list and their associated value: 0=No blinking, ; 63=Always blink; Blink while: 1=Limp; 2=Holding 4=Accel; 8=Decel; 16=Free 32=Travel; 476 476 477 - QueryFirstPosition inDegrees(**QFD**)458 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 478 478 479 -Ex: #5QFD<cr> might return *5QFD64<cr> 460 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 461 +Ex: #5CLB1<cr> only blink when limp 462 +Ex: #5CLB2<cr> only blink when holding 463 +Ex: #5CLB12<cr> only blink when accel or decel 464 +Ex: #5CLB48<cr> only blink when free or travel 465 +Ex: #5CLB63<cr> blink in all status 480 480 481 - Thereplyaboveindicates that servo with ID 5 has afirstpositionpulse of 1550microseconds. If thereis no first position value stored, the reply will be DIS467 +====== __17. Identification Number__ ====== 482 482 483 - ConfigureFirstPosition inDegrees(**CFD**)469 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands. 484 484 485 - Ex:#5CD64<cr>471 +Query Identification (**QID**) 486 486 487 - This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex.#5CFD<cr>)results in the servo remaininglimp upon power up. In ordertoremovethe first position,send no value, ex: #5CFD<cr>473 +EX: #254QID<cr> might return *QID5<cr> 488 488 489 - ======__20.QueryModelString (**QMS**)__======475 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply using the broadcast command (ID 254). Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 490 490 491 - Ex: #5QMS<cr> might return*5QMSLSS-HS1<cr>477 +Configure ID (**CID**) 492 492 493 - Thisreply means the servo model is LSS-HS1, meaning a high speed servo, first revision.479 +Ex: #4CID5<cr> 494 494 495 - ======__21.QuerySerialNumber(**QN**)__======481 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. 496 496 497 - Ex:#5QN<cr>mightreturn*5QN12345678<cr>483 +====== __18. Baud Rate__ ====== 498 498 499 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user. 485 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 486 +\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. 500 500 501 - ====== __22.QueryFirmware (**QF**)__ ======488 +Query Baud Rate (**QB**) 502 502 503 -Ex: #5Q F<cr> might return *5QF411<cr>490 +Ex: #5QB<cr> might return *5QB9600<cr> 504 504 505 - The numberrepresentsthe firmwareversion,in thisexamplebeing 411.492 +Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled. 506 506 507 - ====== __23. QueryStatus(**Q**)__ ======494 +Configure Baud Rate (**CB**) 508 508 509 - The statusquerydescribed whatthe servois currentlydoing.The query returnsanintegerwhich mustbelooked up intable below.UsetheCLBadvancedcommandtohavetheLED blinkfor certain statuses.496 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only be in place when the servo is power cycled. 510 510 511 -Ex: #5 Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.498 +Ex: #5CB9600<cr> 512 512 513 -|***Value returned (Q)**|**Status**|**Detailed description** 514 -|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 515 -|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 516 -|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely 517 -|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 518 -|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 519 -|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 520 -|ex: *5Q6<cr>|6: Holding|Keeping current position 521 -|ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 522 -|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 523 -|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 524 -|ex: *5Q10<cr>|10: Safe Mode|((( 525 -A safety limit has been exceeded (temperature, peak current or extended high current draw). 500 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 526 526 527 -Send a Q1 command to know which limit has been reached (described below). 528 -))) 502 +====== __19. Gyre Rotation Direction__ ====== 529 529 530 -(% class="wikigeneratedid" %) 531 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 504 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 532 532 533 -|***Value returned (Q1)**|**Status**|**Detailed description** 534 -|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 535 -|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 536 -|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 537 -|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 506 +{images showing before and after with AR and Origin offset} 538 538 539 - ====== __24.QueryVoltage (**QV**)__ ======508 +Query Gyre Direction (**QG**) 540 540 541 -Ex: #5Q V<cr> might return *5QV11200<cr>510 +Ex: #5QG<cr> might return *5QG-1<cr> 542 542 543 -The numberreturnedhasonedecimal,sointhecaseabove, servowith ID 5 hasaninputvoltageof 11.2V (perhaps athreecell LiPobattery).512 +The value returned above means the servo is in a counter-clockwise gyration. 544 544 545 - ====== __25. Query Temperature (**QT**)__ ======514 +Configure Gyre (**CG**) 546 546 547 -Ex: #5 QT<cr>might return *5QT564<cr>516 +Ex: #5CG-1<cr> 548 548 549 -Th e units are intenths of degreesCelcius, so inthe exampleabove,the servo'sinternaltemperature is56.4degreesC. ToconvertfromdegreesCelciustodegreesFarenheit, multiply by 1.8 and add 32. Therefore56.4C = 133.52F.518 +This changes the gyre direction as described above and also writes to EEPROM. 550 550 551 -====== __2 6.QueryCurrent (**QC**)__ ======520 +====== __20. First / Initial Position (pulse)__ ====== 552 552 553 - Ex:#5QC<cr>might return*5QC140<cr>522 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 554 554 555 - Theunits are in milliamps,so inthe example above, theservo isconsuming 140mA, or 0.14A.524 +Query First Position in Pulses (**QFP**) 556 556 557 - ======__27.ConfigureRC Mode (**CRC**)__======526 +Ex: #5QFP<cr> might return *5QFP1550<cr> 558 558 559 -Th iscommandputs theservo intoRCmode(positionor continuous), whereit willonlyrespondtoRC pulses.Notethatbecausethisis thecase,theservo willno longeracceptserial commands.Theservocan be placedbackintosmart modeby using thebutton menu.528 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If no first position has been set, servo will respond with DIS ("disabled"). 560 560 561 -|**Command sent**|**Note** 562 -|ex: #5CRC1<cr>|Change to RC position mode. 563 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 564 -|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode. 530 +Configure First Position in Pulses (**CFP**) 565 565 566 -E X: #5CRC2<cr>532 +Ex: #5CP1550<cr> 567 567 568 -This command would place the servoin RCwheelmodeafteraRESETor powercycle.Notethataftera RESETorpowercycle,theservo will beinRC modeandwillnotreplyto serialcommands.Usingthecommand#5CRC<cr> or #5CRC3<cr>whichrequeststhatthe servo remainserialdestill requiresaRESET command.534 +This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 569 569 570 - Importantnote:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]]isrequired. Should the button be inaccessible (or broken) whentheservois inRC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuringacommon GND and wait for 30 seconds. NormalRCPWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode changeand changeto serial mode. This has been implemented asa fail safe.536 +====== __21. First / Initial Position (Degrees)__ ====== 571 571 572 - ======__28.**RESET**__======538 +In certain cases, a user might want to have the servo move to a specific angle upon power up. We refer to this as "first position". The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only. 573 573 574 - Ex:#5RESET<cr>or#5RS<cr>540 +Query First Position in Degrees (**QFD**) 575 575 576 -This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 577 -Note: after a RESET command is received the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details. 542 +Ex: #5QFD<cr> might return *5QFD64<cr> 578 578 579 - ======__29.**DEFAULT** &CONFIRM__======544 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. 580 580 581 - Ex:#5DEFAULT<cr>546 +Configure First Position in Degrees (**CFD**) 582 582 583 - This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exittheDEFAULT function.548 +Ex: #5CD64<cr> 584 584 585 - EX: #5DEFAULT<cr>followedby#5CONFIRM<cr>550 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up. 586 586 587 - Sinceitit not common to havetorestoreall configurations,a confirmationcommandisneededaftera firmwarecommand is sent. Should any command other than CONFIRM be received by theservoafterthe firmware command has been received, it will exit the command.552 +====== __22. Query Target Position in Degrees (**QDT**)__ ====== 588 588 589 - Notethat afterthe CONFIRM commandis sent, the servo will automaticallyperforma RESET.554 +Ex: #5QDT<cr> might return *5QDT6783<cr> 590 590 591 - ======__30. **UPDATE** & CONFIRM__ ======556 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 592 592 593 - Ex:#5UPDATE<cr>558 +====== __23. Query Model String (**QMS**)__ ====== 594 594 595 - Thiscommandsets inmotion the equivalent of a longbutton press whentheservo is not powered in orderto enter firmwareupdate mode. This is useful should the button be brokenor inaccessible. The servo then waits for the CONFIRMommand. Any othercommand received will cause the servo to exit the UPDATE function.560 +Ex: #5QMS<cr> might return *5QMSLSS-HS1cr> 596 596 597 - EX: #5UPDATE<cr>followedby#5CONFIRM<cr>562 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 598 598 599 - Sinceit it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent.Should any command otherthan CONFIRM be received bythe servoafter the firmware commandhas been received, it willleavethe firmware action.564 +====== __23b. Query Model (**QM**)__ ====== 600 600 601 - Notethat after the CONFIRMommandis sent,theservowill automatically perform a RESET.566 +Ex: #5QM<cr> might return *5QM68702699520cr> 602 602 603 - ==Details-Advanced==568 +This reply means the servo model is 0xFFF000000 or 100, meaning a high speed servo, first revision. 604 604 605 - Themotioncontrollerused in serialmodeis not the same as the motion controller usein RC mode. RC mode is intended toadd functionalityto what would be considered "normal" RCbehaviorbasedon PWM input.570 +====== __24. Query Serial Number (**QN**)__ ====== 606 606 607 - ======__A1.AngularStiffness(**AS**)__======572 +Ex: #5QN<cr> might return *5QN~_~_<cr> 608 608 609 -The servo'srigidity / angularstiffnesscanbethought of as(thoughnotidenticalto) a damped springinwhichthe value affectsthestiffnessandembodies how much,and how quicklytheservotried keep the requested position againstchanges.There are no units.574 +The number in the response is the servo's serial number which is set and cannot be changed. 610 610 611 - Apositive valueof "angularstiffness":576 +====== __25. Query Firmware (**QF**)__ ====== 612 612 613 -* The more torque will be applied to try to keep the desired position against external input / changes 614 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 578 +Ex: #5QF<cr> might return *5QF11<cr> 615 615 616 - Anegativevalueon the otherhand:580 +The integer in the reply represents the firmware version with one decimal, in this example being 1.1 617 617 618 -* Causes a slower acceleration to the travel speed, and a slower deceleration 619 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back 582 +====== __26. Query Status (**Q**)__ ====== 620 620 621 - Thedefault value forstiffness dependingon thefirmwaremay be 0 or 1. Greater values produce increasinglyerraticbehavior andthe effectbecomesextremebelow -4andabove +4. Maximumvaluesare -10to+10.584 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 622 622 623 -Ex: #5AS-2<cr> 586 +|*Value returned|**Status**|**Detailed description** 587 +|ex: *5Q0<cr>|Unknown|LSS is unsure 588 +|ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely 589 +|ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 590 +|ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed 591 +|ex: *5Q4<cr>|Traveling|Moving at a stable speed 592 +|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position. 593 +|ex: *5Q6<cr>|Holding|Keeping current position 594 +|ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque 595 +|ex: *5Q8<cr>|Outside limits|{More details coming soon} 596 +|ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 597 +|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 624 624 625 - Thisreduces the angular stiffness to -2for that session, allowing the servo to deviate more around thedesiredposition. This can be beneficialin many situations such as impacts (leggedrobots)where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.599 +====== __27. Query Voltage (**QV**)__ ====== 626 626 627 -Ex: #5Q AS<cr>601 +Ex: #5QV<cr> might return *5QV11200<cr> 628 628 629 - Queries thevalue beingused.603 +The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 630 630 631 - Ex:#5CAS<cr>605 +====== __28. Query Temperature (**QT**)__ ====== 632 632 633 - Writesthe desired angularstiffness valueto memory.607 +Ex: #5QT<cr> might return *5QT564<cr> 634 634 635 - ======__A2.AngularHoldingStiffness(**AH**)__======609 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 636 636 637 - Theangular holding stiffness determines the servo's ability to hold a desired position under load.The default valueforstiffness depending on the firmware maybe 0 or 1. Greater values produce increasingly erratic behavior andtheeffect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when considering altering a stiffness value, the end effect depends on the mode being tested.611 +====== __29. Query Current (**QC**)__ ====== 638 638 639 -Ex: #5 AH3<cr>613 +Ex: #5QC<cr> might return *5QC140<cr> 640 640 641 -Th is setstheholdingstiffnessforservo#5to3forthatsession.615 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 642 642 643 - QueryAngularHoldStiffness(**QAH**)617 +====== __30. RC Mode (**CRC**)__ ====== 644 644 645 - Ex:#5QAH<cr>might return*5QAH3<cr>619 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 646 646 647 -This returns the servo's angular holding stiffness value. 621 +|**Command sent**|**Note** 622 +|ex: #5CRC<cr>|Stay in smart mode. 623 +|ex: #5CRC1<cr>|Change to RC position mode. 624 +|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 625 +|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode. 648 648 649 - ConfigureAngular Hold Stiffness (**CAH**)627 +EX: #5CRC<cr> 650 650 651 -E x:#5CAH2<cr>629 +====== __31. RESET__ ====== 652 652 653 - Thiswrites the angular holding stiffness of servo#5to 2 toEEPROM. Note that whenconsideringalteringa stiffness value, the end effect depends on the mode being tested.631 +Ex: #5RESET<cr> or #5RS<cr> 654 654 655 - ======__A3: AngularAcceleration(**AA**)__ ======633 +This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 656 656 657 - Thedefault value for angular acceleration is 100, which is the same as the maximum deceleration. Acceptsvalues of between 1 and 100.Incrementsof 10 degrees per second squared.635 +====== __32. DEFAULT & CONFIRM__ ====== 658 658 659 -Ex: #5A A30<cr>637 +Ex: #5DEFAULT<cr> 660 660 661 - QueryAngular Acceleration(**QAD**)639 +This command sets in motion the reset all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 662 662 663 -E x: #5QA<cr>might return*5QA30<cr>641 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 664 664 665 - ConfigureAngularAcceleration(**CAD**)643 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 666 666 667 - Ex:#5CA30<cr>645 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 668 668 669 -====== __ A4:AngularDeceleration (**AD**)__ ======647 +====== __33. UPDATE & CONFIRM__ ====== 670 670 671 - The default value for angular deceleration is 100, which is the same as the maximumacceleration. Values between 1 and 15have the greatest impact.649 +Ex: #5UPDATE<cr> 672 672 673 - Ex:#5AD8<cr>651 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. 674 674 675 - QueryAngularDeceleration(**QAD**)653 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr> 676 676 677 - Ex:#5QD<cr>might return*5QD8<cr>655 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 678 678 679 -Configure Angular Deceleration (**CAD**) 680 - 681 -Ex: #5CD8<cr> 682 - 683 -====== __A5: Motion Control (**EM**)__ ====== 684 - 685 -The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller. 686 - 687 -Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used. 688 - 689 -====== __A6. Configure LED Blinking (**CLB**)__ ====== 690 - 691 -This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value: 692 - 693 -(% style="width:195px" %) 694 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 695 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 696 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1 697 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2 698 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 699 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 700 -|(% style="width:134px" %)Free|(% style="width:58px" %)16 701 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 702 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63 703 - 704 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 705 - 706 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 707 -Ex: #5CLB1<cr> only blink when limp (1) 708 -Ex: #5CLB2<cr> only blink when holding (2) 709 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12) 710 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48) 711 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32) 712 - 713 -RESETTING the servo is needed. 714 - 715 -====== __A7. Current Halt & Hold (**CH**)__ ====== 716 - 717 -This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR. 718 - 719 -Ex: #5D1423CH400<cr> 720 - 721 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position. 722 - 723 -====== __A8. Current Limp (**CL**)__ ====== 724 - 725 -This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR. 726 - 727 -Ex: #5D1423CH400<cr> 728 - 729 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp. 730 - 731 -= RGB LED Patterns = 732 - 733 -The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] 734 - 735 -[[image:LSS - LED Patterns.png]] 657 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET.
- LSS - LED Patterns.png
-
- Author
-
... ... @@ -1,1 +1,0 @@ 1 -xwiki:XWiki.RB1 - Size
-
... ... @@ -1,1 +1,0 @@ 1 -116.3 KB - Content
- XWiki.XWikiRights[0]
-
- Allow/Deny
-
... ... @@ -1,0 +1,1 @@ 1 +Allow - Groups
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.XWikiAdminGroup - Levels
-
... ... @@ -1,0 +1,1 @@ 1 +view
- XWiki.XWikiRights[1]
-
- Allow/Deny
-
... ... @@ -1,0 +1,1 @@ 1 +Allow - Groups
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.XWikiAdminGroup - Levels
-
... ... @@ -1,0 +1,1 @@ 1 +view
- XWiki.XWikiRights[2]
-
- Allow/Deny
-
... ... @@ -1,0 +1,1 @@ 1 +Allow - Groups
-
... ... @@ -1,0 +1,1 @@ 1 +XWiki.Profiles (Lynxmotion).BETA Testers - Levels
-
... ... @@ -1,0 +1,1 @@ 1 +view