Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (2 modified, 0 added, 0 removed)
-
Objects (0 modified, 0 added, 1 removed)
Details
- Page properties
-
- Author
-
... ... @@ -1,1 +1,1 @@ 1 -xwiki:XWiki.B Daouas1 +xwiki:XWiki.RB1 - Content
-
... ... @@ -5,964 +5,729 @@ 5 5 6 6 = Serial Protocol = 7 7 8 -The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time stayingcompact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32& SSC-32URC servo controllersand almost everything one might expect to be able to configure for a smart servomotor is available.8 +The custom Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 RC servo controller and almost everything one might expect to be able to configure for a smart servo motor is available. 9 9 10 -In order to beableto controleachservo individually with commands, the first step shouldbe to assign a different ID number to each servo (see details onCID [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRCorchecksum implemented as part of10 +In order to have servos react differently when commands are sent to all servos in a serial bus, the first step a user should take is to assign a different ID number to each servo (explained below). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC / checksum implemented as part of the protocol. 11 11 12 12 == Session == 13 13 14 -{{html wiki="true" clean="false"}} 15 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 16 -A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.<div class="wikimodel-emptyline"></div> 14 +A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 17 17 18 -**Note #1:** For a given session, the action related to a specific commands overrides the stored value in EEPROM.<div class="wikimodel-emptyline"></div> 19 -**Note #2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).<div class="wikimodel-emptyline"></div> 20 -You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays. 21 -<div class="wikimodel-emptyline"></div></div></div> 22 -{{/html}} 16 +Note #1: For a given session, the action related to a specific commands overrides the stored value in EEPROM. 17 +Note #2: During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s). 18 +You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended. 23 23 24 24 == Action Commands == 25 25 26 -{{html wiki="true" clean="false"}} 27 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 28 -Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]]. Action commands are sent serially to the servo's Rx pin and must be sent in the following format:<div class="wikimodel-emptyline"></div> 22 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (described below on this page). Action commands are sent serially to the servo's Rx pin and must be sent in the following format: 29 29 30 -1. Start with a number sign **#**(Unicode Character: U+0023)24 +1. Start with a number sign # (U+0023) 31 31 1. Servo ID number as an integer 32 -1. Action command (one o rmore letters, nowhitespace, capital or lower case)26 +1. Action command (one to three letters, no spaces, capital or lower case) 33 33 1. Action value in the correct units with no decimal 34 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)28 +1. End with a control / carriage return '<cr>' 35 35 36 36 ((( 37 -Ex: #5D1 800<cr><divclass="wikimodel-emptyline"></div>31 +Ex: #5PD1443<cr> 38 38 39 -This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 40 -<div class="wikimodel-emptyline"></div></div></div> 41 -{{/html}} 33 +This sends a serial command to all servo's Rx pins which are connected to the bus and only servo(s) with ID #5 will move to a position in tenths of degrees ("PD") of 144.3 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 42 42 43 -== Modifiers == 35 +== Action Modifiers == 44 44 45 -{{html wiki="true" clean="false"}} 46 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 47 -Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div> 37 +Only two commands can be used as action modifiers: Timed Move (T) and Speed (S) described below. Action modifiers can only be used with certain action commands. The format to include a modifier is: 48 48 49 -1. Start with a number sign **#**(Unicode Character: U+0023)39 +1. Start with a number sign # (U+0023) 50 50 1. Servo ID number as an integer 51 51 1. Action command (one to three letters, no spaces, capital or lower case) 52 52 1. Action value in the correct units with no decimal 53 -1. Modifier command (one letter to too letters)43 +1. Modifier command (one letter) 54 54 1. Modifier value in the correct units with no decimal 55 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)45 +1. End with a control / carriage return '<cr>' 56 56 57 -Ex: #5 D1800T1500<cr><divclass="wikimodel-emptyline"></div>47 +Ex: #5P1456T1263<cr> 58 58 59 -This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div> 60 -<div class="wikimodel-emptyline"></div></div></div> 61 -{{/html}} 49 +This results in the servo with ID #5 rotating from the current angular position to a pulse position ("P") of 1456 in a time ("T") of 1263 milliseconds. 50 +))) 62 62 63 63 == Query Commands == 64 64 65 -{{html wiki="true" clean="false"}} 66 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 67 -Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div> 54 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format: 68 68 69 -1. Start with a number sign **#**(Unicode Character: U+0023)56 +1. Start with a number sign # (U+0023) 70 70 1. Servo ID number as an integer 71 -1. Query command (one to four72 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<divclass="wikimodel-emptyline"></div>58 +1. Query command (one to three letters, no spaces, capital or lower case) 59 +1. End with a control / carriage return '<cr>' 73 73 74 -Ex: #5QD<cr> Query position in (tenth of) degrees for servo #5<div class="wikimodel-emptyline"></div> 61 +((( 62 +Ex: #5QD<cr>Query position in degrees for servo #5 63 +))) 75 75 65 +((( 76 76 The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format: 77 77 78 -1. Start with an asterisk * (U nicode Character: U+0023)68 +1. Start with an asterisk * (U+002A) 79 79 1. Servo ID number as an integer 80 -1. Query command (one to four70 +1. Query command (one to three letters, no spaces, capital letters) 81 81 1. The reported value in the units described, no decimals. 82 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<divclass="wikimodel-emptyline"></div>72 +1. End with a control / carriage return '<cr>' 83 83 84 -There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries tomultiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a newquerycommand. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div>74 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new command. A reply to the query sent above might be: 85 85 86 -Ex: *5QD1800<cr><div class="wikimodel-emptyline"></div> 76 +((( 77 +Ex: *5QD1443<cr> 78 +))) 87 87 88 -This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees). 89 -<div class="wikimodel-emptyline"></div></div></div> 90 -{{/html}} 80 +This indicates that servo #5 is currently at 144.3 degrees (1443 tenths of degrees). 91 91 92 92 == Configuration Commands == 93 93 94 -{{html wiki="true" clean="false"}} 95 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 96 -Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div> 84 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM. These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session.. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative, in that if two configurations are sent, one after the next, only the last configuration is used and stored. The format to send a configuration command is identical to that of an action command: 97 97 98 -These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div> 99 - 100 -The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div> 101 - 102 -1. Start with a number sign **#** (Unicode Character: U+0023) 86 +1. Start with a number sign # (U+0023) 103 103 1. Servo ID number as an integer 104 -1. Configuration command (two to four88 +1. Configuration command (two to three letters, no spaces, capital or lower case) 105 105 1. Configuration value in the correct units with no decimal 106 -1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<divclass="wikimodel-emptyline"></div>90 +1. End with a control / carriage return '<cr>' 107 107 108 -Ex: #5CO-50 <cr><divclass="wikimodel-emptyline"></div>92 +Ex: #5CO-50<cr> 109 109 110 -This configures an absolute origin offset ("CO") with respect to factory origin ofservo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory resetthatclears all configurations(through the button menu or with DEFAULT commanddescribed below).<div class="wikimodel-emptyline"></div>94 +This configures an absolute origin offset ("CO") with respect to factory origin to servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and then powered on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset (clears all configurations) described below. 111 111 112 -**Session vs Configuration Query** <div class="wikimodel-emptyline"></div>96 +**Session vs Configuration Query** 113 113 114 -By default, the query command returns the session 's<div class="wikimodel-emptyline"></div>98 +By default, the query command returns the sessions' value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command: 115 115 116 -Ex: #5CSR20 <cr>immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<divclass="wikimodel-emptyline"></div>100 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory. 117 117 118 -After RESET, a command of #5SR4 <cr>sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div>102 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore: 119 119 120 -#5QSR <cr>or #5QSR0<cr>would return *5QSR4<cr>which represents the value for that session, whereas<div class="wikimodel-emptyline"></div>104 +#5QSR<cr> would return *5QSR4<cr> which represents the value for that session, whereas 121 121 122 -#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 123 -<div class="wikimodel-emptyline"></div></div></div> 124 -{{/html}} 106 +#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 125 125 126 126 == Virtual Angular Position == 127 127 128 -{{html wiki="true" clean="false"}} 129 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 130 -The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div> 110 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. In virtual position mode, the "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle, and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset). 131 131 132 -[[image:LSS-servo-positions.jpg]] <div class="wikimodel-emptyline"></div>112 +[[image:LSS-servo-positions.jpg]] 133 133 134 -In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: <div class="wikimodel-emptyline"></div>114 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent: 135 135 136 -#1D-300 <cr>This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div>116 +#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow) 137 137 138 -#1D2100 <cr>This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div>118 +#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow) 139 139 140 -#1D-4200 <cr>This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<divclass="wikimodel-emptyline"></div>120 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees. 141 141 142 -Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. <divclass="wikimodel-emptyline"></div>122 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees. 143 143 144 -#1D4800 <cr>This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<divclass="wikimodel-emptyline"></div>124 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations. 145 145 146 -#1D3300 <cr>would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div>126 +#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow). 147 147 148 -If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°]. 149 -<div class="wikimodel-emptyline"></div></div></div> 150 -{{/html}} 128 +If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). 129 +))) 151 151 152 152 = Command List = 153 153 154 - **Latestfirmwareversion currently: 368.29.14**133 +== Regular == 155 155 156 -|(% colspan="10" style="color:orange; font-size:18px" %)**Communication Setup** 157 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 158 -| |Soft **Reset**|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Soft reset. See command for details. 159 -| |**Default** Configuration|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Revert to firmware default values. See command for details 160 -| |Firmware **Update** Mode|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Update firmware. See command for details. 161 -| |**Confirm** Changes|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 162 -| |**C**hange to **RC**|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CRC|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Change to RC mode 1 (position) or 2 (wheel). 163 -| |**ID** #|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %) |(% style="text-align:center" %)✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 164 -| |**B**audrate|(% style="text-align:center" %) |(% style="text-align:center" %)QB|(% style="text-align:center" %)CB|(% style="text-align:center" %) |(% style="text-align:center" %)✓|115200| |Reset required after change. 135 +|= #|=Description|=Mod|= Action|= Query|= Config|=Session|= RC|= Serial|= Units|=(% style="width: 510px;" %) Notes|=(% style="width: 113px;" %)Default Value 136 +| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| | L| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 137 +| 2|[[**H**alt & **H**old>>||anchor="H2.Halt26Hold28H29"]]| | H| | | | | ✓|none|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 138 +| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29modifier"]]|T| | | | | | ✓|milliseconds|(% style="width:510px" %)Modifier only for {P, D, MD}. Time is estimated and can change based on load|(% style="text-align:center; width:113px" %) 139 +| 4|[[**S**peed>>||anchor="H4.Speed28S29modifier"]]|S/SD| |QS| | | | ✓|microseconds per second / degrees per second|(% style="width:510px" %)S modifier only for {P}. SD modifier only for {D, MD}.|(% style="text-align:center; width:113px" %) 140 +| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| | MD| | | | | ✓|tenths of degrees (ex 325 = 32.5 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 141 +| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| | O| QO|CO|✓| ✓| ✓|tenths of degrees (ex 91 = 9.1 degrees)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 142 +0 143 +))) 144 +| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| | AR| QAR| CAR|✓| ✓| ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 145 +1800 146 +))) 147 +| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| | P| QP| | | | ✓|microseconds|(% style="width:510px" %)((( 148 +Inherited from SSC-32 serial protocol 149 +)))|(% style="text-align:center; width:113px" %) 150 +| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| | D| QD / QDT| | | | ✓|tenths of degrees |(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 151 +| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| | WD| QWD| | | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 152 +| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| | WR| QWR| | | | ✓|revolutions per minute (rpm)|(% style="width:510px" %)A.K.A. "Speed mode" or "Continuous rotation"|(% style="text-align:center; width:113px" %) 153 +| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.MaxSpeedinDegrees28SD29"]]| | SD| QSD|CSD|✓| ✓| ✓|degrees per second (°/s)|(% style="width:510px" %)((( 154 +QSD: Add modifier "2" for instantaneous speed. 165 165 166 -|(% colspan="10" style="color:orange; font-size:18px" %)**Motion** 167 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 168 -| |Position in **D**egrees|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 169 -| |**M**ove in **D**egrees (relative)|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 170 -| |**W**heel mode in **D**egrees|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation" 171 -| |**W**heel mode in **R**PM|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation" 172 -| |Position in **P**WM|(% style="text-align:center" %)P|(% style="text-align:center" %)QP|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|Inherited from SSC-32 serial protocol 173 -| |**M**ove in PWM (relative)|(% style="text-align:center" %)M|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us| 174 -| |**R**aw **D**uty-cycle **M**ove|(% style="text-align:center" %)RDM|(% style="text-align:center" %)QMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW 175 -| |**Q**uery Status|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1 to 8 integer|See command description for details 176 -| |**L**imp|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 177 -| |**H**alt & Hold|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 156 +SD overwrites SR / CSD overwrites CSR and vice-versa. 157 +)))|(% style="text-align:center; width:113px" %)Max per servo 158 +| 13|[[Max **S**peed in **R**PM>>||anchor="H13.MaxSpeedinRPM28SR29"]]| | SR| QSR|CSR|✓| ✓| ✓|revolutions per minute (rpm)|(% style="width:510px" %)((( 159 +QSR: Add modifier "2" for instantaneous speed 178 178 179 -|(% colspan="10" style="color:orange; font-size:18px" %)**Motion Setup** 180 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 181 -| |**E**nable **M**otion Profile|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|(% style="text-align:center" %) |(% style="text-align:center" %)✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile 182 -| |**F**ilter **P**osition **C**ount|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|5| |Affects motion only when motion profile is disabled (EM0) 183 -| |**O**rigin Offset|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|1/10°| 184 -| |**A**ngular **R**ange|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1800|1/10°| 185 -| |**A**ngular **S**tiffness|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|-4 to +4 integer|Suggested values are between 0 to +4 186 -| |**A**ngular **H**olding Stiffness |(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|4|-10 to +10 integer| 187 -| |**A**ngular **A**cceleration|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 188 -| |**A**ngular **D**eceleration|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 189 -| |**G**yre Direction|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 190 -| |**F**irst Position (**D**eg)|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|No value|1/10°|Reset required after change. 191 -| |**M**aximum **M**otor **D**uty|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓|1023|255 to 1023 integer| 192 -| |Maximum **S**peed in **D**egrees|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 193 -| |Maximum **S**peed in **R**PM|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 161 +SR overwrites SD / CSR overwrites CSD and vice-versa. 162 +)))|(% style="text-align:center; width:113px" %)Max per servo 163 +| 14|[[**LED** Color>>||anchor="H14.LEDColor28LED29"]]| | LED| QLED| CLED|✓| ✓| ✓|none (integer from 0 to 7)|(% style="width:510px" %)0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;|(% style="text-align:center; width:113px" %)0 (OFF) 164 +| 15|[[**G**yre direction (**G**)>>||anchor="H15.GyreRotationDirection28G29"]]| | G| QG| CG|✓| ✓| ✓|none |(% style="width:510px" %)Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise)|(% style="text-align:center; width:113px" %)1 165 +| 16|[[**ID** #>>||anchor="H16.IdentificationNumber28ID29"]]| | | QID| CID| | | ✓|none (integer from 0 to 250)|(% style="width:510px" %)Note: ID 254 is a "broadcast" which all servos respond to. |(% style="text-align:center; width:113px" %)0 166 +| 17|[[**B**aud rate>>||anchor="H17.BaudRate"]]| | | QB| CB| | | ✓|none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %)115200 167 +| 18|//{coming soon}//| | | | | | | | |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)((( 168 + 169 +))) 170 +| 19|[[**F**irst Position (**D**eg)>>||anchor="H19.FirstA0Position28Degrees29"]]| | | QFD|CFD|X| ✓| ✓|none |(% style="width:510px" %) |(% style="text-align:center; width:113px" %)No Value 171 +| 20|[[**M**odel **S**tring>>||anchor="H20.QueryModelString28QMS29"]]| | | QMS| | | | |none (string)|(% style="width:510px" %) Returns the type of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1)|(% style="text-align:center; width:113px" %) 172 +| 21|[[Serial **N**umber>>||anchor="H21.QuerySerialNumber28QN29"]]| | | QN| | | | |none (integer)|(% style="width:510px" %) Returns the unique serial number for that servo|(% style="text-align:center; width:113px" %) 173 +| 22|[[**F**irmware version>>||anchor="H22.QueryFirmware28QF29"]]| | | QF| | | | |none (integer)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 174 +| 23|[[**Q**uery (gen. status)>>||anchor="H23.QueryStatus28Q29"]]| | | Q| | | | ✓|none (integer from 1 to 8)|(% style="width:510px" %) See command description for details|(% style="text-align:center; width:113px" %) 175 +| 24|[[**V**oltage>>||anchor="H24.QueryVoltage28QV29"]]| | | QV| | | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 176 +| 25|[[**T**emperature>>||anchor="H25.QueryTemperature28QT29"]]| | | QT| | | | ✓|tenths of degrees Celsius|(% style="width:510px" %)Max temp before error: 85°C (servo goes limp)|(% style="text-align:center; width:113px" %) 177 +| 26|[[**C**urrent>>||anchor="H26.QueryCurrent28QC29"]]| | | QC| | | | ✓|milliamps (ex 200 = 0.2A)|(% style="width:510px" %) |(% style="text-align:center; width:113px" %) 178 +| 27|[[**C**hange to** RC**>>||anchor="H27.ConfigureRCMode28CRC29"]]| | | |CRC|✓| | ✓|none|(% style="width:510px" %)((( 179 +Change to RC mode 1 (position) or 2 (wheel). 180 +)))|(% style="text-align:center; width:113px" %)Serial 181 +| 28|[[**RESET**>>||anchor="H28.RESET"]]| | | | | | | ✓|none|(% style="width:510px" %)Soft reset. See command for details.|(% style="text-align:center; width:113px" %) 182 +| 29|[[**DEFAULT**>>||anchor="H29.DEFAULTA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Revert to firmware default values. See command for details|(% style="text-align:center; width:113px" %) 183 +| 30|[[**UPDATE**>>||anchor="H30.UPDATEA026CONFIRM"]]| | | | | | |✓|none|(% style="width:510px" %)Update firmware. See command for details.|(% style="text-align:center; width:113px" %) 194 194 195 -|(% colspan="10" style="color:orange; font-size:18px" %)**Modifiers** 196 -|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 197 -| |**S**peed|(% style="text-align:center" %)S|(% style="text-align:center" %)QS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |uS/s |For P action command 198 -| |**S**peed in **D**egrees|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|For D and MD action commands 199 -| |**T**imed move|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |ms|Modifier only for P, D and MD. Time can change based on load 200 -| |**C**urrent **H**old|(% style="text-align:center" %)CH|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 201 -| |**C**urrent **L**imp|(% style="text-align:center" %)CL|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 185 +== Advanced == 202 202 203 -|(% colspan="10" style="color:orange;font-size:18px" %)**Telemetry**204 -|(% style="width:2 5px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center;width:100px" %)**Action**|(% style="text-align:center;width:75px" %)**Query**|(% style="text-align:center;width:75px" %)**Config**|(% style="text-align:center;width:75px" %)**RC**|(% style="text-align:center;width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**205 -| |** Q**uery**V**oltage|(% style="text-align:center" %) |(% style="text-align:center" %)QV|(% style="text-align:center" %)ext-align:center"%)|(% style="text-align:center"%)✓||mV|206 -| |** Q**uery**T**emperature|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %)ext-align:center" %) |(% style="text-align:center"%)✓||1/10°C|207 -| |** Q**uery**C**urrent|(% style="text-align:center" %)ext-align:center" %)QC|(% style="text-align:center" %) |(% style="text-align:center"%)|(% style="text-align:center"%)✓||mA|208 -| |** Q**uery**M**odel**S**tring|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓||Returnshemodel ofservo(ex: LSS-ST1,LSS-HS1,LSS-HT1)209 -| |** Q**uery**F**irmware Version|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center"%)✓|||210 - | |**Q**uery Serial **N**umber|(%style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center"%)|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returnsthe unique serialumber for the servo187 +|= #|=(% style="width: 182px;" %)Description|=(% style="width: 56px;" %)Mod|=(% style="width: 70px;" %) Action|=(% style="width: 71px;" %) Query|=(% style="width: 77px;" %) Config|=(% style="width: 77px;" %)Session|=(% style="width: 56px;" %) RC|=(% style="width: 151px;" %) Serial|= Units|=(% style="width: 510px;" %) Notes 188 +| A1|(% style="width:182px" %)[[**A**ngular **S**tiffness>>||anchor="HA1.AngularStiffness28AS29"]]|(% style="width:56px" %) |(% style="width:70px" %)AS|(% style="width:71px" %)QAS|(% style="width:77px" %)CAS|(% style="width:77px" %)✓|(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer -4 to +4)|(% style="width:510px" %)Suggested values are between 0 to +4 189 +| A2|(% style="width:182px" %)[[**A**ngular **H**olding Stiffness>>||anchor="HA2.AngularHoldingStiffness28AH29"]]|(% style="width:56px" %) |(% style="width:70px" %)AH|(% style="width:71px" %)QAH|(% style="width:77px" %)CAH|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|none (integer -10 to +10)|(% style="width:510px" %)Effect is different between serial and RC 190 +| A3|(% style="width:182px" %)[[**A**ngular **A**cceleration>>||anchor="HA3:AngularAcceleration28AA29"]]|(% style="width:56px" %) |(% style="width:70px" %)AA|(% style="width:71px" %)QAA|(% style="width:77px" %)CAA|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared 191 +| A4|(% style="width:182px" %)[[**A**ngular **D**eceleration>>||anchor="HA4:AngularDeceleration28AD29"]]|(% style="width:56px" %) |(% style="width:70px" %)AD|(% style="width:71px" %)QAD|(% style="width:77px" %)CAD|(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %) ✓|degrees per second squared|(% style="width:510px" %)Increments of 10 degrees per second squared 192 +| A5|(% style="width:182px" %)[[**E**nable **M**otion Control>>||anchor="HA5:MotionControl28EM29"]]|(% style="width:56px" %) |(% style="width:70px" %)EM|(% style="width:71px" %)QEM|(% style="width:77px" %) |(% style="width:77px" %) |(% style="width:56px" %) |(% style="width:151px" %) ✓|none|(% style="width:510px" %)EM0 to disable motion control, EM1 to enable 193 +| A6|(% style="width:182px" %)[[**C**onfigure **L**ED **B**linking>>||anchor="HA6.ConfigureLEDBlinking28CLB29"]]|(% style="width:56px" %) |(% style="width:70px" %) |(% style="width:71px" %)QLB|(% style="width:77px" %) CLB|(% style="width:77px" %) |(% style="width:56px" %) ✓|(% style="width:151px" %) ✓|none (integer from 0 to 63)|(% style="width:510px" %)((( 194 +0=No blinking, 63=Always blink; 211 211 212 - |(% colspan="10"style="color:orange;font-size:18px"%)**RGB LED**213 - |(% style="width:25px" %)|(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes**214 -| |** LED**Color|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓||0to7integer|0=Off; 1=Red;2=Green;3=Blue; 4=Yellow;5=Cyan;6=Magenta;7=White215 -| |**C** onfigure **L**ED **B**linking|(% style="text-align:center" %) |(% style="text-align:center" %)QLB|(% style="text-align:center" %)CLB|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓||0to63 integer|Resetrequiredafter change.See command fordetails.196 +Blink while: 1=Limp; 2=Holding; 4=Accel; 8=Decel; 16=Free 32=Travel; 197 +))) 198 +| A7|(% style="width:182px" %)[[**C**urrent **H**alt & **H**old>>||anchor="HA7.CurrentHalt26Hold28CH29"]]|(% style="width:56px" %)CH|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR 199 +| A8|(% style="width:182px" %)[[**C**urrent **L**imp>>||anchor="HA8.CurrentLimp28CL29"]]|(% style="width:56px" %)CL|(% style="width:70px" %) |(% style="width:71px" %) |(% style="width:77px" %) |(% style="width:77px" %)✓|(% style="width:56px" %) |(% style="width:151px" %)✓|milliamps (ex 400 = 0.4A)|(% style="width:510px" %)Modifier for D, MD, WD, WR 216 216 217 -= (% style="color:inherit;font-family:inherit" %)Details(%%)=201 +== Details - Basic == 218 218 219 -== (% style="color:inherit;font-family:inherit"%)Communication Setup(%%) ==203 +====== __1. Limp (**L**)__ ====== 220 220 221 - ====== __Reset__======205 +Example: #5L<cr> 222 222 223 -{{html wiki="true" clean="false"}} 224 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 225 -Ex: #5RESET<cr><div class="wikimodel-emptyline"></div> 226 -This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). 227 -Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div> 228 -</div></div> 229 -{{/html}} 207 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 230 230 231 -====== __ Default &confirm__ ======209 +====== __2. Halt & Hold (**H**)__ ====== 232 232 233 -{{html wiki="true" clean="false"}} 234 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 235 -Ex: #5DEFAULT<cr><div class="wikimodel-emptyline"></div> 211 +Example: #5H<cr> 236 236 237 -This command setsin motionthe resetof allvalues to thedefault valuesincludedwithhesionofthefirmware installed on that servo.TheservothenwaitsfortheCONFIRM command.Any othercommand receivedwillcause theservo to exittheDEFAULT function.<divclass="wikimodel-emptyline"></div>213 +This action overrides whatever the servo might be doing at the time the command is received (accelerating, moving continuously etc.) and causes it to stop immediately and hold that angular position. 238 238 239 - EX:#5DEFAULT<cr>followedby #5CONFIRM<cr><divclass="wikimodel-emptyline"></div>215 +====== __3. Timed move (**T**) modifier__ ====== 240 240 241 - Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command otherthan CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<divclass="wikimodel-emptyline"></div>217 +Example: #5P1500T2500<cr> 242 242 243 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 244 -</div></div> 245 -{{/html}} 219 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 246 246 247 - ======__Update&confirm__======221 +Note: If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested. 248 248 249 -{{html wiki="true" clean="false"}} 250 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 251 -Ex: #5UPDATE<cr><div class="wikimodel-emptyline"></div> 223 +====== __4. Speed (**S**) modifier__ ====== 252 252 253 - This command sets inmotion the equivalent of a long buttonpress when the servo is not powered in order to enter firmware update mode. This is usefulshould thebutton be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<divclass="wikimodel-emptyline"></div>225 +Example: #5P1500S750<cr> 254 254 255 - EX: #5UPDATE<cr>followedby#5CONFIRM<cr><divclass="wikimodel-emptyline"></div>227 +This command is a modifier only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 256 256 257 - Since it it not common to have toupdatefirmware, a confirmation command is needed after an UPDATE command is sent. Should anycommand other than CONFIRM bereceivedby the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div>229 +Query Speed (**QS**) 258 258 259 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 260 -</div></div> 261 -{{/html}} 231 +Example: #5QS<cr> might return *5QS300<cr> 262 262 263 - ======__Confirm__======233 +This command queries the current speed in microseconds per second. 264 264 265 -{{html wiki="true" clean="false"}} 266 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 267 -Ex: #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 235 +====== __5. (Relative) Move in Degrees (**MD**)__ ====== 268 268 269 - This command is used to confirmchanges after a Default or Updatecommand.<divclass="wikimodel-emptyline"></div>237 +Example: #5MD123<cr> 270 270 271 -**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 272 -</div></div> 273 -{{/html}} 239 +The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 274 274 275 -====== __ ConfigureRC Mode(**CRC**)__ ======241 +====== __6. Origin Offset Action (**O**)__ ====== 276 276 277 -{{html wiki="true" clean="false"}} 278 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 279 -This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.<div class="wikimodel-emptyline"></div> 243 +Example: #5O2400<cr> 280 280 281 -|**Command sent**|**Note** 282 -|ex: #5CRC1<cr>|Change to RC position mode. 283 -|ex: #5CRC2<cr>|Change to RC continuous rotation (wheel) mode. 284 -|ex: #5CRC*<cr>|Where * is any value other than 1 or 2 (or no value): stay in smart mode.<div class="wikimodel-emptyline"></div> 245 +This command allows you to temporarily change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered). 285 285 286 - EX: #5CRC2<cr><div class="wikimodel-emptyline"></div>247 +[[image:LSS-servo-default.jpg]] 287 287 288 - This commandwould placethe servoinRC wheelmodeaftera RESETorpower cycle. Note thataftera RESETorpowercycle, theservowill be inRC modeand will notreplyto serial commands. Usingthecommand#5CRC<cr>or #5CRC3<cr>whichrequests that theservo remaininserial mode still requiresaRESET command.<divclass="wikimodel-emptyline"></div>249 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees: 289 289 290 -**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.<div class="wikimodel-emptyline"></div> 291 -</div></div> 292 -{{/html}} 251 +[[image:LSS-servo-origin.jpg]] 293 293 294 - ====== __IdentificationNumber (**ID**)__ ======253 +Origin Offset Query (**QO**) 295 295 296 -{{html wiki="true" clean="false"}} 297 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 298 -A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div> 255 +Example: #5QO<cr> Returns: *5QO-13 299 299 300 - QueryIdentification(**QID**)<divclass="wikimodel-emptyline"></div>257 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero. 301 301 302 - EX: #254QID<cr> might return*QID5<cr><divclass="wikimodel-emptyline"></div>259 +Configure Origin Offset (**CO**) 303 303 304 - When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is usefulwhen you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to255 will still result in the servo responding with its "real" ID.<divclass="wikimodel-emptyline"></div>261 +Example: #5CO-24<cr> 305 305 306 - ConfigureID(**CID**)<divclass="wikimodel-emptyline"></div>263 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 307 307 308 - Ex:#4CID5<cr><divclass="wikimodel-emptyline"></div>265 +====== __7. Angular Range (**AR**)__ ====== 309 309 310 -Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div> 311 -</div></div> 312 -{{/html}} 267 +Example: #5AR1800<cr> 313 313 314 - ======__Baud Rate__======269 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset: 315 315 316 -{{html wiki="true" clean="false"}} 317 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 318 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div> 271 +[[image:LSS-servo-default.jpg]] 319 319 320 - QueryBaudRate(**QB**)<divclass="wikimodel-emptyline"></div>273 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged. 321 321 322 - Ex: #5QB<cr> might return *5QB115200<cr><divclass="wikimodel-emptyline"></div>275 +[[image:LSS-servo-ar.jpg]] 323 323 324 - Sincethecommand to querythe baudrate must be done atthe servo's existingbaudrate,itcansimply be usedtoconfirm theCB configuration commandwascorrectlyreceivedbeforetheservo is powercycledand thenew baudrate takes effect.<div class="wikimodel-emptyline"></div>277 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range: 325 325 326 - ConfigureBaud Rate(**CB**)<divclass="wikimodel-emptyline"></div>279 +[[image:LSS-servo-ar-o-1.jpg]] 327 327 328 - **Important Note:** the servo's current sessionretainsthe givenbaud rate and the new baud rate will only take effect when the servois power cycled /RESET.<div class="wikimodel-emptyline"></div>281 +Query Angular Range (**QAR**) 329 329 330 -Ex: #5 CB9600<cr><divclass="wikimodel-emptyline"></div>283 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees. 331 331 332 -Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div> 333 -</div></div> 334 -{{/html}} 285 +Configure Angular Range (**CAR**) 335 335 336 - ==Motion==287 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 337 337 338 -====== __Position in Degrees (**D**)__ ======289 +====== __8. Position in Pulse (**P**)__ ====== 339 339 340 -{{html wiki="true" clean="false"}} 341 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 342 -Example: #5D1456<cr><div class="wikimodel-emptyline"></div> 291 +Example: #5P2334<cr> 343 343 344 -Th ismovesheservotoanangleof145.6degrees,where thecenter(0)positioniscentered.Negativevalues(ex.-176representing-17.6degrees)couldalsobeused.Afullcirclewouldbefrom -1800 to1800degrees.Avalue of 2700wouldbe the sameangle(absoluteposition)as-900,excepttheervowouldmove inadifferentdirection. <divclass="wikimodel-emptyline"></div>293 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM pulse and is further explained in the SSC-32 and SSC-32U manuals found on Lynxmotion.com. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a pulse of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points. 345 345 346 - Larger values arepermitted and allow for multi-turn functionalityusingthe concept of virtualposition (explainedabove). <div class="wikimodel-emptyline"></div>295 +Query Position in Pulse (**QP**) 347 347 348 - QueryPositionin Degrees(**QD**)<div class="wikimodel-emptyline"></div>297 +Example: #5QP<cr> might return *5QP2334 349 349 350 -Example: #5QD<cr> might return *5QD132<cr><div class="wikimodel-emptyline"></div> 299 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 300 +Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 351 351 352 - Thismeanstheservo islocated at 13.2 degrees.<divclass="wikimodel-emptyline"></div>302 +====== __9. Position in Degrees (**D**)__ ====== 353 353 354 -(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 355 -Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div> 304 +Example: #5D1456<cr> 356 356 357 - Ex: #5QDT<cr>mightreturn*5QDT6783<cr><divclass="wikimodel-emptyline"></div>306 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction. 358 358 359 -The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 360 -<div class="wikimodel-emptyline"></div></div></div> 361 -{{/html}} 308 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position. 362 362 363 - ====== __(Relative) Movein Degrees (**MD**)__ ======310 +Query Position in Degrees (**QD**) 364 364 365 -{{html wiki="true" clean="false"}} 366 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 367 -Example: #5MD123<cr><div class="wikimodel-emptyline"></div> 312 +Example: #5QD<cr> might return *5QD132<cr> 368 368 369 -The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 370 -<div class="wikimodel-emptyline"></div></div></div> 371 -{{/html}} 314 +This means the servo is located at 13.2 degrees. 372 372 373 -====== __Wheel Mode in Degrees (**WD**)__ ====== 316 +(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 317 +Query Target Position in Degrees (**QDT**) 374 374 375 -{{html wiki="true" clean="false"}} 376 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 377 -Ex: #5WD90<cr><div class="wikimodel-emptyline"></div> 319 +Ex: #5QDT<cr> might return *5QDT6783<cr> 378 378 379 -Th is commandsets theservotowheelmodewhereitwillrotatein thedesireddirectionatthe selectedspeed.The example abovewould havethe servo rotateat90.0degreespersecondclockwise(assumingfactory defaultconfigurations).<divclass="wikimodel-emptyline"></div>321 +The query target position command returns the target angle during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond without a number (Ex: *5QDT<cr>). 380 380 381 - QueryWheel Mode in Degrees (**QWD**)<divclass="wikimodel-emptyline"></div>323 +====== __10. Wheel Mode in Degrees (**WD**)__ ====== 382 382 383 -Ex: #5 QWD<cr> might return *5QWD90<cr><divclass="wikimodel-emptyline"></div>325 +Ex: #5WD900<cr> 384 384 385 -The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 386 -<div class="wikimodel-emptyline"></div></div></div> 387 -{{/html}} 327 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). 388 388 389 - ======__Wheel Mode inRPM(**WR**)__ ======329 +Query Wheel Mode in Degrees (**QWD**) 390 390 391 -{{html wiki="true" clean="false"}} 392 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 393 -Ex: #5WR40<cr><div class="wikimodel-emptyline"></div> 331 +Ex: #5QWD<cr> might return *5QWD900<cr> 394 394 395 -Th is command setstheservoto wheel mode whereit will rotatein thedesireddirectionattheselectedrpm.Wheel mode(a.k.a. "continuousrotation") hastheservooperatelikea gearedDC motor. Theservo'smaximumrpm cannot besethigherthan itsphysical limit at agivenvoltage. The example abovewouldhave theservorotateat 40rpmclockwise(assumingfactory defaultconfigurations).<divclass="wikimodel-emptyline"></div>333 +The servo replies with the angular speed in tenths of degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 396 396 397 - QueryWheel Mode in RPM (**QWR**)<divclass="wikimodel-emptyline"></div>335 +====== __11. Wheel Mode in RPM (**WR**)__ ====== 398 398 399 -Ex: #5 QWR<cr> might return *5QWR40<cr><divclass="wikimodel-emptyline"></div>337 +Ex: #5WR40<cr> 400 400 401 -The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 402 -<div class="wikimodel-emptyline"></div></div></div> 403 -{{/html}} 339 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations). 404 404 405 - ======__Positionin PWM (**P**)__ ======341 +Query Wheel Mode in RPM (**QWR**) 406 406 407 -{{html wiki="true" clean="false"}} 408 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 409 -Example: #5P2334<cr><div class="wikimodel-emptyline"></div> 343 +Ex: #5QWR<cr> might return *5QWR40<cr> 410 410 411 -The positionin PWMpulses was retained in ordertobebackwardcompatiblewiththe SSC-32 / 32U protocol.Thisrelatesthe desired angle with anRC standardPWM signal ands furtherexplained intheSSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]].Without any modificationstoconfiguration considered,anda ±90.0 degrees standardrangewhere 1500 microseconds is centered, a PWM signal of 2334 would setthe servo to 165.1 degrees.Validvaluesfor P are [500, 2500]. Values outsidethis rangearecorrected /restrictedto end points.<divclass="wikimodel-emptyline"></div>345 +The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 412 412 413 - QueryPositionin Pulse (**QP**)<divclass="wikimodel-emptyline"></div>347 +====== __12. Max Speed in Degrees (**SD**)__ ====== 414 414 415 -Ex ample: #5QP<cr> might return *5QP2334<divclass="wikimodel-emptyline"></div>349 +Ex: #5SD1800<cr> 416 416 417 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 418 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 419 -<div class="wikimodel-emptyline"></div></div></div> 420 -{{/html}} 351 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 421 421 422 - ======__(Relative)MoveinPWM(**M**)__ ======353 +Query Speed in Degrees (**QSD**) 423 423 424 -{{html wiki="true" clean="false"}} 425 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 426 -Example: #5M1500<cr><div class="wikimodel-emptyline"></div> 355 +Ex: #5QSD<cr> might return *5QSD1800<cr> 427 427 428 -The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 429 -<div class="wikimodel-emptyline"></div></div></div> 430 -{{/html}} 357 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. 358 +If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 431 431 432 -====== __Raw Duty-cycle Move (**RDM**)__ ====== 360 +|**Command sent**|**Returned value (1/10 °)** 361 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 362 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 363 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 364 +|ex: #5QSD3<cr>|Target travel speed 433 433 434 -{{html wiki="true" clean="false"}} 435 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 436 -Example: #5RDM512<cr><div class="wikimodel-emptyline"></div> 366 +Configure Speed in Degrees (**CSD**) 437 437 438 - Theraw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DCmotor.<divclass="wikimodel-emptyline"></div>368 +Ex: #5CSD1800<cr> 439 439 440 - The dutyvaluesrangefrom0to1023. Negative values willrotatethe servoin theoppositedirection (forfactorydefault a negativevaluewouldbecounterclockwise).<divclass="wikimodel-emptyline"></div>370 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session. 441 441 442 - QueryMove inDuty-cycle(**QMD**)<divclass="wikimodel-emptyline"></div>372 +====== __13. Max Speed in RPM (**SR**)__ ====== 443 443 444 -Ex ample: #5QMD<cr> might return *5QMD512<divclass="wikimodel-emptyline"></div>374 +Ex: #5SD45<cr> 445 445 446 -This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 447 -<div class="wikimodel-emptyline"></div></div></div> 448 -{{/html}} 376 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SD overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session. 449 449 450 - ====== __Query Status (**Q**)__ ======378 +Query Speed in Degrees (**QSR**) 451 451 452 -{{html wiki="true" clean="false"}} 453 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 454 -The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div> 380 +Ex: #5QSR<cr> might return *5QSR45<cr> 455 455 456 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div> 457 -</div></div> 458 -{{/html}} 382 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. 383 +If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 459 459 460 -|(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description** 461 -| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 462 -| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 463 -| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command 464 -| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 465 -| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 466 -| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 467 -| |ex: *5Q6<cr>|6: Holding|Keeping current position 468 -| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 469 -| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 470 -| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 471 -| |ex: *5Q10<cr>|10: Safe Mode|((( 472 -A safety limit has been exceeded (temperature, peak current or extended high current draw). 385 +|**Command sent**|**Returned value (1/10 °)** 386 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 387 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 388 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 389 +|ex: #5QSR3<cr>|Target travel speed 473 473 474 -Send a Q1 command to know which limit has been reached (described below). 475 -))) 391 +Configure Speed in RPM (**CSR**) 476 476 477 -{{html wiki="true" clean="false"}} 478 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 479 -If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div> 480 -</div></div> 481 -{{/html}} 393 +Ex: #5CSR45<cr> 482 482 483 -|(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description** 484 -| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 485 -| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 486 -| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 487 -| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 395 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session. 488 488 489 -====== __L imp(**L**)__ ======397 +====== __14. LED Color (**LED**)__ ====== 490 490 491 -{{html wiki="true" clean="false"}} 492 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 493 -Example: #5L<cr><div class="wikimodel-emptyline"></div> 399 +Ex: #5LED3<cr> 494 494 495 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 496 -<div class="wikimodel-emptyline"></div></div></div> 497 -{{/html}} 401 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns. 498 498 499 -= =====__Halt& Hold(**H**)__======403 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White; 500 500 501 -{{html wiki="true" clean="false"}} 502 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 503 -Example: #5H<cr><div class="wikimodel-emptyline"></div> 405 +Query LED Color (**QLED**) 504 504 505 -This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 506 -<div class="wikimodel-emptyline"></div></div></div> 507 -{{/html}} 407 +Ex: #5QLED<cr> might return *5QLED5<cr> 508 508 509 - ==MotionSetup==409 +This simple query returns the indicated servo's LED color. 510 510 511 - ====== __EnableMotionProfile(**EM**)__ ======411 +Configure LED Color (**CLED**) 512 512 513 -{{html wiki="true" clean="false"}} 514 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 515 -Ex: #5EM1<cr><div class="wikimodel-emptyline"></div> 413 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. 516 516 517 - Thiscommand enables a trapezoidal motion profile.Bydefault, the trapezoidalmotion profile is enabled. Ifthe motionprofile is enabled, angularacceleration (AA)and angular deceleration(AD) will have an effect on the motion. Also, SD/S and T modifiers can be used.<div class="wikimodel-emptyline"></div>415 +====== __15. Gyre Rotation Direction (**G**)__ ====== 518 518 519 - Ex:#5EM0<cr><divclass="wikimodel-emptyline"></div>417 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. CW = 1; CCW = -1. The factory default is clockwise (CW). 520 520 521 - Thiscommand will disable the trapezoidal motion profile. As such, the servo will move at full speed for D/MD action commands. Angular acceleration (AA) and angular deceleration(AD) won't have an effect on motion in this mode and modifiers SD/S or T cannot be used.<divclass="wikimodel-emptyline"></div>419 +Ex: #5G-1<cr> 522 522 523 - QueryMotionProfile(**QEM**)<div class="wikimodel-emptyline"></div>421 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate. 524 524 525 - Ex: #5QEM<cr>mightreturn*5QEM1<cr><div class="wikimodel-emptyline"></div>423 +Query Gyre Direction (**QG**) 526 526 527 - Thiscommand will querythemotion profile. **0:** motionprofiledisabled / **1:**trapezoidal motionprofile enabled.<divclass="wikimodel-emptyline"></div>425 +Ex: #5QG<cr> might return *5QG-1<cr> 528 528 529 - ConfigureMotionProfile(**CEM**)<div class="wikimodel-emptyline"></div>427 +The value returned above means the servo is in a counter-clockwise gyration. 530 530 531 - Ex: #5CEM0<cr><div class="wikimodel-emptyline"></div>429 +Configure Gyre (**CG**) 532 532 533 -This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 534 -<div class="wikimodel-emptyline"></div></div></div> 535 -{{/html}} 431 +Ex: #5CG-1<cr> 536 536 537 - ====== __FilterPositionCount(**FPC**)__======433 +This changes the gyre direction as described above and also writes to EEPROM. 538 538 539 -{{html wiki="true" clean="false"}} 540 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 541 -Ex: #5FPC10<cr><div class="wikimodel-emptyline"></div> 542 -This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div> 435 +====== __16. Identification Number (**ID**)__ ====== 543 543 544 - QueryFilterPositionCount(**QFPC**)<divclass="wikimodel-emptyline"></div>437 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands (assuming same baud rate). 545 545 546 - Ex: #5QFPC<cr>might return*5QFPC10<cr><divclass="wikimodel-emptyline"></div>439 +Query Identification (**QID**) 547 547 548 - Thiscommandwillquery theFilterPositionCount value.<divclass="wikimodel-emptyline"></div>441 +EX: #254QID<cr> might return *QID5<cr> 549 549 550 - ConfigureFilterPositionCount (**CFPC**)<divclass="wikimodel-emptyline"></div>443 +When using the query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number (assuming the query is sent . Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID. 551 551 552 - Ex: #5CFPC10<cr><div class="wikimodel-emptyline"></div>445 +Configure ID (**CID**) 553 553 554 -This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 555 -<div class="wikimodel-emptyline"></div></div></div> 556 -{{/html}} 447 +Ex: #4CID5<cr> 557 557 558 - ======__OriginOffset(**O**)__======449 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect. 559 559 560 -{{html wiki="true" clean="false"}} 561 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 562 -Example: #5O2400<cr><div class="wikimodel-emptyline"></div> 451 +====== __17. Baud Rate__ ====== 563 563 564 - Thiscommand allowsyoutochange the originof the servo in relation tothefactory zero positionforthatsession. Aswith allactioncommands,thesetting willbelostuponservo reset /power cycle. Originoffsetcommandsarenotcumulative andalwaysrelateto factory zero.Inthefirstimage,theoriginatfactoryoffset'0'(centered).<divclass="wikimodel-emptyline"></div>453 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in a project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200. The baud rates are currently restricted to those above. 565 565 566 - [[image:LSS-servo-default.jpg]]<divclass="wikimodel-emptyline"></div>455 +Query Baud Rate (**QB**) 567 567 568 - Inthe secondimage, the origin, and thecorresponding angularrange(explained below) have been shifted by +240.0degrees:<divclass="wikimodel-emptyline"></div>457 +Ex: #5QB<cr> might return *5QB115200<cr> 569 569 570 - [[image:LSS-servo-origin.jpg]]<divclass="wikimodel-emptyline"></div>459 +Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect. 571 571 572 - OriginOffsetQuery(**QO**)<div class="wikimodel-emptyline"></div>461 +Configure Baud Rate (**CB**) 573 573 574 - Example:#5QO<cr>mightreturn*5QO-13<divclass="wikimodel-emptyline"></div>463 +Important Note: the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET. 575 575 576 - This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example,the new origin is at -1.3 degrees from the factory zero.<divclass="wikimodel-emptyline"></div>465 +Ex: #5CB9600<cr> 577 577 578 - ConfigureOriginOffset(**CO**)<divclass="wikimodel-emptyline"></div>467 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second. 579 579 580 - Example:#5CO-24<cr><divclass="wikimodel-emptyline"></div>469 +====== __18. {//Coming soon//}__ ====== 581 581 582 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 583 -<div class="wikimodel-emptyline"></div></div></div> 584 -{{/html}} 471 +Command coming soon.... 585 585 586 -====== __ AngularRange(**AR**)__ ======473 +====== __19. First Position (Degrees)__ ====== 587 587 588 -{{html wiki="true" clean="false"}} 589 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 590 -Example: #5AR1800<cr><div class="wikimodel-emptyline"></div> 475 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. 591 591 592 - This command allows youto temporarilychange the total angular range of the servoin tenths of degrees. This appliestothePosition inPulse(P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degreestotal, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div>477 +Query First Position in Degrees (**QFD**) 593 593 594 - [[image:LSS-servo-default.jpg]]<divclass="wikimodel-emptyline"></div>479 +Ex: #5QFD<cr> might return *5QFD64<cr> 595 595 596 - Below,the angularrange is restrictedto 180.0degrees,or -90.0to+90.0. Thecenterhas remainedunchanged.<divclass="wikimodel-emptyline"></div>481 +The reply above indicates that servo with ID 5 has a first position pulse of 1550 microseconds. If there is no first position value stored, the reply will be DIS 597 597 598 - [[image:LSS-servo-ar.jpg]]<divclass="wikimodel-emptyline"></div>483 +Configure First Position in Degrees (**CFD**) 599 599 600 - Finally, the angular range action command (ex.#5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:<divclass="wikimodel-emptyline"></div>485 +Ex: #5CD64<cr> 601 601 602 - [[image:LSS-servo-ar-o-1.jpg]]<divclass="wikimodel-emptyline"></div>487 +This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 603 603 604 -Query AngularRange(**QAR**)<divclass="wikimodel-emptyline"></div>489 +====== __20. Query Model String (**QMS**)__ ====== 605 605 606 -Ex ample: #5QAR<cr>might return *5AR1800, indicating the total angular range is 180.0 degrees.<divclass="wikimodel-emptyline"></div>491 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr> 607 607 608 - ConfigureAngularRange(**CAR**)<divclass="wikimodel-emptyline"></div>493 +This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 609 609 610 -This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 611 -<div class="wikimodel-emptyline"></div></div></div> 612 -{{/html}} 495 +====== __21. Query Serial Number (**QN**)__ ====== 613 613 614 - ======__AngularStiffness(**AS**)__ ======497 +Ex: #5QN<cr> might return *5QN12345678<cr> 615 615 616 -{{html wiki="true" clean="false"}} 617 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 618 -The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div> 499 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user. 619 619 620 - Ahighervalueof "angularstiffness":<divclass="wikimodel-emptyline"></div>501 +====== __22. Query Firmware (**QF**)__ ====== 621 621 622 -* The more torque will be applied to try to keep the desired position against external input / changes 623 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div> 503 +Ex: #5QF<cr> might return *5QF411<cr> 624 624 625 - A lowervalueon theother hand:<divclass="wikimodel-emptyline"></div>505 +The number in the reply represents the firmware version, in this example being 411. 626 626 627 -* Causes a slower acceleration to the travel speed, and a slower deceleration 628 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div> 507 +====== __23. Query Status (**Q**)__ ====== 629 629 630 -The defaultvaluefor stiffnessdependingonthefirmwaremaybe 0or 1.Greatervalues produceincreasinglyerratic behaviorandtheeffectcomesextremebelow-4and above+4.Maximumvaluesare-10to+10.<divclass="wikimodel-emptyline"></div>509 +The status query described what the servo is currently doing. The query returns an integer which must be looked up in the table below. Use the CLB advanced command to have the LED blink for certain statuses. 631 631 632 -Ex: #5 AS-2<cr><divclass="wikimodel-emptyline"></div>511 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 633 633 634 -This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div> 513 +|***Value returned (Q)**|**Status**|**Detailed description** 514 +|ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 515 +|ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 516 +|ex: *5Q2<cr>|2: Free moving|Motor driving circuit is not powered and horn can be moved freely 517 +|ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 518 +|ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 519 +|ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 520 +|ex: *5Q6<cr>|6: Holding|Keeping current position 521 +|ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 522 +|ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 523 +|ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 524 +|ex: *5Q10<cr>|10: Safe Mode|((( 525 +A safety limit has been exceeded (temperature, peak current or extended high current draw). 635 635 636 -Ex: #5QAS<cr><div class="wikimodel-emptyline"></div> 527 +Send a Q1 command to know which limit has been reached (described below). 528 +))) 637 637 638 -Queries the value being used.<div class="wikimodel-emptyline"></div> 530 +(% class="wikigeneratedid" %) 531 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode. 639 639 640 -Ex: #5CAS-2<cr><div class="wikimodel-emptyline"></div> 533 +|***Value returned (Q1)**|**Status**|**Detailed description** 534 +|ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 535 +|ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 536 +|ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 537 +|ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 641 641 642 -Writes the desired angular stiffness value to EEPROM. 643 -<div class="wikimodel-emptyline"></div></div></div> 644 -{{/html}} 539 +====== __24. Query Voltage (**QV**)__ ====== 645 645 646 - ======__AngularHoldingStiffness(**AH**)__ ======541 +Ex: #5QV<cr> might return *5QV11200<cr> 647 647 648 -{{html wiki="true" clean="false"}} 649 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 650 -The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 543 +The number returned has one decimal, so in the case above, servo with ID 5 has an input voltage of 11.2V (perhaps a three cell LiPo battery). 651 651 652 - Ex:#5AH3<cr><divclass="wikimodel-emptyline"></div>545 +====== __25. Query Temperature (**QT**)__ ====== 653 653 654 -T hissets the holdingstiffnessforservo #5to 3 forthat session.<divclass="wikimodel-emptyline"></div>547 +Ex: #5QT<cr> might return *5QT564<cr> 655 655 656 - QueryAngularHoldingStiffness(**QAH**)<divclass="wikimodel-emptyline"></div>549 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F. 657 657 658 - Ex:#5QAH<cr>might return *5QAH3<cr><divclass="wikimodel-emptyline"></div>551 +====== __26. Query Current (**QC**)__ ====== 659 659 660 - Thisreturnstheservo's angularholdingstiffness value.<divclass="wikimodel-emptyline"></div>553 +Ex: #5QC<cr> might return *5QC140<cr> 661 661 662 - ConfigureAngularHoldingStiffness(**CAH**)<div class="wikimodel-emptyline"></div>555 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A. 663 663 664 - Ex:#5CAH2<cr><divclass="wikimodel-emptyline"></div>557 +====== __27. Configure RC Mode (**CRC**)__ ====== 665 665 666 -This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 667 -<div class="wikimodel-emptyline"></div></div></div> 668 -{{/html}} 559 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 669 669 670 -====== __Angular Acceleration (**AA**)__ ====== 561 +|**Command sent**|**Note** 562 +|ex: #5CRC1<cr>|Change to RC position mode. 563 +|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 564 +|ex: #5CRC*<cr>|Where * is any number or value other than 1 or 2 (or no value): stay in smart mode. 671 671 672 -{{html wiki="true" clean="false"}} 673 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 674 -The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 566 +EX: #5CRC2<cr> 675 675 676 - Ex:#5AA30<cr><div class="wikimodel-emptyline"></div>568 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command. 677 677 678 -T hissets theangular accelerationfor servo#5to30degrees per second squared(°/s^^2^^).<divclass="wikimodel-emptyline"></div>570 +Important note:** **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), ensuring a common GND and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe. 679 679 680 - QueryAngularAcceleration (**QAA**)<divclass="wikimodel-emptyline"></div>572 +====== __28. **RESET**__ ====== 681 681 682 -Ex: #5 QAA<cr>mightreturn*5QAA30<cr><divclass="wikimodel-emptyline"></div>574 +Ex: #5RESET<cr> or #5RS<cr> 683 683 684 -This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 576 +This command does a "soft reset" (no power cycle required) and reverts all commands to those stored in EEPROM (i.e. configuration commands). 577 +Note: after a RESET command is received the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details. 685 685 686 - ConfigureAngularAcceleration (**CAA**)<divclass="wikimodel-emptyline"></div>579 +====== __29. **DEFAULT** & CONFIRM__ ====== 687 687 688 -Ex: #5 CAA30<cr><divclass="wikimodel-emptyline"></div>581 +Ex: #5DEFAULT<cr> 689 689 690 -This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 691 -<div class="wikimodel-emptyline"></div></div></div> 692 -{{/html}} 583 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 693 693 694 - ======__AngularDeceleration(**AD**)__======585 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr> 695 695 696 -{{html wiki="true" clean="false"}} 697 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 698 -The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 587 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command. 699 699 700 - Ex:#5AD30<cr><divclass="wikimodel-emptyline"></div>589 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 701 701 702 - Thissets the angular deceleration for servo #5 to30degreespersecond squared (°/s^^2^^).<div class="wikimodel-emptyline"></div>591 +====== __30. **UPDATE** & CONFIRM__ ====== 703 703 704 - QueryAngularDeceleration (**QAD**)<divclass="wikimodel-emptyline"></div>593 +Ex: #5UPDATE<cr> 705 705 706 - Ex:#5QAD<cr>might return*5QAD30<cr><divclass="wikimodel-emptyline"></div>595 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function. 707 707 708 - Thisreturnsthe servo's angular deceleration in degrees per secondsquared(°/s^^2^^).<divclass="wikimodel-emptyline"></div>597 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr> 709 709 710 - ConfigureAngularDeceleration(**CAD**)<divclass="wikimodel-emptyline"></div>599 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 711 711 712 - Ex:#5CAD30<cr><divclass="wikimodel-emptyline"></div>601 +Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 713 713 714 -This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 715 -<div class="wikimodel-emptyline"></div></div></div> 716 -{{/html}} 603 +== Details - Advanced == 717 717 718 - ======__GyreDirection(**G**)__======605 +The motion controller used in serial mode is not the same as the motion controller use in RC mode. RC mode is intended to add functionality to what would be considered "normal" RC behavior based on PWM input. 719 719 720 -{{html wiki="true" clean="false"}} 721 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 722 -"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div> 607 +====== __A1. Angular Stiffness (**AS**)__ ====== 723 723 724 - Ex:#5G-1<cr><divclass="wikimodel-emptyline"></div>609 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units. 725 725 726 - Thiscommand will cause servo #5'spositions to be inverted, effectively causing theservoto rotate inthe opposite directiongiven the same command. For example ina2WDrobot,servos are often physically installed back to back, therefore setting one ofthe servos to anegative gyration, thesame wheel command (ex WR30) to bothservos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div>611 +A positive value of "angular stiffness": 727 727 728 -Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div> 613 +* The more torque will be applied to try to keep the desired position against external input / changes 614 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 729 729 730 - Ex:#5QG<cr> might return*5QG-1<cr><divclass="wikimodel-emptyline"></div>616 +A negative value on the other hand: 731 731 732 -The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div> 618 +* Causes a slower acceleration to the travel speed, and a slower deceleration 619 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back 733 733 734 - ConfigureGyre(**CG**)<div class="wikimodel-emptyline"></div>621 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. 735 735 736 -Ex: #5 CG-1<cr><divclass="wikimodel-emptyline"></div>623 +Ex: #5AS-2<cr> 737 737 738 -This changes the gyre direction as described above and also writes to EEPROM. 739 -<div class="wikimodel-emptyline"></div></div></div> 740 -{{/html}} 625 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command. 741 741 742 - ======__First Position__ ======627 +Ex: #5QAS<cr> 743 743 744 -{{html wiki="true" clean="false"}} 745 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 746 -In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div> 629 +Queries the value being used. 747 747 748 - QueryFirst Position in Degrees (**QFD**)<divclass="wikimodel-emptyline"></div>631 +Ex: #5CAS<cr> 749 749 750 - Ex: #5QFD<cr> mightreturn*5QFD900<cr><divclass="wikimodel-emptyline"></div>633 +Writes the desired angular stiffness value to memory. 751 751 752 - Thereplyabove indicates that servowith ID 5 has a first positionof 90.0 degrees.Ifthereis nofirst positionvaluetored,thereply will be DIS.<div class="wikimodel-emptyline"></div>635 +====== __A2. Angular Holding Stiffness (**AH**)__ ====== 753 753 754 - ConfigureFirstPosition inDegrees(**CFD**)<divclass="wikimodel-emptyline"></div>637 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10. Note that when considering altering a stiffness value, the end effect depends on the mode being tested. 755 755 756 -Ex: #5 CD900<cr><divclass="wikimodel-emptyline"></div>639 +Ex: #5AH3<cr> 757 757 758 -This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 759 -<div class="wikimodel-emptyline"></div></div></div> 760 -{{/html}} 641 +This sets the holding stiffness for servo #5 to 3 for that session. 761 761 762 - ======__MaximumSpeed inDegrees (**SD**)__ ======643 +Query Angular Hold Stiffness (**QAH**) 763 763 764 -{{html wiki="true" clean="false"}} 765 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 766 -Ex: #5SD1800<cr><div class="wikimodel-emptyline"></div> 767 -This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 645 +Ex: #5QAH<cr> might return *5QAH3<cr> 768 768 769 - QuerySpeedinDegrees(**QSD**)<divclass="wikimodel-emptyline"></div>647 +This returns the servo's angular holding stiffness value. 770 770 771 - Ex: #5QSD<cr> might return*5QSD1800<cr><div class="wikimodel-emptyline"></div>649 +Configure Angular Hold Stiffness (**CAH**) 772 772 773 - Bydefault QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If#5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<divclass="wikimodel-emptyline"></div>651 +Ex: #5CAH2<cr> 774 774 775 -|**Command sent**|**Returned value (1/10 °)** 776 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 777 -|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 778 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 779 -|ex: #5QSD3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 653 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. Note that when considering altering a stiffness value, the end effect depends on the mode being tested. 780 780 781 - ConfigureSpeedinDegrees(**CSD**)<divclass="wikimodel-emptyline"></div>655 +====== __A3: Angular Acceleration (**AA**)__ ====== 782 782 783 -Ex: #5CSD1800<cr><div class="wikimodel-emptyline"></div> 784 -Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 785 -</div></div> 786 -{{/html}} 657 +The default value for angular acceleration is 100, which is the same as the maximum deceleration. Accepts values of between 1 and 100. Increments of 10 degrees per second squared. 787 787 788 - ====== __MaximumSpeed in RPM (**SR**)__ ======659 +Ex: #5AA30<cr> 789 789 790 -{{html wiki="true" clean="false"}} 791 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 792 -Ex: #5SR45<cr><div class="wikimodel-emptyline"></div> 793 -This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 661 +Query Angular Acceleration (**QAD**) 794 794 795 -Q uerySpeedinRPM (**QSR**)<divclass="wikimodel-emptyline"></div>663 +Ex: #5QA<cr> might return *5QA30<cr> 796 796 797 - Ex: #5QSR<cr> might return*5QSR45<cr><divclass="wikimodel-emptyline"></div>665 +Configure Angular Acceleration (**CAD**) 798 798 799 - Bydefault QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If#5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<divclass="wikimodel-emptyline"></div>667 +Ex: #5CA30<cr> 800 800 801 -|**Command sent**|**Returned value (1/10 °)** 802 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 803 -|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 804 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 805 -|ex: #5QSR3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 669 +====== __A4: Angular Deceleration (**AD**)__ ====== 806 806 807 - ConfigureSpeedinRPM (**CSR**)<divclass="wikimodel-emptyline"></div>671 +The default value for angular deceleration is 100, which is the same as the maximum acceleration. Values between 1 and 15 have the greatest impact. 808 808 809 -Ex: #5CSR45<cr><div class="wikimodel-emptyline"></div> 810 -Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 811 -</div></div> 812 -{{/html}} 673 +Ex: #5AD8<cr> 813 813 814 - ==Modifiers==675 +Query Angular Deceleration (**QAD**) 815 815 816 - ======__Speed (**S**, **SD**)modifier__======677 +Ex: #5QD<cr> might return *5QD8<cr> 817 817 818 -{{html wiki="true" clean="false"}} 819 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 820 -Example: #5P1500S750<cr><div class="wikimodel-emptyline"></div> 821 -Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 822 -Example: #5D0SD180<cr><div class="wikimodel-emptyline"></div> 823 -Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second.<div class="wikimodel-emptyline"></div> 824 -Query Speed (**QS**)<div class="wikimodel-emptyline"></div> 825 -Example: #5QS<cr> might return *5QS300<cr><div class="wikimodel-emptyline"></div> 826 -This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div> 827 -</div></div> 828 -{{/html}} 679 +Configure Angular Deceleration (**CAD**) 829 829 830 - ======__Timed move (**T**) modifier__ ======681 +Ex: #5CD8<cr> 831 831 832 -{{html wiki="true" clean="false"}} 833 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 834 -Example: #5P1500T2500<cr><div class="wikimodel-emptyline"></div> 683 +====== __A5: Motion Control (**EM**)__ ====== 835 835 836 -Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 837 -**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div> 838 -</div></div> 839 -{{/html}} 685 +The command EM0 disables use of the motion controller (acceleration, velocity / travel, deceleration). As such, the servo will move at full speed for all motion commands. The command EM1 enables use of the motion controller. 840 840 841 - ======__CurrentHalt&Hold(**CH**)modifier__======687 +Note that if the modifiers S or T are used, it is assumed that motion control is desired, and for that command, EM1 will be used. 842 842 843 -{{html wiki="true" clean="false"}} 844 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 845 -Example: #5D1423CH400<cr><div class="wikimodel-emptyline"></div> 689 +====== __A6. Configure LED Blinking (**CLB**)__ ====== 846 846 847 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div> 848 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 849 -</div></div> 850 -{{/html}} 691 +This command allows you to control when the RGB LED will blink the user set color (see [[16. RGB LED>>||anchor="H16.RGBLED28LED29"]] for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value: 851 851 852 -====== __Current Limp (**CL**) modifier__ ====== 693 +(% style="width:195px" %) 694 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 695 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 696 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1 697 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2 698 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 699 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 700 +|(% style="width:134px" %)Free|(% style="width:58px" %)16 701 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 702 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63 853 853 854 -{{html wiki="true" clean="false"}} 855 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 856 -Example: #5D1423CL400<cr><div class="wikimodel-emptyline"></div> 704 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below: 857 857 858 -This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div> 859 -This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 860 -</div></div> 861 -{{/html}} 706 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid) 707 +Ex: #5CLB1<cr> only blink when limp (1) 708 +Ex: #5CLB2<cr> only blink when holding (2) 709 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12) 710 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48) 711 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32) 862 862 863 - ==Telemetry==713 +RESETTING the servo is needed. 864 864 865 -====== __ QueryVoltage(**QV**)__ ======715 +====== __A7. Current Halt & Hold (**CH**)__ ====== 866 866 867 -{{html wiki="true" clean="false"}} 868 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 869 -Ex: #5QV<cr> might return *5QV11200<cr><div class="wikimodel-emptyline"></div> 870 -The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div> 871 -</div></div> 872 -{{/html}} 717 +This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR. 873 873 874 - ======__Query Temperature (**QT**)__ ======719 +Ex: #5D1423CH400<cr> 875 875 876 -{{html wiki="true" clean="false"}} 877 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 878 -Ex: #5QT<cr> might return *5QT564<cr><div class="wikimodel-emptyline"></div> 879 -The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div> 880 -</div></div> 881 -{{/html}} 721 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position. 882 882 883 -====== __ QueryCurrent (**QC**)__ ======723 +====== __A8. Current Limp (**CL**)__ ====== 884 884 885 -{{html wiki="true" clean="false"}} 886 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 887 -Ex: #5QC<cr> might return *5QC140<cr><div class="wikimodel-emptyline"></div> 888 -The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div> 889 -</div></div> 890 -{{/html}} 725 +This modifier, released in firmware v367, can be added to the following actions: D; MD; WD; WR. 891 891 892 - ======__Query Model String (**QMS**)__ ======727 +Ex: #5D1423CH400<cr> 893 893 894 -{{html wiki="true" clean="false"}} 895 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 896 -Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr><div class="wikimodel-emptyline"></div> 897 -This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div> 898 -</div></div> 899 -{{/html}} 729 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp. 900 900 901 -====== __Query Firmware (**QF**)__ ====== 902 - 903 -{{html wiki="true" clean="false"}} 904 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 905 -Ex: #5QF<cr> might return *5QF368<cr><div class="wikimodel-emptyline"></div> 906 -The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div> 907 -The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div> 908 -</div></div> 909 -{{/html}} 910 - 911 -====== __Query Serial Number (**QN**)__ ====== 912 - 913 -{{html wiki="true" clean="false"}} 914 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 915 -Ex: #5QN<cr> might return *5QN12345678<cr><div class="wikimodel-emptyline"></div> 916 -The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div> 917 -</div></div> 918 -{{/html}} 919 - 920 -== RGB LED == 921 - 922 -====== __LED Color (**LED**)__ ====== 923 - 924 -{{html wiki="true" clean="false"}} 925 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 926 -Ex: #5LED3<cr><div class="wikimodel-emptyline"></div> 927 -This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div> 928 -0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div> 929 -Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div> 930 -Ex: #5QLED<cr> might return *5QLED5<cr><div class="wikimodel-emptyline"></div> 931 -This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div> 932 -Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div> 933 -Ex: #5CLED3<cr><div class="wikimodel-emptyline"></div> 934 -Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div> 935 -</div></div> 936 -{{/html}} 937 - 938 -====== __Configure LED Blinking (**CLB**)__ ====== 939 - 940 -{{html wiki="true" clean="false"}} 941 -<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 942 -This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div> 943 - 944 -(% style="width:195px" %) 945 -|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 946 -|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 947 -|(% style="width:134px" %)Limp|(% style="width:58px" %)1 948 -|(% style="width:134px" %)Holding|(% style="width:58px" %)2 949 -|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 950 -|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 951 -|(% style="width:134px" %)Free|(% style="width:58px" %)16 952 -|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 953 -|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div> 954 - 955 -To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div> 956 -Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div> 957 -Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div> 958 -Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div> 959 -Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div> 960 -Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div> 961 -Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div> 962 -RESETTING the servo is needed.<div class="wikimodel-emptyline"></div> 963 -</div></div> 964 -{{/html}} 965 - 966 966 = RGB LED Patterns = 967 967 968 968 The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]]
- XWiki.StyleSheetExtension[0]
-
- Caching policy
-
... ... @@ -1,1 +1,0 @@ 1 -long - Code
-
... ... @@ -1,13 +1,0 @@ 1 -div.cmdcnt 2 -{ 3 - display:table-row; 4 -} 5 -div.cmdpad 6 -{ 7 - display:table-cell; 8 - padding:16px; 9 -} 10 -div.cmdtxt 11 -{ 12 - display:table-cell; 13 -} - Content Type
-
... ... @@ -1,1 +1,0 @@ 1 -CSS - Name
-
... ... @@ -1,1 +1,0 @@ 1 -DivTextIndentation - Parse content
-
... ... @@ -1,1 +1,0 @@ 1 -0 - Use this extension
-
... ... @@ -1,1 +1,0 @@ 1 -currentPage