Changes for page LSS Communication Protocol
Last modified by Eric Nantel on 2025/06/06 07:47
Change comment: There is no comment for this version
Summary
-
Page properties (4 modified, 0 added, 0 removed)
-
Attachments (0 modified, 1 added, 0 removed)
Details
- Page properties
-
- Parent
-
... ... @@ -1,1 +1,1 @@ 1 - LynxmotionSmartServo(LSS).WebHome1 +lynxmotion-smart-servo.WebHome - Author
-
... ... @@ -1,1 +1,1 @@ 1 -xwiki:XWiki. RB11 +xwiki:XWiki.ENantel - Hidden
-
... ... @@ -1,1 +1,1 @@ 1 - true1 +false - Content
-
... ... @@ -1,634 +1,958 @@ 1 1 (% class="wikigeneratedid" id="HTableofContents" %) 2 -** TableofContents**2 +**Page Contents** 3 3 4 4 {{toc depth="3"/}} 5 5 6 -= Protocol Concepts=6 += Serial Protocol = 7 7 8 -The Lynxmotion Smart Servo (LSS) protocol was created in order to be as simple and straightforward as possible from a user perspective, while at the same time ryingto staycompact and robust yet highly versatile.Almost everything one might expect to be able to configure for a smart servo8 +The Lynxmotion Smart Servo (LSS) serial protocol was created in order to be as simple and straightforward as possible from a user perspective ("human readable format"), while at the same time staying compact and robust yet highly versatile. The protocol was based on Lynxmotion's SSC-32 & SSC-32U RC servo controllers and almost everything one might expect to be able to configure for a smart servomotor is available. 9 9 10 +In order to be able to control each servo individually with commands, the first step should be to assign a different ID number to each servo (see details on CID [[here>>doc:||anchor="HIdentificationNumber28ID29"]]). Once this has been done, only the servo(s) which have been assigned to the ID sent as part of the command will follow that command. There is currently no CRC or checksum implemented as part of the protocol. 11 + 10 10 == Session == 11 11 12 -A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset. 14 +{{html wiki="true" clean="false"}} 15 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 16 +A "session" is defined as the time between when the servo is powered ON to when it is powered OFF or reset.<div class="wikimodel-emptyline"></div> 13 13 18 +**Note #1:** For a given session, the action related to a specific commands overrides the stored value in EEPROM.<div class="wikimodel-emptyline"></div> 19 +**Note #2:** During the power-on / reset process the LSS cannot accept commands for a small amount of time (1.25 s).<div class="wikimodel-emptyline"></div> 20 +You can ensure the LSS is ready by using a query command to check for response (ex: #[id]Q\r or #[id]QID\r). If the LSS is ready for commands (initialized) it will respond to the query. A timeout between 50-100 ms is recommended to compensate for drivers, OS and buffering delays. 21 +<div class="wikimodel-emptyline"></div></div></div> 22 +{{/html}} 23 + 14 14 == Action Commands == 15 15 16 -Action commands are sent serially to the servo's Rx pin and must be set in the following format: 26 +{{html wiki="true" clean="false"}} 27 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 28 +Action commands tell the servo, within that session, to do something (i.e. "take an action"). The types of action commands which can be sent are described below, and they cannot be combined with other commands such as queries or configurations. Only one action command can be sent at a time. Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or [[virtual positions>>||anchor="HVirtualAngularPosition"]]. Action commands are sent serially to the servo's Rx pin and must be sent in the following format:<div class="wikimodel-emptyline"></div> 17 17 18 -1. Start with a number sign # (U+0023) 30 +1. Start with a number sign **#** (Unicode Character: U+0023) 19 19 1. Servo ID number as an integer 20 -1. Action command (one tothreeletters, no spaces, capital or lower case)32 +1. Action command (one or more letters, no whitespace, capital or lower case) 21 21 1. Action value in the correct units with no decimal 22 -1. End with a c ontrol / carriage return'<cr>'34 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 23 23 24 24 ((( 25 -Ex: #5 PD1443<cr>37 +Ex: #5D1800<cr><div class="wikimodel-emptyline"></div> 26 26 27 -Move servo with ID #5 to a position of 144.3 degrees. 39 +This sends a serial command to all servo's RX pins which are connected to the bus and only servo(s) with ID #5 will move to a position (1800 in tenths of degrees) of 180.0 degrees. Any servo on the bus which does not have ID 5 will take no action when receiving this command. 40 +<div class="wikimodel-emptyline"></div></div></div> 41 +{{/html}} 28 28 29 - Actioncommands cannot be combined with query commands,and only one action command can be sent at a time.43 +== Modifiers == 30 30 31 -Action commands are session-specific, therefore once a servo is power cycled, it will not have any "memory" of previous actions or virtual positions (as described at the bottom of this page). 45 +{{html wiki="true" clean="false"}} 46 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 47 +Modifiers can only be used with certain **action commands**. The format to include a modifier is:<div class="wikimodel-emptyline"></div> 32 32 33 -== Action Modifiers == 34 - 35 -Two commands can be used as action modifiers only: Timed Move and Speed. The format is: 36 - 37 -1. Start with a number sign # (U+0023) 49 +1. Start with a number sign **#** (Unicode Character: U+0023) 38 38 1. Servo ID number as an integer 39 39 1. Action command (one to three letters, no spaces, capital or lower case) 40 40 1. Action value in the correct units with no decimal 41 -1. Modifier command (one letter) 53 +1. Modifier command (one letter to too letters) 42 42 1. Modifier value in the correct units with no decimal 43 -1. End with a c ontrol / carriage return'<cr>'55 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D) 44 44 45 -Ex: #5 P1456T1263<cr>57 +Ex: #5D1800T1500<cr><div class="wikimodel-emptyline"></div> 46 46 47 -Results in the servo rotating from the current angular position to a pulse position of 1456 in 1263 milliseconds. 59 +This results in the servo with ID #5 rotating to a position (1800 in tenths of degrees) of 180.0 degrees in a time ("T") of 1500 milliseconds (1.5 seconds).<div class="wikimodel-emptyline"></div> 60 +<div class="wikimodel-emptyline"></div></div></div> 61 +{{/html}} 48 48 49 -Action modifiers can only be used with certain commands. 50 -))) 63 +== Query Commands == 51 51 65 +{{html wiki="true" clean="false"}} 66 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 67 +Query commands request information from the servo. They are received via the Rx pin of the servo, and the servo's reply is sent via the servo's Tx pin. Using separate lines for Tx and Rx is called "full duplex". Query commands are also similar to action and configuration commands and must use the following format:<div class="wikimodel-emptyline"></div> 68 + 69 +1. Start with a number sign **#** (Unicode Character: U+0023) 70 +1. Servo ID number as an integer 71 +1. Query command (one to four letters, no spaces, capital or lower case) 72 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 73 + 74 +Ex: #5QD<cr> Query position in (tenth of) degrees for servo #5<div class="wikimodel-emptyline"></div> 75 + 76 +The query will return a serial string (almost instantaneously) via the servo's Tx pin with the following format: 77 + 78 +1. Start with an asterisk * (Unicode Character: U+0023) 79 +1. Servo ID number as an integer 80 +1. Query command (one to four letters, no spaces, capital letters) 81 +1. The reported value in the units described, no decimals. 82 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 83 + 84 +There is currently no option to control how fast a servo replies after it has received a query command, therefore when sending a query command to the bus, the controller should be prepared to immediately "listen" for and parse the reply. Sending multiple queries to multiple servos on a bus in fast succession may result in replies overlapping and giving incorrect or corrupt data. As such, the controller should receive a reply before sending a new query command. A reply to the query sent above might be:<div class="wikimodel-emptyline"></div> 85 + 86 +Ex: *5QD1800<cr><div class="wikimodel-emptyline"></div> 87 + 88 +This indicates that servo #5 is currently at 180.0 degrees (1800 tenths of degrees). 89 +<div class="wikimodel-emptyline"></div></div></div> 90 +{{/html}} 91 + 52 52 == Configuration Commands == 53 53 54 -Configuration commands affect the servo's current session* but unlike action commands, configuration commands are written to EEPROM and are retained even if the servo loses power (therefore NOT session specific). Not all action commands have a corresponding configuration and vice versa. Certain configurations are retained for when the servo is used in RC model. More information can be found on the [[LSS - RC PWM page>>doc:Lynxmotion Smart Servo (LSS).LSS - RC PWM.WebHome]]. 94 +{{html wiki="true" clean="false"}} 95 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 96 +Configuration commands and corresponding values affect a servo's defaults which are written to and read from the servo's EEPROM.<div class="wikimodel-emptyline"></div> 55 55 56 -1. Start with a number sign # (U+0023) 98 +These configurations are retained in memory after the servo is reset or power is cut / lost. Some configuration commands affect the session, while others do not. In the Command table below, the column "Session" denotes if the configuration command affects the session. Not all action commands have a corresponding configuration command and vice versa. More information about which configuration commands are retained when in RC mode can be found on the [[LSS - RC PWM page>>doc:lynxmotion-smart-servo.lss-radio-control-pwm.WebHome]]. Configuration commands are not cumulative. This means that if two same configuration commands are sent, one after the next, only the last configuration is used and stored.<div class="wikimodel-emptyline"></div> 99 + 100 +The format to send a configuration command is identical to that of an action command:<div class="wikimodel-emptyline"></div> 101 + 102 +1. Start with a number sign **#** (Unicode Character: U+0023) 57 57 1. Servo ID number as an integer 58 -1. Configuration command (two to threeletters, no spaces, capital or lower case)104 +1. Configuration command (two to four letters, no spaces, capital or lower case) 59 59 1. Configuration value in the correct units with no decimal 60 -1. End with a c ontrol / carriage return'<cr>'106 +1. End with a carriage return **\r** or **<cr>** Unicode Character (U+000D)<div class="wikimodel-emptyline"></div> 61 61 62 -Ex: #5CO-50 <cr>108 +Ex: #5CO-50<cr><div class="wikimodel-emptyline"></div> 63 63 64 - Assigns an absolute origin offset of -5.0 degrees (with respect to factory origin)to servo#5and changes the offset for that session to-5.0degrees.110 +This configures an absolute origin offset ("CO") with respect to factory origin of servo with ID #5 and changes the offset for that session to -5.0 degrees (50 tenths of degrees). Once the servo is powered off and on, zeroing the servo will cause it to move to -5.0 degrees with respect to the factory origin and report its position as 0 degrees. Configuration commands can be undone / reset either by sending the servo's default value for that configuration, or by doing a factory reset that clears all configurations (through the button menu or with DEFAULT command described below).<div class="wikimodel-emptyline"></div> 65 65 66 - Configurationcommandsare not cumulative, inthat iftwo configurationsaresent at anytime,only the last configuration is usedand stored.112 +**Session vs Configuration Query**<div class="wikimodel-emptyline"></div> 67 67 68 - *ImportantNote:the oneexceptionis thebaudrate-the servo'scurrent sessionretainsthegivenbaudrate.Thenewbaudrate willonly beinplacewhenthe servoispower cycled.114 +By default, the query command returns the session's value. Should no action commands have been sent to change the session value, it will return the value saved in EEPROM which will either be the servo's default, or modified with a configuration command. In order to query the value stored in EEPROM (configuration), add a '1' to the query command:<div class="wikimodel-emptyline"></div> 69 69 70 - ==QueryCommands ==116 +Ex: #5CSR20<cr> immediately sets the maximum speed for servo #5 to 20rpm (explained below) and changes the value in memory.<div class="wikimodel-emptyline"></div> 71 71 72 - Querycommandsaresenteriallyto the servo'sRxpin and mustbeetin the followingformat:118 +After RESET, a command of #5SR4<cr> sets the session's speed to 4rpm, but does not change the configuration value in memory. Therefore:<div class="wikimodel-emptyline"></div> 73 73 74 -1. Start with a number sign # (U+0023) 75 -1. Servo ID number as an integer 76 -1. Query command (one to three letters, no spaces, capital or lower case) 77 -1. End with a control / carriage return '<cr>' 120 +#5QSR<cr> or #5QSR0<cr> would return *5QSR4<cr> which represents the value for that session, whereas<div class="wikimodel-emptyline"></div> 78 78 79 - (((80 - Ex: #5QD<cr>Queryposition indegrees for servo #581 - )))122 +#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 123 +<div class="wikimodel-emptyline"></div></div></div> 124 +{{/html}} 82 82 83 -((( 84 -The query will return a value via the Tx pin with the following format: 126 +== Virtual Angular Position == 85 85 86 -1. Start with an asterisk (U+002A) 87 -1. Servo ID number as an integer 88 -1. Query command (one to three letters, no spaces, capital letters) 89 -1. The reported value in the units described, no decimals. 90 -1. End with a control / carriage return '<cr>' 128 +{{html wiki="true" clean="false"}} 129 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 130 +The ability to store a "virtual angular position" is a feature which allows for rotation beyond 360 degrees, permitting multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to a 360.0 degree circle and can be obtained by taking the modulus (with respect to 360 degrees) of the value. For example if the virtual position is reported as 15335 (or 1533.5 degrees), taking the modulus would give 93.5 degrees (3600 * 4 + 935 = 15335) as the absolute position (assuming no origin offset).<div class="wikimodel-emptyline"></div> 91 91 92 -((( 93 -Ex: *5QD1443<cr> 94 -))) 132 +[[image:LSS-servo-positions.jpg]]<div class="wikimodel-emptyline"></div> 95 95 96 -Indic atesthatservo#5is currentlyat 144.3 degrees.134 +In this example, the gyre direction (explained below, a.k.a. "rotation direction") is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. The following command is sent:<div class="wikimodel-emptyline"></div> 97 97 98 - **SessionvsConfigurationQuery**136 +#1D-300<cr> This causes the servo to move to -30.0 degrees (green arrow)<div class="wikimodel-emptyline"></div> 99 99 100 - By default, the querycommandreturnsthe sessions'value;shouldnoaction commandshave beensent tochange,it will returnthevalueavedinEEPROM fromthelastconfigurationcommand.138 +#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow)<div class="wikimodel-emptyline"></div> 101 101 102 - In ordertoquerythe value inEEPROM,add a'1'to thequerycommand.140 +#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees plus 60.0 degrees (420.0 - 360.0), with a virtual position of -420.0 degrees.<div class="wikimodel-emptyline"></div> 103 103 104 - Ex:#5CSR20<cr>setsthe maximumspeedfor servo#5to20rpmupon RESET (explainedbelow).142 +Although the final physical position would be the same as if the servo were commanded to move to -60.0 degrees, the servo is in fact at -420.0 degrees.<div class="wikimodel-emptyline"></div> 105 105 106 - AfterRESET:#5SR4<cr>sets the session's speedto4rpm.144 +#1D4800<cr> This new command is sent which would then cause the servo to rotate from -420.0 degrees to 480.0 degrees (blue arrow), which would be a total of 900 degrees of clockwise rotation, or 2.5 complete rotations.<div class="wikimodel-emptyline"></div> 107 107 108 -# 5QSR<cr>wouldreturn*5QSR4<cr>whichrepresents thevalueforthatsession.146 +#1D3300<cr> would cause the servo to rotate from 480.0 degrees to 330.0 degrees (yellow arrow).<div class="wikimodel-emptyline"></div> 109 109 110 -#5QSR1<cr> would return *5QSR20<cr> which represents the value in EEPROM 148 +If the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). The virtual position range at power-up is [-180.0°, 180.0°]. 149 +<div class="wikimodel-emptyline"></div></div></div> 150 +{{/html}} 111 111 112 -= =Virtual AngularPosition==152 += Command List = 113 113 114 - {Inprogress}154 +**Latest firmware version currently : 368.29.14** 115 115 116 -A "virtual position" is one which allows for multiple rotations of the output horn, moving the center position and more. The "absolute position" would be the angle of the output shaft with respect to 360.0 degrees. 156 +|(% colspan="10" style="color:orange; font-size:18px" %)**Communication Setup** 157 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 158 +| |Soft **Reset**|(% style="text-align:center" %)RESET|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Soft reset. See command for details. 159 +| |**Default** Configuration|(% style="text-align:center" %)DEFAULT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Revert to firmware default values. See command for details 160 +| |Firmware **Update** Mode|(% style="text-align:center" %)UPDATE|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Update firmware. See command for details. 161 +| |**Confirm** Changes|(% style="text-align:center" %)CONFIRM|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 162 +| |**C**hange to **RC**|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)CRC|(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Change to RC mode 1 (position) or 2 (wheel). 163 +| |**ID** #|(% style="text-align:center" %) |(% style="text-align:center" %)QID|(% style="text-align:center" %)CID|(% style="text-align:center" %) |(% style="text-align:center" %)✓|0| |Reset required after change. ID 254 is a "broadcast" which all servos respond to. 164 +| |**B**audrate|(% style="text-align:center" %) |(% style="text-align:center" %)QB|(% style="text-align:center" %)CB|(% style="text-align:center" %) |(% style="text-align:center" %)✓|115200| |Reset required after change. 117 117 118 -[[image:LSS-servo-positions.jpg]] 166 +|(% colspan="10" style="color:orange; font-size:18px" %)**Motion** 167 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 168 +| |Position in **D**egrees|(% style="text-align:center" %)D|(% style="text-align:center" %)QD/QDT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 169 +| |**M**ove in **D**egrees (relative)|(% style="text-align:center" %)MD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°| 170 +| |**W**heel mode in **D**egrees|(% style="text-align:center" %)WD|(% style="text-align:center" %)QWD/QVT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|A.K.A. "Speed mode" or "Continuous rotation" 171 +| |**W**heel mode in **R**PM|(% style="text-align:center" %)WR|(% style="text-align:center" %)QWR|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |RPM|A.K.A. "Speed mode" or "Continuous rotation" 172 +| |Position in **P**WM|(% style="text-align:center" %)P|(% style="text-align:center" %)QP|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us|Inherited from SSC-32 serial protocol 173 +| |**M**ove in PWM (relative)|(% style="text-align:center" %)M|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |us| 174 +| |**R**aw **D**uty-cycle **M**ove|(% style="text-align:center" %)RDM|(% style="text-align:center" %)QMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |-1023 to 1023 integer|Positive values : CW / Negative values : CCW 175 +| |**Q**uery Status|(% style="text-align:center" %) |(% style="text-align:center" %)Q|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1 to 8 integer|See command description for details 176 +| |**L**imp|(% style="text-align:center" %)L|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 177 +| |**H**alt & Hold|(% style="text-align:center" %)H|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 119 119 120 -Example: Gyre direction / rotation is positive (clockwise), and origin offset has not been modified. Each square represents 30 degrees. 179 +|(% colspan="10" style="color:orange; font-size:18px" %)**Motion Setup** 180 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 181 +| |**E**nable **M**otion Profile|(% style="text-align:center" %)EM|(% style="text-align:center" %)QEM|(% style="text-align:center" %)CEM|(% style="text-align:center" %) |(% style="text-align:center" %)✓|1| |EM1: trapezoidal motion profile / EM0: no motion profile 182 +| |**F**ilter **P**osition **C**ount|(% style="text-align:center" %)FPC|(% style="text-align:center" %)QFPC|(% style="text-align:center" %)CFPC|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|5| |Affects motion only when motion profile is disabled (EM0) 183 +| |**O**rigin Offset|(% style="text-align:center" %)O|(% style="text-align:center" %)QO|(% style="text-align:center" %)CO|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|1/10°| 184 +| |**A**ngular **R**ange|(% style="text-align:center" %)AR|(% style="text-align:center" %)QAR|(% style="text-align:center" %)CAR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1800|1/10°| 185 +| |**A**ngular **S**tiffness|(% style="text-align:center" %)AS|(% style="text-align:center" %)QAS|(% style="text-align:center" %)CAS|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|0|-4 to +4 integer|Suggested values are between 0 to +4 186 +| |**A**ngular **H**olding Stiffness |(% style="text-align:center" %)AH|(% style="text-align:center" %)QAH|(% style="text-align:center" %)CAH|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|4|-10 to +10 integer| 187 +| |**A**ngular **A**cceleration|(% style="text-align:center" %)AA|(% style="text-align:center" %)QAA|(% style="text-align:center" %)CAA|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 188 +| |**A**ngular **D**eceleration|(% style="text-align:center" %)AD|(% style="text-align:center" %)QAD|(% style="text-align:center" %)CAD|(% style="text-align:center" %) |(% style="text-align:center" %)✓|100|°/s^^2^^|Increments of 10°/s^^2^^. Only when motion profile is enabled (EM1). 189 +| |**G**yre Direction|(% style="text-align:center" %)G|(% style="text-align:center" %)QG|(% style="text-align:center" %)CG|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|1| |Gyre / rotation direction: 1= CW (clockwise) -1 = CCW (counter-clockwise) 190 +| |**F**irst Position (**D**eg)|(% style="text-align:center" %) |(% style="text-align:center" %)QFD|(% style="text-align:center" %)CFD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|No value|1/10°|Reset required after change. 191 +| |**M**aximum **M**otor **D**uty|(% style="text-align:center" %)MMD|(% style="text-align:center" %)QMMD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓|1023|255 to 1023 integer| 192 +| |Maximum **S**peed in **D**egrees|(% style="text-align:center" %)SD|(% style="text-align:center" %)QSD|(% style="text-align:center" %)CSD|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|°/s|SD overwrites SR / CSD overwrites CSR and vice-versa 193 +| |Maximum **S**peed in **R**PM|(% style="text-align:center" %)SR|(% style="text-align:center" %)QSR|(% style="text-align:center" %)CSR|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓|Max|RPM|SD overwrites SR / CSD overwrites CSR and vice-versa 121 121 122 -#1D-300<cr> The servo is sent a command to move to -30.0 degrees (green arrow) 195 +|(% colspan="10" style="color:orange; font-size:18px" %)**Modifiers** 196 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Modifier**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 197 +| |**S**peed|(% style="text-align:center" %)S|(% style="text-align:center" %)QS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |uS/s |For P action command 198 +| |**S**peed in **D**egrees|(% style="text-align:center" %)SD|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |°/s|For D and MD action commands 199 +| |**T**imed move|(% style="text-align:center" %)T|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |ms|Modifier only for P, D and MD. Time can change based on load 200 +| |**C**urrent **H**old|(% style="text-align:center" %)CH|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 201 +| |**C**urrent **L**imp|(% style="text-align:center" %)CL|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA|Modifier for D, MD, WD and WR 123 123 124 -#1D2100<cr> This second position command is sent to the servo, which moves it to 210.0 degrees (orange arrow) 203 +|(% colspan="10" style="color:orange; font-size:18px" %)**Telemetry** 204 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 205 +| |**Q**uery **V**oltage|(% style="text-align:center" %) |(% style="text-align:center" %)QV|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mV| 206 +| |**Q**uery **T**emperature|(% style="text-align:center" %) |(% style="text-align:center" %)QT|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |1/10°C| 207 +| |**Q**uery **C**urrent|(% style="text-align:center" %) |(% style="text-align:center" %)QC|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| |mA| 208 +| |**Q**uery **M**odel **S**tring|(% style="text-align:center" %) |(% style="text-align:center" %)QMS|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the model of servo (ex: LSS-ST1, LSS-HS1, LSS-HT1) 209 +| |**Q**uery **F**irmware Version|(% style="text-align:center" %) |(% style="text-align:center" %)QF|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | | 210 +| |**Q**uery Serial **N**umber|(% style="text-align:center" %) |(% style="text-align:center" %)QN|(% style="text-align:center" %) |(% style="text-align:center" %) |(% style="text-align:center" %)✓| | |Returns the unique serial number for the servo 125 125 126 -#1D-4200<cr> This next command rotates the servo counterclockwise to a position of -420 degrees (red arrow), which means one full rotation of 360 degrees, stopping at an absolute position of 60.0 degrees (420.0-360.0), with a virtual position of -420.0 degrees. 212 +|(% colspan="10" style="color:orange; font-size:18px" %)**RGB LED** 213 +|(% style="width:25px" %) |(% style="width:200px" %)**Description**|(% style="text-align:center; width:100px" %)**Action**|(% style="text-align:center; width:75px" %)**Query**|(% style="text-align:center; width:75px" %)**Config**|(% style="text-align:center; width:75px" %)**RC**|(% style="text-align:center; width:75px" %)**Serial**|(% style="width:100px" %)**Default**|(% style="width:170px" %)**Unit**|**Notes** 214 +| |**LED** Color|(% style="text-align:center" %)LED|(% style="text-align:center" %)QLED|(% style="text-align:center" %)CLED|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 7 integer|0=Off; 1=Red; 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White 215 +| |**C**onfigure **L**ED **B**linking|(% style="text-align:center" %) |(% style="text-align:center" %)QLB|(% style="text-align:center" %)CLB|(% style="text-align:center" %)✓|(% style="text-align:center" %)✓| |0 to 63 integer|Reset required after change. See command for details. 127 127 128 - Althoughthefinal physicalpositionwould be thesame asiftheservowere commandedto move to-60.0 degrees, theservois in factat -420.0 degrees.217 += (% style="color:inherit; font-family:inherit" %)Details(%%) = 129 129 130 - #1D4800<cr>Thisnew command issentwhich would thencause theservotorotatefrom-420.0 degrees to 480.0 degrees (blue arrow), whichwould bea total of 900 degrees of clockwiserotation,or 2.5 completerotations.219 +== (% style="color:inherit; font-family:inherit" %)Communication Setup(%%) == 131 131 132 - #1D3300<cr>would causetheservotorotate from 480.0 degrees to 330.0 degrees (yellow arrow).221 +====== __Reset__ ====== 133 133 134 -If / once the servo loses power or is power cycled, it also loses the virtual position associated with that session. For example, if the virtual position was 480.0 degrees before power is cycled, upon power up the servo's position will be read as +120.0 degrees from zero (assuming center position has not been modified). 135 -))) 223 +{{html wiki="true" clean="false"}} 224 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 225 +Ex: #5RESET<cr><div class="wikimodel-emptyline"></div> 226 +This command does a "soft reset" and reverts all commands to those stored in EEPROM (i.e. configuration commands). 227 +Note: after a RESET command is received, the LSS will restart and perform initilization again, making it unavailable on the bus for a bit. See [[Session>>||anchor="HSession"]], note #2 for more details.<div class="wikimodel-emptyline"></div> 228 +</div></div> 229 +{{/html}} 136 136 137 -= CommandList=231 +====== __Default & confirm__ ====== 138 138 139 -|= #|=Description|= Action|= Query|= Config|= RC|= Serial|= Units|= Notes 140 -| 1|[[**L**imp>>||anchor="H1.Limp28L29"]]| L| | | | ✓|none| 141 -| 2|[[**H**alt & Hold>>||anchor="H2.Halt26Hold28H29"]]| H| | | | ✓|none| 142 -| 3|[[**T**imed move>>||anchor="H3.Timedmove28T29"]]| T| | | | ✓|milliseconds| Modifier only (P, D, MD) 143 -| 4|[[**S**peed>>||anchor="H4.Speed28S29"]]| S| | | | ✓|microseconds / second| Modifier only (P) 144 -| 5|[[**M**ove in **D**egrees (relative)>>||anchor="H5.28Relative29MoveinDegrees28MD29"]]| MD| | | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 145 -| 6|[[**O**rigin Offset>>||anchor="H6.OriginOffsetAction28O29"]]| O| QO| CO| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 146 -| 7|[[**A**ngular **R**ange>>||anchor="H7.AngularRange28AR29"]]| AR| QAR| CAR| ✓| ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 147 -| 8|[[Position in **P**ulse>>||anchor="H8.PositioninPulse28P29"]]| P| QP| | | ✓|microseconds|((( 148 -See details below 149 -))) 150 -| 9|[[Position in **D**egrees>>||anchor="H9.PositioninDegrees28D29"]]| D| QD| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 151 -| 10|[[**W**heel mode in **D**egrees>>||anchor="H10.WheelModeinDegrees28WD29"]]| WD| QWD| | | ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|A.K.A. "Speed mode" or "Continuous rotation" 152 -| 11|[[**W**heel mode in **R**PM>>||anchor="H11.WheelModeinRPM28WR29"]]| WR| QWR| | | ✓| rpm|A.K.A. "Speed mode" or "Continuous rotation" 153 -| 12|[[Max **S**peed in **D**egrees>>||anchor="H12.SpeedinDegrees28SD29"]]| SD| QSD| CSD| ✓| ✓|tenths of degrees per second (ex 248 = 24.8 degrees per second)|QSD: Add modifier "2" for instantaneous speed 154 -| 13|[[Max **S**peed in **R**PM>>||anchor="H13.SpeedinRPM28SR29"]]| SR| QSR| CSR| ✓| ✓|rpm|QSR: Add modifier "2" for instantaneous speed 155 -| 14|[[**A**ngular **S**tiffness>>||anchor="H14.AngularStiffness28AS29"]]| AS| QAS| CAS| ✓| ✓|none|-4 to +4, but suggested values are between 0 to +4 156 -| 15|[[**A**ngular **H**olding Stiffness>>||anchor="H15.AngularHoldStiffness28AH29"]]|AH|QAH|CAH| | ✓|none|-10 to +10, with default as 0. 157 -|15b|[[**A**ngular **A**cceleration>>||anchor="H15b:AngularAcceleration28AA29"]]|AA|QAA|CAA| | ✓|degrees per second squared|Increments of 10 degrees per second squared 158 -|15c|[[**A**ngular **D**eceleration>>||anchor="H15c:AngularDeceleration28AD29"]]|AD|QAD|CAD| | ✓|degrees per second squared|Increments of 10 degrees per second squared 159 -|15d|[[**E**nable **M**otion control>>||anchor="H15d:MotionControl28MC29"]]|EM|QEM| | | ✓|none|EM0 to disable motion control, EM1 to enable. Session specific / does not survive power cycles 160 -| 16|[[**LED** Color>>||anchor="H16.RGBLED28LED29"]]| LED| QLED| CLED| ✓| ✓|none (integer from 1 to 8)|0=OFF 1=RED 2=GREEN 3= BLUE 4=YELLOW 5=CYAN 6=MAGENTA, 7=WHITE 161 -| 17|[[**ID** #>>||anchor="H17.IdentificationNumber"]]| | QID| CID| | ✓|none (integer from 0 to 250)|Note: ID 254 is a "broadcast" which all servos respond to 162 -| 18|[[**B**aud rate>>||anchor="H18.BaudRate"]]| B| QB| CB| | ✓|none (integer)| 163 -| 19|[[**G**yre direction (**G**)>>||anchor="H19.GyreRotationDirection"]]| G| QG| CG| ✓| ✓|none | Gyre / rotation direction where 1= CW (clockwise) -1 = CCW (counter-clockwise) 164 -| 20|[[**F**irst Position (**P**ulse)>>||anchor="H20.First2InitialPosition28pulse29"]]| | QFP|CFP | ✓| ✓|none | 165 -| 21|[[**F**irst Position (**D**egrees)>>||anchor="H21.First2InitialPosition28Degrees29"]]| | QFD|CFD| ✓| ✓|none | 166 -| 22|[[**T**arget (**D**egree) **P**osition>>||anchor="H22.QueryTargetPositioninDegrees28QDT29"]]| | QDT| | | ✓|tenths of degrees (ex 325 = 32.5 degrees; 91 = 9.1 degrees)| 167 -| 23|[[**M**odel **S**tring>>||anchor="H23.QueryModelString28QMS29"]]| | QMS| | | |none (string)| Recommended to determine the model| 168 -| 23b|[[**M**odel>>||anchor="H23b.QueryModel28QM29"]]| | QM| | | |none (integer)| Returns a raw value representing the three model inputs (36 bit)| 169 -| 24|[[Serial **N**umber>>||anchor="H24.QuerySerialNumber28QN29"]]| | QN| | | |none (integer)| 170 -| 25|[[**F**irmware version>>||anchor="H25.QueryFirmware28QF29"]]| | QF| | | |none (integer)| 171 -| 26|[[**Q**uery (general status)>>||anchor="H26.QueryStatus28Q29"]]| | Q| | | ✓|none (integer from 1 to 8)| See command description for details 172 -| 27|[[**V**oltage>>||anchor="H27.QueryVoltage28QV29"]]| | QV| | | ✓|millivolts (ex 5936 = 5936mV = 5.936V)| 173 -| 28|[[**T**emperature>>||anchor="H28.QueryTemperature28QT29"]]| | QT| | | ✓|tenths of degrees Celsius|Max temp before error: 85°C (servo goes limp) 174 -| 29|[[**C**urrent>>||anchor="H29.QueryCurrent28QC29"]]| | QC| | | ✓|milliamps (ex 200 = 0.2A)| 175 -| 30|[[**RC** Mode>>||anchor="H30.RCMode28CRC29"]]| | |CRC| |✓|none|((( 176 -CRC: Add modifier "1" for RC-position mode. 177 -CRC: Add modifier "2" for RC-wheel mode. 178 -Any other value for the modifier results in staying in smart mode. 179 -Puts the servo into RC mode. To revert to smart mode, use the button menu. 180 -))) 181 -|31|[[**RESET**>>||anchor="H31.RESET"]]| | | | | ✓|none|Soft reset. See command for details. 182 -|32|[[**DEFAULT**>>||anchor="H32.DEFAULTA026CONFIRM"]]| | | | |✓|none|Revert to firmware default values. See command for details 183 -|33|[[**UPDATE**>>||anchor="H33.UPDATEA026CONFIRM"]]| | | | |✓|none|Update firmware. See command for details. 233 +{{html wiki="true" clean="false"}} 234 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 235 +Ex: #5DEFAULT<cr><div class="wikimodel-emptyline"></div> 184 184 185 - ==Details ==237 +This command sets in motion the reset of all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function.<div class="wikimodel-emptyline"></div> 186 186 187 - ======__1.Limp(**L**)__======239 +EX: #5DEFAULT<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 188 188 189 - Example:#5L<cr>241 +Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will exit the command.<div class="wikimodel-emptyline"></div> 190 190 191 -This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 243 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 244 +</div></div> 245 +{{/html}} 192 192 193 -====== __ 2. Halt &Hold (**H**)__ ======247 +====== __Update & confirm__ ====== 194 194 195 -Example: #5H<cr> 249 +{{html wiki="true" clean="false"}} 250 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 251 +Ex: #5UPDATE<cr><div class="wikimodel-emptyline"></div> 196 196 197 -This action overrides whateverthe servomightbeoingat thetime thecommand isreceived(accelerating,movingcontinuouslyetc.)and causesittostopimmediatelyandholdthat position.253 +This command sets in motion the equivalent of a long button press when the servo is not powered in order to enter firmware update mode. This is useful should the button be broken or inaccessible. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the UPDATE function.<div class="wikimodel-emptyline"></div> 198 198 199 - ======__3.Timedmove(**T**)__======255 +EX: #5UPDATE<cr> followed by #5CONFIRM<cr><div class="wikimodel-emptyline"></div> 200 200 201 - Example:#5P1500T2500<cr>257 +Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action.<div class="wikimodel-emptyline"></div> 202 202 203 -Timed move can be used only as a modifier for a position (P) action. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol. 259 +**Note:** After the CONFIRM command is sent, the servo will automatically perform a RESET.<div class="wikimodel-emptyline"></div> 260 +</div></div> 261 +{{/html}} 204 204 205 - Note:If the calculated speed at which a servomust rotatefor a timed move isgreaterthanits maximum speed(which dependson voltage and load),then it will move at its maximum speed, and the time of the move may be longer than requested.263 +====== __Configure RC Mode (**CRC**)__ ====== 206 206 207 -====== __4. Speed (**S**)__ ====== 265 +{{html wiki="true" clean="false"}} 266 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 267 +This command puts the servo into RC mode (position or continuous), where it will only respond to RC PWM signal on the servo's Rx pin. In this mode, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu.<div class="wikimodel-emptyline"></div> 208 208 209 -Example: #5P1500S750<cr> 269 +|**Command sent**|**Note** 270 +|ex: #5CRC1<cr>|Change to RC position mode. 271 +|ex: #5CRC2<cr>|Change to RC continuous rotation (wheel) mode. 272 +|ex: #5CRC*<cr>|Where * is any value other than 1 or 2 (or no value): stay in smart mode.<div class="wikimodel-emptyline"></div> 210 210 211 - Thiscommand is a modifieronly for a position (P) action anddetermines the speed of the movein microseconds per second. A speed of 750 microseconds would cause theservo to rotate fromits current position to the desired position at a speed of 750microseconds per second. This command is in placeto ensure backwards compatibility with theSSC-32/32U protocol.274 +EX: #5CRC2<cr><div class="wikimodel-emptyline"></div> 212 212 213 - ======__5.(Relative)Move inDegrees(**MD**)__======276 +This command would place the servo in RC wheel mode after a RESET or power cycle. Note that after a RESET or power cycle, the servo will be in RC mode and will not reply to serial commands. Using the command #5CRC<cr> or #5CRC3<cr> which requests that the servo remain in serial mode still requires a RESET command.<div class="wikimodel-emptyline"></div> 214 214 215 -Example: #5MD123<cr> 278 +**Important note: **To revert from RC mode back to serial mode, the [[LSS - Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] is required. Should the button be inaccessible (or broken) when the servo is in RC mode and the user needs to change to serial mode, a 5V constant HIGH needs to be sent to the servo's Rx pin (RC PWM pin), **ensuring a common GND** and wait for 30 seconds. Normal RC PWM pulses should not exceed 2500 milliseconds. After 30 seconds, the servo will interpret this as a desired mode change and change to serial mode. This has been implemented as a fail safe.<div class="wikimodel-emptyline"></div> 279 +</div></div> 280 +{{/html}} 216 216 282 +====== __Identification Number (**ID**)__ ====== 283 + 284 +{{html wiki="true" clean="false"}} 285 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 286 +A servo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factory default ID number for all servos is 0. Since smart servos are intended to be daisy chained, in order to respond differently from one another, the user must set different identification numbers. Servos with the same ID and baud rate will all receive and react to the same commands.<div class="wikimodel-emptyline"></div> 287 + 288 +Query Identification (**QID**)<div class="wikimodel-emptyline"></div> 289 + 290 +EX: #254QID<cr> might return *QID5<cr><div class="wikimodel-emptyline"></div> 291 + 292 +When using the broadcast query ID command, it is best to only have one servo connected and thus receive only one reply. This is useful when you are not sure of the servo's ID, but don't want to change it. Using the broadcast command (ID 254) with only one servo will have that servo reply with its ID number. Alternatively, pushing the button upon startup and temporarily setting the servo ID to 255 will still result in the servo responding with its "real" ID.<div class="wikimodel-emptyline"></div> 293 + 294 +Configure ID (**CID**)<div class="wikimodel-emptyline"></div> 295 + 296 +Ex: #4CID5<cr><div class="wikimodel-emptyline"></div> 297 + 298 +Setting a servo's ID in EEPROM is done via the CID command. All servos connected to the same serial bus that have will be assigned that ID. In most situations each servo must be set a unique ID, which means each servo must be connected individually to the serial bus and receive a unique CID number. It is best to do this before the servos are added to an assembly. Numbered stickers are provided to distinguish each servo after their ID is set, though you are free to use whatever alternative method you like. The servo must be RESET or power cycled in order for the new ID to take effect.<div class="wikimodel-emptyline"></div> 299 +</div></div> 300 +{{/html}} 301 + 302 +====== __Baud Rate__ ====== 303 + 304 +{{html wiki="true" clean="false"}} 305 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 306 +A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 115200. Since smart servos are intended to be daisy chained, in order to respond to the same serial command, all servos in a project should be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9600 bps, 19200 bps, 38400 bps, 57600 bps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps. Servos are shipped with a baud rate set to 115200.<div class="wikimodel-emptyline"></div> 307 + 308 +Query Baud Rate (**QB**)<div class="wikimodel-emptyline"></div> 309 + 310 +Ex: #5QB<cr> might return *5QB115200<cr><div class="wikimodel-emptyline"></div> 311 + 312 +Since the command to query the baud rate must be done at the servo's existing baud rate, it can simply be used to confirm the CB configuration command was correctly received before the servo is power cycled and the new baud rate takes effect.<div class="wikimodel-emptyline"></div> 313 + 314 +Configure Baud Rate (**CB**)<div class="wikimodel-emptyline"></div> 315 + 316 +**Important Note:** the servo's current session retains the given baud rate and the new baud rate will only take effect when the servo is power cycled / RESET.<div class="wikimodel-emptyline"></div> 317 + 318 +Ex: #5CB9600<cr><div class="wikimodel-emptyline"></div> 319 + 320 +Sending this command will change the baud rate associated with servo ID 5 to 9600 bits per second.<div class="wikimodel-emptyline"></div> 321 +</div></div> 322 +{{/html}} 323 + 324 +== Motion == 325 + 326 +====== __Position in Degrees (**D**)__ ====== 327 + 328 +{{html wiki="true" clean="false"}} 329 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 330 +Example: #5D1456<cr><div class="wikimodel-emptyline"></div> 331 + 332 +This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) could also be used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle (absolute position) as -900, except the servo would move in a different direction. <div class="wikimodel-emptyline"></div> 333 + 334 +Larger values are permitted and allow for multi-turn functionality using the concept of virtual position (explained above). <div class="wikimodel-emptyline"></div> 335 + 336 +Query Position in Degrees (**QD**)<div class="wikimodel-emptyline"></div> 337 + 338 +Example: #5QD<cr> might return *5QD132<cr><div class="wikimodel-emptyline"></div> 339 + 340 +This means the servo is located at 13.2 degrees.<div class="wikimodel-emptyline"></div> 341 + 342 +(% class="wikigeneratedid" id="H22.QueryTargetPositioninDegrees28QDT29" %) 343 +Query Target Position in Degrees (**QDT**)<div class="wikimodel-emptyline"></div> 344 + 345 +Ex: #5QDT<cr> might return *5QDT6783<cr><div class="wikimodel-emptyline"></div> 346 + 347 +The query target position command returns the target virtual position during and after an action which results in a rotation of the servo horn. In the example above, the servo is rotating to a virtual position of 678.3 degrees. Should the servo not have a target position or be in wheel mode, it will respond with the last target position used. 348 +<div class="wikimodel-emptyline"></div></div></div> 349 +{{/html}} 350 + 351 +====== __(Relative) Move in Degrees (**MD**)__ ====== 352 + 353 +{{html wiki="true" clean="false"}} 354 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 355 +Example: #5MD123<cr><div class="wikimodel-emptyline"></div> 356 + 217 217 The relative move command causes the servo to read its current position and move the specified number of tenths of degrees in the corresponding position. For example if the servo is set to rotate CW (default) and an MD command of 123 is sent to the servo, it will cause the servo to rotate clockwise by 12.3 degrees. Negative commands would cause the servo to rotate in the opposite configured direction. 358 +<div class="wikimodel-emptyline"></div></div></div> 359 +{{/html}} 218 218 219 -====== __ 6.Origin OffsetAction (**O**)__ ======361 +====== __Wheel Mode in Degrees (**WD**)__ ====== 220 220 221 -Example: #5O2400<cr> 363 +{{html wiki="true" clean="false"}} 364 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 365 +Ex: #5WD90<cr><div class="wikimodel-emptyline"></div> 222 222 223 -This command allowsyoutotemporarilychangetheoriginoftheservoinrelation tothefactory zeroposition. Thesetting willbelostuponservo reset/powercycle.Originoffsetcommandsare notcumulative andalways relate tofactoryzero. Note thatforgiven session, the O commandoverridesthe COcommand. In the firstimage, theorigin atfactoryoffset '0' (centered).367 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div> 224 224 225 - [[image:LSS-servo-default.jpg]]369 +Query Wheel Mode in Degrees (**QWD**)<div class="wikimodel-emptyline"></div> 226 226 227 - Inthe second image,theorigina,as well asthe angular range(explainedbelow) havebeen shifted by240.0 degrees:371 +Ex: #5QWD<cr> might return *5QWD90<cr><div class="wikimodel-emptyline"></div> 228 228 229 -[[image:LSS-servo-origin.jpg]] 373 +The servo replies with the angular speed in degrees per second. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 374 +<div class="wikimodel-emptyline"></div></div></div> 375 +{{/html}} 230 230 231 - OriginOffsetQuery(**QO**)377 +====== __Wheel Mode in RPM (**WR**)__ ====== 232 232 233 -Example: #5QO<cr> Returns: *5QO-13 379 +{{html wiki="true" clean="false"}} 380 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 381 +Ex: #5WR40<cr><div class="wikimodel-emptyline"></div> 234 234 235 -This allowsyoutoquerytheangle (in tenths ofdegrees)ofthe origin inrelation to the factoryzeroposition.383 +This command sets the servo to wheel mode where it will rotate in the desired direction at the selected rpm. Wheel mode (a.k.a. "continuous rotation") has the servo operate like a geared DC motor. The servo's maximum rpm cannot be set higher than its physical limit at a given voltage. The example above would have the servo rotate at 40 rpm clockwise (assuming factory default configurations).<div class="wikimodel-emptyline"></div> 236 236 237 - ConfigureOriginOffset(**CO**)385 +Query Wheel Mode in RPM (**QWR**)<div class="wikimodel-emptyline"></div> 238 238 239 -Ex ample: #5CO-24<cr>387 +Ex: #5QWR<cr> might return *5QWR40<cr><div class="wikimodel-emptyline"></div> 240 240 241 -This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. 389 +The servo replies with the angular speed in rpm. A negative sign would indicate the opposite direction (for factory default a negative value would be counter clockwise). 390 +<div class="wikimodel-emptyline"></div></div></div> 391 +{{/html}} 242 242 243 -====== __ 7. AngularRange(**AR**)__ ======393 +====== __Position in PWM (**P**)__ ====== 244 244 245 -Example: #5AR1800<cr> 395 +{{html wiki="true" clean="false"}} 396 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 397 +Example: #5P2334<cr><div class="wikimodel-emptyline"></div> 246 246 247 -Th iscommandallowsyoutotemporarilychangethetotalangularrangeoftheservointenthsofdegrees.ThisappliesePositionin Pulse(P)command andRCmode.The defaultfor(P)andRCmodeis1800(180.0degreestotal,or±90.0 degrees).Inthefirst image,399 +The position in PWM pulses was retained in order to be backward compatible with the SSC-32 / 32U protocol. This relates the desired angle with an RC standard PWM signal and is further explained in the SSC-32 and [[SSC-32U manuals>>https://www.robotshop.com/media/files/pdf2/lynxmotion_ssc-32u_usb_user_guide.pdf#page=24]]. Without any modifications to configuration considered, and a ±90.0 degrees standard range where 1500 microseconds is centered, a PWM signal of 2334 would set the servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this range are corrected / restricted to end points.<div class="wikimodel-emptyline"></div> 248 248 249 - [[image:LSS-servo-default.jpg]]401 +Query Position in Pulse (**QP**)<div class="wikimodel-emptyline"></div> 250 250 251 - Here,the angularrangehasbeenrestrictedto 180.0degrees,or -90.0 to +90.0. Thecenter hasremainedunchanged.403 +Example: #5QP<cr> might return *5QP2334<div class="wikimodel-emptyline"></div> 252 252 253 -[[image:LSS-servo-ar.jpg]] 405 +This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 406 +Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 407 +<div class="wikimodel-emptyline"></div></div></div> 408 +{{/html}} 254 254 255 - Theangular range action command (ex. #5AR1800<cr>)andorigin offsetactioncommandex. #5O-1200<cr>)an be used to move both the center and limit the angular range:410 +====== __(Relative) Move in PWM (**M**)__ ====== 256 256 257 -[[image:LSS-servo-ar-o-1.jpg]] 412 +{{html wiki="true" clean="false"}} 413 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 414 +Example: #5M1500<cr><div class="wikimodel-emptyline"></div> 258 258 259 -Query Angular Range (**QAR**) 416 +The relative move in PWM command causes the servo to read its current position and move by the specified number of PWM signal. For example if the servo is set to rotate CW (default) and an M command of 1500 is sent to the servo, it will cause the servo to rotate clockwise by 90 degrees. Negative PWM value would cause the servo to rotate in the opposite configured direction. 417 +<div class="wikimodel-emptyline"></div></div></div> 418 +{{/html}} 260 260 261 - Example:#5QAR<cr>mightreturn*5AR2756420 +====== __Raw Duty-cycle Move (**RDM**)__ ====== 262 262 263 -Configure Angular Range (**CAR**) 422 +{{html wiki="true" clean="false"}} 423 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 424 +Example: #5RDM512<cr><div class="wikimodel-emptyline"></div> 264 264 265 -Th iscommandallowsyouto changethe totalangularrangeofthe servointenthsofdegreesinEEPROM. Thesettingwillbesaveduponervoreset/power cycle.426 +The raw duty-cycle move command (or free move command) will rotate the servo at a specified duty cycle value in wheel mode (a.k.a. "continuous rotation") like a geared DC motor.<div class="wikimodel-emptyline"></div> 266 266 267 - ======__8.PositioninPulse(**P**)__======428 +The duty values range from 0 to 1023. Negative values will rotate the servo in the opposite direction (for factory default a negative value would be counter clockwise).<div class="wikimodel-emptyline"></div> 268 268 269 - Example: #5P2334<cr>430 +Query Move in Duty-cycle (**QMD**)<div class="wikimodel-emptyline"></div> 270 270 271 - The position in PWM pulses was retained in order to be backward compatiblewith the SSC-32 / 32U protocol. Thisrelatesthe desired angle withan RC standardPWM pulseand is further explainedin the SSC-32andSSC-32U manuals found on Lynxmotion.com.Without any modificationsto configuration considered, and a ±90.0 degrees standard rangewhere 1500 microseconds is centered, a pulseof 2334 would setthe servo to 165.1 degrees. Valid values for P are [500, 2500]. Values outside this rangeare correctedto end points.432 +Example: #5QMD<cr> might return *5QMD512<div class="wikimodel-emptyline"></div> 272 272 273 -Query Position in Pulse (**QP**) 434 +This command queries the raw duty-cycle move value. 512 value means that the motor is rotating at 50% duty-cycle. 435 +<div class="wikimodel-emptyline"></div></div></div> 436 +{{/html}} 274 274 275 - Example:#5QP<cr>mightreturn*5QP2334438 +====== __Query Status (**Q**)__ ====== 276 276 277 -This command queries the current angular position in PWM "units". The user must take into consideration that the response includes any angular range and origin configurations in order to determine the actual angle. 278 -Valid values for QP are {-500, [500, 2500], -2500}. Values outside the [500, 2500] range are given a negative corresponding end point value to indicate they are out of bounds (note that if the servo is physically located at one of the endpoints, it may return a negative number if it is a fraction of a degree beyond the position). 440 +{{html wiki="true" clean="false"}} 441 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 442 +The status query describes what the servo is currently doing. The query returns an integer which must be looked up in the table below.<div class="wikimodel-emptyline"></div> 279 279 280 -====== __9. Position in Degrees (**D**)__ ====== 444 +Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position.<div class="wikimodel-emptyline"></div> 445 +</div></div> 446 +{{/html}} 281 281 282 -Example: #5PD1456<cr> 448 +|(% style="width:25px" %) |***Value returned (Q)**|**Status**|**Detailed description** 449 +| |ex: *5Q0<cr>|0: Unknown|LSS is unsure / unknown state 450 +| |ex: *5Q1<cr>|1: Limp|Motor driving circuit is not powered and horn can be moved freely 451 +| |ex: *5Q2<cr>|2: Free moving|Servo is rotating in duty motion / free move using the RDM command 452 +| |ex: *5Q3<cr>|3: Accelerating|Increasing speed from rest (or previous speed) towards travel speed 453 +| |ex: *5Q4<cr>|4: Traveling|Moving at a stable speed 454 +| |ex: *5Q5<cr>|5: Decelerating|Decreasing from travel speed towards final position. 455 +| |ex: *5Q6<cr>|6: Holding|Keeping current position 456 +| |ex: *5Q7<cr>|7: Outside limits|{More details coming soon} 457 +| |ex: *5Q8<cr>|8: Stuck|Motor cannot perform request movement at current speed setting 458 +| |ex: *5Q9<cr>|9: Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 459 +| |ex: *5Q10<cr>|10: Safe Mode|((( 460 +A safety limit has been exceeded (temperature, peak current or extended high current draw). 283 283 284 -This moves the servo to an angle of 145.6 degrees, where the center (0) position is centered. Negative values (ex. -176 representing -17.6 degrees) are used. A full circle would be from -1800 to 1800 degrees. A value of 2700 would be the same angle as -900, except the servo would move in a different direction. 462 +Send a Q1 command to know which limit has been reached (described below). 463 +))) 285 285 286 -Larger values are permitted and allow for multi-turn functionality using the concept of virtual position. 465 +{{html wiki="true" clean="false"}} 466 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 467 +If a safety limit has been reached and exceeded, the LED will flash red and the servo will stop providing torque (no longer react to commands which cause the motor to rotate). In order to determine which limit has been reached, send a Q1 command. The servo must be RESET in order to return to normal operation, though if a limit is still detected (for example the servo is still too hot), it will revert back to Safe Mode.<div class="wikimodel-emptyline"></div> 468 +</div></div> 469 +{{/html}} 287 287 288 -Query Position in Degrees (**QD**) 471 +|(% style="width:25px" %) |***Value returned (Q1)**|**Status**|**Detailed description** 472 +| |ex: *5Q0<cr>|No limits have been passed|Nothing is wrong 473 +| |ex: *5Q1<cr>|Current limit has been passed|Something cause the current to either spike, or remain too high for too long 474 +| |ex: *5Q2<cr>|Input voltage detected is below or above acceptable range|Check the voltage of your batteries or power source 475 +| |ex: *5Q3<cr>|Temperature limit has been reached|The servo is too hot to continue operating safely. 289 289 290 - Example:#5QD<cr> might return*5QD132<cr>477 +====== __Limp (**L**)__ ====== 291 291 292 -This means the servo is located at 13.2 degrees. 479 +{{html wiki="true" clean="false"}} 480 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 481 +Example: #5L<cr><div class="wikimodel-emptyline"></div> 293 293 294 -====== __10. Wheel Mode in Degrees (**WD**)__ ====== 483 +This action causes the servo to go "limp". The microcontroller will still be powered, but the motor will not. As an emergency safety feature, should the robot not be doing what it is supposed to or risks damage, use the broadcast ID to set all servos limp #254L<cr>. 484 +<div class="wikimodel-emptyline"></div></div></div> 485 +{{/html}} 295 295 296 - Ex:#5WD900<cr>487 +====== __Halt & Hold (**H**)__ ====== 297 297 298 -This command sets the servo to wheel mode where it will rotate in the desired direction at the selected speed. The example above would have the servo rotate at 90.0 degrees per second clockwise (assuming factory default configurations). 489 +{{html wiki="true" clean="false"}} 490 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 491 +Example: #5H<cr><div class="wikimodel-emptyline"></div> 299 299 300 -Query Wheel Mode in Degrees (**QWD**) 493 +This command causes the servo to stop immediately and hold that angular position. It overrides whatever the servo might be doing at the time the command is received (accelerating, travelling, deccelerating, etc.) 494 +<div class="wikimodel-emptyline"></div></div></div> 495 +{{/html}} 301 301 302 - Ex:#5QWD<cr> mightreturn*5QWD900<cr>497 +== Motion Setup == 303 303 304 - Theservo replies with the angular speed in tenths of degrees per second. A negative sign would indicatetheopposite direction(forfactory default a negative valuewould be counter clockwise).499 +====== __Enable Motion Profile (**EM**)__ ====== 305 305 306 -====== __11. Wheel Mode in RPM (**WR**)__ ====== 501 +{{html wiki="true" clean="false"}} 502 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 503 +Ex: #5EM1<cr><div class="wikimodel-emptyline"></div> 307 307 308 - Ex:#5WR40<cr>505 +This command enables a trapezoidal motion profile. By default, the trapezoidal motion profile is enabled. If the motion profile is enabled, angular acceleration (AA) and angular deceleration(AD) will have an effect on the motion. Also, SD/S and T modifiers can be used.<div class="wikimodel-emptyline"></div> 309 309 310 - Thiscommand sets the servo to wheelmode where itwillrotate in thedesireddirection at the selected rpm. Wheel mode (a.k.a. "continuousrotation") hasthe servo operate like a geared DCmotor. Theservo'smaximum rpm cannotbe set higher than its physicallimit at a givenvoltage. The example above wouldhave the servo rotate at 40 rpm clockwise (assuming factory default configurations).507 +Ex: #5EM0<cr><div class="wikimodel-emptyline"></div> 311 311 312 - QueryWheel ModeinRPM(**QWR**)509 +This command will disable the trapezoidal motion profile. As such, the servo will move at full speed for D/MD action commands. Angular acceleration (AA) and angular deceleration(AD) won't have an effect on motion in this mode and modifiers SD/S or T cannot be used.<div class="wikimodel-emptyline"></div> 313 313 314 - Ex: #5QWR<cr>might return*5QWR40<cr>511 +Query Motion Profile (**QEM**)<div class="wikimodel-emptyline"></div> 315 315 316 - Theservo replies with the angularspeed in rpm. A negativesign would indicate the oppositedirection(for factory defaulta negativevaluewouldbecounter clockwise).513 +Ex: #5QEM<cr> might return *5QEM1<cr><div class="wikimodel-emptyline"></div> 317 317 318 - ======__12.SpeedinDegrees(**SD**)__======515 +This command will query the motion profile. **0:** motion profile disabled / **1:** trapezoidal motion profile enabled.<div class="wikimodel-emptyline"></div> 319 319 320 - Ex:#5SD1800<cr>517 +Configure Motion Profile (**CEM**)<div class="wikimodel-emptyline"></div> 321 321 322 - This command sets the servo's maximumspeed for action commands in tenths of degrees per second for that session. In the example above,the servo's maximum speed for that session would be set to 180.0 degrees per second. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speedcannot be set higher than its physical limit at a givenvoltage. SD overrides CSD (described below) for thatsession. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD andSR (described below) areeffectively the same, butallow the user to specify the speed inither unit. The last command(either SR or SD) is what the servo uses for that session.519 +Ex: #5CEM0<cr><div class="wikimodel-emptyline"></div> 323 323 324 -Query Speed in Degrees (**QSD**) 521 +This command configures the motion profile and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 522 +<div class="wikimodel-emptyline"></div></div></div> 523 +{{/html}} 325 325 326 - Ex:#5QSD<cr>mightreturn *5QSD1800<cr>525 +====== __Filter Position Count (**FPC**)__ ====== 327 327 328 -By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever a SD/SR command is processed. 329 -If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 527 +{{html wiki="true" clean="false"}} 528 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 529 +Ex: #5FPC10<cr><div class="wikimodel-emptyline"></div> 530 +This command allows the user to change the Filter Position Count value for that session. <div class="wikimodel-emptyline"></div> 330 330 331 -|**Command sent**|**Returned value (1/10 °)** 332 -|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 333 -|ex: #5QSD1<cr>|Configured maximum speed (set by CSD/CSR) 334 -|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 335 -|ex: #5QSD3<cr>|Target travel speed 532 +Query Filter Position Count (**QFPC**)<div class="wikimodel-emptyline"></div> 336 336 337 -C onfigureSpeednDegrees (**CSD**)534 +Ex: #5QFPC<cr> might return *5QFPC10<cr><div class="wikimodel-emptyline"></div> 338 338 339 - Ex:#5CSD1800<cr>536 +This command will query the Filter Position Count value.<div class="wikimodel-emptyline"></div> 340 340 341 - Using theCSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speedwill be setto 180.0 degreesper second. When theservois powered on(or after a reset), theCSD value is used. NotethatCSD andCSR (describedbelow) are effectively the same, but allow the user tospecify the speedineither unit. Thelast command (either CSR or CSD) is what the servo uses for that session.538 +Configure Filter Position Count (**CFPC**)<div class="wikimodel-emptyline"></div> 342 342 343 - ======__13.SpeedinRPM (**SR**)__ ======540 +Ex: #5CFPC10<cr><div class="wikimodel-emptyline"></div> 344 344 345 -Ex: #5SD45<cr> 542 +This command configures the Filter Position Count value and saves it in the EEPROM. The setting will be saved upon servo reset / power cycle. 543 +<div class="wikimodel-emptyline"></div></div></div> 544 +{{/html}} 346 346 347 - Thiscommand sets the servo's maximum speed for action commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. Therefore maximum speed for actions can be set "on the fly". The servo's maximum speed cannot be set higher thanits physical limit at a givenvoltage. SD overrides CSD (described below)for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD (described above) and SR are effectively thesame, butallow the user to specify the speed in either unit. The last command(either SR or SD)is what the servo uses for that session.546 +====== __Origin Offset (**O**)__ ====== 348 348 349 -Query Speed in Degrees (**QSR**) 548 +{{html wiki="true" clean="false"}} 549 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 550 +Example: #5O2400<cr><div class="wikimodel-emptyline"></div> 350 350 351 - Ex:#5QSR<cr>might return*5QSR45<cr>552 +This command allows you to change the origin of the servo in relation to the factory zero position for that session. As with all action commands, the setting will be lost upon servo reset / power cycle. Origin offset commands are not cumulative and always relate to factory zero. In the first image, the origin at factory offset '0' (centered).<div class="wikimodel-emptyline"></div> 352 352 353 -By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever a SD/SR command is processed. 354 -If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example: 554 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 355 355 356 -|**Command sent**|**Returned value (1/10 °)** 357 -|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 358 -|ex: #5QSR1<cr>|Configured maximum speed (set by CSD/CSR) 359 -|ex: #5QSR2<cr>|Instantaneous speed (same as QWR) 360 -|ex: #5QSR3<cr>|Target travel speed 556 +In the second image, the origin, and the corresponding angular range (explained below) have been shifted by +240.0 degrees:<div class="wikimodel-emptyline"></div> 361 361 362 - Configurepeed inRPM (**CSR**)558 +[[image:LSS-servo-origin.jpg]]<div class="wikimodel-emptyline"></div> 363 363 364 - Ex:#5CSR45<cr>560 +Origin Offset Query (**QO**)<div class="wikimodel-emptyline"></div> 365 365 366 - Using the CSR command sets the servo's maximum speed which is saved inEEPROM. In the exampleabove,the servo'smaximum speed will be setto 45rpm. Whenthe servoispowered on (orafter a reset), the CSR value isused. Note that CSD andCSR areeffectively thesame, butallow the user to specify the speed inither unit. The last command(either CSR or CSD) is what the servo uses for that session.562 +Example: #5QO<cr> might return *5QO-13<div class="wikimodel-emptyline"></div> 367 367 368 - ======__14.AngularStiffness(**AS**)__======564 +This allows you to query the angle (in tenths of degrees) of the origin in relation to the factory zero position. In this example, the new origin is at -1.3 degrees from the factory zero.<div class="wikimodel-emptyline"></div> 369 369 370 - Theservo's rigidity / angularstiffness can behoughtof as(though not identical to)adamped springin which the valueaffectsthestiffness and embodies how much, and how quickly theservo tried keephe requested positionagainst changes.566 +Configure Origin Offset (**CO**)<div class="wikimodel-emptyline"></div> 371 371 372 - A positive valueof "angular stiffness":568 +Example: #5CO-24<cr><div class="wikimodel-emptyline"></div> 373 373 374 -* The more torque will be applied to try to keep the desired position against external input / changes 375 -* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position 570 +This command allows you to change the origin of the servo in relation to the factory zero position in EEPROM. The setting will be saved upon servo reset / power cycle. Origin offset configuration commands are not cumulative and always relate to factory zero. The new origin is also used in RC mode. In the example, the new origin will be at -2.4 degrees from the factory zero. 571 +<div class="wikimodel-emptyline"></div></div></div> 572 +{{/html}} 376 376 377 - Anegative valueontheotherhand:574 +====== __Angular Range (**AR**)__ ====== 378 378 379 -* Causes a slower acceleration to the travel speed, and a slower deceleration 380 -* Allows the target position to deviate more from its position before additional torque is applied to bring it back 576 +{{html wiki="true" clean="false"}} 577 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 578 +Example: #5AR1800<cr><div class="wikimodel-emptyline"></div> 381 381 382 -Th edefaultvalueiszero andthe effectbecomes extremeby-4,+4. Therearenounits,onlyintegersbetween -4to4.Greatervaluesproduceincreasinglyerratic behavior.580 +This command allows you to temporarily change the total angular range of the servo in tenths of degrees. This applies to the Position in Pulse (P) command and RC mode. The default for (P) and RC mode is 1800 (180.0 degrees total, or ±90.0 degrees). The image below shows a standard -180.0 to +180.0 range, with no offset:<div class="wikimodel-emptyline"></div> 383 383 384 - Ex:#5AS-2<cr>582 +[[image:LSS-servo-default.jpg]]<div class="wikimodel-emptyline"></div> 385 385 386 - This reducesthe angularstiffnessto -2 forthat session, allowingtheservoto deviatemorearoundthe desired position. Thiscan bebeneficialin many situations suchimpacts (leggedrobots) wheremore ofa"spring"effect isdesired.Uponreset, theservowill use the valuestoredinmemory, basedon theastconfigurationcommand.584 +Below, the angular range is restricted to 180.0 degrees, or -90.0 to +90.0. The center has remained unchanged.<div class="wikimodel-emptyline"></div> 387 387 388 - Ex:#5QAS<cr>586 +[[image:LSS-servo-ar.jpg]]<div class="wikimodel-emptyline"></div> 389 389 390 - Queriesthevalue being.588 +Finally, the angular range action command (ex. #5AR1800<cr>) and origin offset action command (ex. #5O-1200<cr>) are used to move both the center and limit the angular range:<div class="wikimodel-emptyline"></div> 391 391 392 - Ex:#5CAS<cr>590 +[[image:LSS-servo-ar-o-1.jpg]]<div class="wikimodel-emptyline"></div> 393 393 394 - Writes the desiredangularstiffnessvaluetomemory.592 +Query Angular Range (**QAR**)<div class="wikimodel-emptyline"></div> 395 395 396 - ======__15.AngularHold Stiffness(**AH**)__======594 +Example: #5QAR<cr> might return *5AR1800, indicating the total angular range is 180.0 degrees.<div class="wikimodel-emptyline"></div> 397 397 398 - Theangularholdingstiffnessdetermines the servo'sability to holdadesired position underload. Values can be from-10 to 10, with thedefault being 0. Note that negative valuesmeanthe finalpositioncan beeasilydeflected.596 +Configure Angular Range (**CAR**)<div class="wikimodel-emptyline"></div> 399 399 400 -Ex: #5AH3<cr> 598 +This command allows you to change the total angular range of the servo in tenths of degrees in EEPROM. The setting will be saved upon servo reset / power cycle. 599 +<div class="wikimodel-emptyline"></div></div></div> 600 +{{/html}} 401 401 402 - Thissets the holdingstiffnessforservo #5 to 3 for that session.602 +====== __Angular Stiffness (**AS**)__ ====== 403 403 404 -Query Angular Hold Stiffness (**QAH**) 604 +{{html wiki="true" clean="false"}} 605 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 606 +The servo's rigidity / angular stiffness can be thought of as (though not identical to) a damped spring in which the value affects the stiffness and embodies how much, and how quickly the servo tried keep the requested position against changes. There are no units.<div class="wikimodel-emptyline"></div> 405 405 406 - Ex: #5QAH<cr>mightreturn*5QAH3<cr>608 +A higher value of "angular stiffness":<div class="wikimodel-emptyline"></div> 407 407 408 -This returns the servo's angular holding stiffness value. 610 +* The more torque will be applied to try to keep the desired position against external input / changes 611 +* The faster the motor will reach its intended travel speed and the motor will decelerate faster and nearer to its target position<div class="wikimodel-emptyline"></div> 409 409 410 - ConfigureAngularHoldStiffness (**CAH**)613 +A lower value on the other hand:<div class="wikimodel-emptyline"></div> 411 411 412 -Ex: #5CAH2<cr> 615 +* Causes a slower acceleration to the travel speed, and a slower deceleration 616 +* Allows the target position to deviate more from its position before additional torque is applied to bring it back<div class="wikimodel-emptyline"></div> 413 413 414 -Th iswrites the angularholdingstiffnessof servo#5to2toEEPROM618 +The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 415 415 416 - ====== __15b: AngularAcceleration(**AA**)__ ======620 +Ex: #5AS-2<cr><div class="wikimodel-emptyline"></div> 417 417 418 - {More details to come}622 +This reduces the angular stiffness to -2 for that session, allowing the servo to deviate more around the desired position. This can be beneficial in many situations such as impacts (legged robots) where more of a "spring" effect is desired. Upon reset, the servo will use the value stored in memory, based on the last configuration command.<div class="wikimodel-emptyline"></div> 419 419 420 - ====== __15c: AngularDeceleration(**AD**)__ ======624 +Ex: #5QAS<cr><div class="wikimodel-emptyline"></div> 421 421 422 - {Moredetailstocome}626 +Queries the value being used.<div class="wikimodel-emptyline"></div> 423 423 424 - ======__15d:Motion Control(**EM**)__ ======628 +Ex: #5CAS-2<cr><div class="wikimodel-emptyline"></div> 425 425 426 -{More details to come} 630 +Writes the desired angular stiffness value to EEPROM. 631 +<div class="wikimodel-emptyline"></div></div></div> 632 +{{/html}} 427 427 428 -====== __ 16.RGBLED(**LED**)__ ======634 +====== __Angular Holding Stiffness (**AH**)__ ====== 429 429 430 -Ex: #5LED3<cr> 636 +{{html wiki="true" clean="false"}} 637 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 638 +The angular holding stiffness determines the servo's ability to hold a desired position under load. The default value for stiffness depending on the firmware may be 0 or 1. Greater values produce increasingly erratic behavior and the effect becomes extreme below -4 and above +4. Maximum values are -10 to +10.<div class="wikimodel-emptyline"></div> 431 431 432 - Thisaction sets the servo'sRGB LEDcolor for thatsession.The LED can be usedfor aesthetics, or (based onuser code) to providevisual status updates. Using timing can create patterns.640 +Ex: #5AH3<cr><div class="wikimodel-emptyline"></div> 433 433 434 - 0=OFF1=RED2=GREEN3=BLUE4=YELLOW5=CYAN6=7=MAGENTA,8=WHITE642 +This sets the holding stiffness for servo #5 to 3 for that session.<div class="wikimodel-emptyline"></div> 435 435 436 -Query LEDColor(**QLED**)644 +Query Angular Holding Stiffness (**QAH**)<div class="wikimodel-emptyline"></div> 437 437 438 -Ex: #5Q LED<cr>might return *5QLED5<cr>646 +Ex: #5QAH<cr> might return *5QAH3<cr><div class="wikimodel-emptyline"></div> 439 439 440 -This simple query returns theindicatedservo'sLEDcolor.648 +This returns the servo's angular holding stiffness value.<div class="wikimodel-emptyline"></div> 441 441 442 -Configure LEDColor(**CLED**)650 +Configure Angular Holding Stiffness (**CAH**)<div class="wikimodel-emptyline"></div> 443 443 444 - Configuring the LEDcolor viathe CLEDcommand sets the startupcolor of the servoafter a reset or power cycle. Notethat it also changesthe session's LED colorimmediately as well.652 +Ex: #5CAH2<cr><div class="wikimodel-emptyline"></div> 445 445 446 -====== __17. Identification Number__ ====== 654 +This writes the angular holding stiffness of servo #5 to 2 to EEPROM. 655 +<div class="wikimodel-emptyline"></div></div></div> 656 +{{/html}} 447 447 448 - Aservo's identification number cannot be set "on the fly" and must be configured via the CID command described below. The factorydefault ID number for all servos is 0. Since smart servos are intended to be daisychained, in order to respond differently from oneanother, the user must set different identificationnumbers.Servos with the same ID and baud rate will all receive and react to the same commands.658 +====== __Angular Acceleration (**AA**)__ ====== 449 449 450 -Query Identification (**QID**) 660 +{{html wiki="true" clean="false"}} 661 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 662 +The default value for angular acceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 451 451 452 -E X: #254QID<cr> mightreturn*QID5<cr>664 +Ex: #5AA30<cr><div class="wikimodel-emptyline"></div> 453 453 454 - When usingthequery ID command, itisbestto onlyhaveone servo connectedand thus receive only onereplyusing the broadcastcommand (ID 254). Alternatively, pushing the buttonupon startupand temporarilysetting the servoIDto255willstillresultin the servo respondingwithits "real"ID.666 +This sets the angular acceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 455 455 456 - ConfigureID(**CID**)668 +Query Angular Acceleration (**QAA**)<div class="wikimodel-emptyline"></div> 457 457 458 -Ex: # 4CID5<cr>670 +Ex: #5QAA<cr> might return *5QAA30<cr><div class="wikimodel-emptyline"></div> 459 459 460 - Setting aservo's ID inEEPROM isdone viatheCID command. Allservosconnectedto the sameserial bus will be assignedthat ID. In most situationseach servo must beset a unique ID, which means each servomust benectedindividually to theserial busandreceivea unique CID number. It isbest todo this before the servosare added to an assembly. Numbered stickers are provided toistinguisheach servo after their ID is set, though you are free to use whatever alternativemethodyoulike.672 +This returns the servo's angular acceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 461 461 462 - ======__18.BaudRate__ ======674 +Configure Angular Acceleration (**CAA**)<div class="wikimodel-emptyline"></div> 463 463 464 -A servo's baud rate cannot be set "on the fly" and must be configured via the CB command described below. The factory default baud rate for all servos is 9600. Since smart servos are intended to be daisy chained, in order to respond to the same serial bus, all servos in that project should ideally be set to the same baud rate. Setting different baud rates will have the servos respond differently and may create issues. Available baud rates are: 9.6 kbps, 19.2 kbps, 38.4 kbps, 57.6 kbps, 115.2 kbps, 230.4 kbps, 250.0 kbps, 460.8 kbps, 500.0 kbps, 750.0 kbps*, 921.6 kbps*. Servos are shipped with a baud rate set to 9600. The baud rates are currently restricted to those above. 465 -\*: Current tests reveal baud rates above 500 kbps are unstable and can cause timeouts. Please keep this in mind if using those / testing them out. 676 +Ex: #5CAA30<cr><div class="wikimodel-emptyline"></div> 466 466 467 -Query Baud Rate (**QB**) 678 +This writes the angular acceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 679 +<div class="wikimodel-emptyline"></div></div></div> 680 +{{/html}} 468 468 469 - Ex:#5QB<cr> mightreturn *5QB9600<cr>682 +====== __Angular Deceleration (**AD**)__ ====== 470 470 471 -Querying the baud rate is used simply to confirm the CB configuration command before the servo is power cycled. 684 +{{html wiki="true" clean="false"}} 685 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 686 +The default value for angular deceleration is 100. Accepts values of between 1 and 100. Increments of 10 degrees per second squared.<div class="wikimodel-emptyline"></div> 472 472 473 - ConfigureBaudRate(**CB**)688 +Ex: #5AD30<cr><div class="wikimodel-emptyline"></div> 474 474 475 - Ex:#5CB9600<cr>690 +This sets the angular deceleration for servo #5 to 30 degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 476 476 477 - Sending this commandwillchange the baud rate associatedwith servo ID 5 to 9600 bits per second.692 +Query Angular Deceleration (**QAD**)<div class="wikimodel-emptyline"></div> 478 478 479 - ======__19.GyreRotationDirection__ ======694 +Ex: #5QAD<cr> might return *5QAD30<cr><div class="wikimodel-emptyline"></div> 480 480 481 - "Gyre"isdefinedas acircular courseormotion.The effect of changingtheyredirectionisas if youwereto useamirrorimageof a circle. CW = 1; CCW =-1. Thefactorydefaultis clockwise(CW).696 +This returns the servo's angular deceleration in degrees per second squared (°/s^^2^^).<div class="wikimodel-emptyline"></div> 482 482 483 - {imagesshowingbeforeand afterwithAR andOriginoffset}698 +Configure Angular Deceleration (**CAD**)<div class="wikimodel-emptyline"></div> 484 484 485 - QueryGyreDirection(**QG**)700 +Ex: #5CAD30<cr><div class="wikimodel-emptyline"></div> 486 486 487 -Ex: #5QG<cr> might return *5QG-1<cr> 702 +This writes the angular deceleration of servo #5 to 30 degrees per second squared (°/s^^2^^) to EEPROM. 703 +<div class="wikimodel-emptyline"></div></div></div> 704 +{{/html}} 488 488 489 - Thevaluereturnedabove means the servois in a counter-clockwisegyration.706 +====== __Gyre Direction (**G**)__ ====== 490 490 491 -Configure Gyre (**CG**) 708 +{{html wiki="true" clean="false"}} 709 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 710 +"Gyre" is defined as a circular course or motion. The effect of changing the gyre direction is as if you were to use a mirror image of a circle. By default: CW = 1; CCW = -1.<div class="wikimodel-emptyline"></div> 492 492 493 -Ex: #5 CG-1<cr>712 +Ex: #5G-1<cr><div class="wikimodel-emptyline"></div> 494 494 495 -This c hanges thegyre directionasdescribed above andalso writestoEEPROM.714 +This command will cause servo #5's positions to be inverted, effectively causing the servo to rotate in the opposite direction given the same command. For example in a 2WD robot, servos are often physically installed back to back, therefore setting one of the servos to a negative gyration, the same wheel command (ex WR30) to both servos will cause the robot to move forward or backward rather than rotate.<div class="wikimodel-emptyline"></div> 496 496 497 - ======__20.First/ InitialPosition (pulse)__ ======716 +Query Gyre Direction (**QG**)<div class="wikimodel-emptyline"></div> 498 498 499 - Incertaincases, a usermightwant to have the servo moveo a specific angleuponpower up. We referto this as "firstposition".The factory default hasno first position value storedin EEPROM and therefore upon power up, the servo remains limpuntila position(or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.718 +Ex: #5QG<cr> might return *5QG-1<cr><div class="wikimodel-emptyline"></div> 500 500 501 - QueryFirstPosition inPulses(**QFP**)720 +The value returned above means the servo is in a counter-clockwise gyration. Sending a #5WR30 command will rotate the servo in a counter-clockwise gyration at 30 RPM.<div class="wikimodel-emptyline"></div> 502 502 503 - Ex: #5QFP<cr> mightreturn*5QFP1550<cr>722 +Configure Gyre (**CG**)<div class="wikimodel-emptyline"></div> 504 504 505 - Thereply above indicatesthatservowith ID 5 has a first position pulseof 1550microseconds. If no firstpositionhas been set, servo will respond with DIS ("disabled").724 +Ex: #5CG-1<cr><div class="wikimodel-emptyline"></div> 506 506 507 -Configure First Position in Pulses (**CFP**) 726 +This changes the gyre direction as described above and also writes to EEPROM. 727 +<div class="wikimodel-emptyline"></div></div></div> 728 +{{/html}} 508 508 509 - Ex:#5CP1550<cr>730 +====== __First Position__ ====== 510 510 511 -This configuration command means the servo, when set to RC mode, will immediately move to an angle equivalent to having received an RC pulse of 1550 microseconds upon power up. Sending a CFP command without a number results in the servo remaining limp upon power up (i.e. disabled). 732 +{{html wiki="true" clean="false"}} 733 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 734 +In certain cases, a user might want to have the servo move to a specific angle upon power up; we refer to this as "first position" (a.k.a. "initial position"). The factory default has no first position value stored in EEPROM and therefore upon power up, the servo remains limp until a position (or hold command) is assigned. Note that the number should be restricted to -1790 (-179.0 degrees) to +1790 (179.0 degrees) and values beyond this will be changed to 1800. <div class="wikimodel-emptyline"></div> 512 512 513 - ======__21.First/ InitialPosition(Degrees)__======736 +Query First Position in Degrees (**QFD**)<div class="wikimodel-emptyline"></div> 514 514 515 - Incertaincases, a usermightwant to have the servo moveo a specific angleuponpower up. We referto this as "firstposition".The factory default hasno first position value storedin EEPROM and therefore upon power up, the servo remains limpuntila position(or hold command) is assigned. FP and FD are different in that FP is used for RC mode only, whereas FD is used for smart mode only.738 +Ex: #5QFD<cr> might return *5QFD900<cr> <div class="wikimodel-emptyline"></div> 516 516 517 - QueryFirstPositioninDegrees(**QFD**)740 +The reply above indicates that servo with ID 5 has a first position of 90.0 degrees. If there is no first position value stored, the reply will be DIS.<div class="wikimodel-emptyline"></div> 518 518 519 - Ex:#5QFD<cr>mightreturn*5QFD64<cr>742 +Configure First Position in Degrees (**CFD**)<div class="wikimodel-emptyline"></div> 520 520 521 - Thereply above indicatesthatservowith ID 5 has a first position pulseof 1550microseconds.744 +Ex: #5CD900<cr><div class="wikimodel-emptyline"></div> 522 522 523 -Configure First Position in Degrees (**CFD**) 746 +This configuration command means the servo, when set to smart mode, will immediately move to 90.0 degrees upon power up. Sending a CFD command without a number (Ex. #5CFD<cr>) results in the servo remaining limp upon power up. In order to remove the first position, send no value, ex: #5CFD<cr> 747 +<div class="wikimodel-emptyline"></div></div></div> 748 +{{/html}} 524 524 525 - Ex:#5CD64<cr>750 +====== __Maximum Speed in Degrees (**SD**)__ ====== 526 526 527 -This configuration command means the servo, when set to smart mode, will immediately move to 6.4 degrees upon power up. Sending a CFD command without a number results in the servo remaining limp upon power up. 752 +{{html wiki="true" clean="false"}} 753 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 754 +Ex: #5SD1800<cr><div class="wikimodel-emptyline"></div> 755 +This command sets the servo's maximum speed for motion commands in tenths of degrees per second for that session. In the example above, the servo's maximum speed for that session would be set to 180.0 degrees per second. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. The SD action command overrides CSD (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSD as described below. Note that SD and SR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 528 528 529 - ====== __22.QueryTargetPositioninDegrees (**QDT**)__======757 +Query Speed in Degrees (**QSD**)<div class="wikimodel-emptyline"></div> 530 530 531 -Ex: #5QD T<cr>might return *5QDT6783<cr>759 +Ex: #5QSD<cr> might return *5QSD1800<cr><div class="wikimodel-emptyline"></div> 532 532 533 - Thequerytargetpositioncommandreturnsthetargetangleduringandafter anactionwhichresultsinarotationof theservo horn.Inthe exampleabove,theservoisrotatingto avirtualpositionof678.3 degrees.Should theservonothave atargetposition orbe inwheelmode,itwillrespond withoutanumber (Ex: *5QDT<cr>).761 +By default QSD will return the current session value, which is set to the value of CSD as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSD1<cr> is sent, the configured maximum speed (CSD value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 534 534 535 -====== __23. Query Model String (**QMS**)__ ====== 763 +|**Command sent**|**Returned value (1/10 °)** 764 +|ex: #5QSD<cr>|Session value for maximum speed (set by latest SD/SR command) 765 +|ex: #5QSD1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 766 +|ex: #5QSD2<cr>|Instantaneous speed (same as QWD) 767 +|ex: #5QSD3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 536 536 537 - Ex:#5QMS<cr>mightreturn*5QMSLSS-HS1cr>769 +Configure Speed in Degrees (**CSD**)<div class="wikimodel-emptyline"></div> 538 538 539 -This reply means the servo model is LSS-HS1, meaning a high speed servo, first revision. 771 +Ex: #5CSD1800<cr><div class="wikimodel-emptyline"></div> 772 +Using the CSD command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 180.0 degrees per second. When the servo is powered on (or after a reset), the CSD value is used. Note that CSD and CSR (described below) are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 773 +</div></div> 774 +{{/html}} 540 540 541 -====== __ 23b. QueryModel(**QM**)__ ======776 +====== __Maximum Speed in RPM (**SR**)__ ====== 542 542 543 -Ex: #5QM<cr> might return *5QM68702699520cr> 778 +{{html wiki="true" clean="false"}} 779 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 780 +Ex: #5SR45<cr><div class="wikimodel-emptyline"></div> 781 +This command sets the servo's maximum speed for motion commands in rpm for that session. In the example above, the servo's maximum speed for that session would be set to 45rpm. The servo's maximum speed cannot be set higher than its physical limit at a given voltage. SR overrides CSR (described below) for that session. Upon reset or power cycle, the servo reverts to the value associated with CSR as described below. Note that SD (described above) and SR are effectively the same, but allow the user to specify the speed in either unit. The last command (either SR or SD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 544 544 545 - This replymeanstheservomodelis 0xFFF000000 or 100, meaning a high speedservo, first revision.783 +Query Speed in RPM (**QSR**)<div class="wikimodel-emptyline"></div> 546 546 547 - ======__24.QuerySerialNumber(**QN**)__======785 +Ex: #5QSR<cr> might return *5QSR45<cr><div class="wikimodel-emptyline"></div> 548 548 549 - Ex:#5QN<cr>might return*5QN~_~_<cr>787 +By default QSR will return the current session value, which is set to the value of CSR as reset/power cycle and changed whenever an SD/SR command is processed. If #5QSR1<cr> is sent, the configured maximum speed (CSR value) will be returned instead. You can also query the current speed using "2" and the current target travel speed using "3". See the table below for an example:<div class="wikimodel-emptyline"></div> 550 550 551 -The number in the response is the servo's serial number which is set and cannot be changed. 789 +|**Command sent**|**Returned value (1/10 °)** 790 +|ex: #5QSR<cr>|Session value for maximum speed (set by latest SD/SR command) 791 +|ex: #5QSR1<cr>|Configured maximum speed in EEPROM (set by CSD/CSR) 792 +|ex: #5QSR2<cr>|Instantaneous speed (same as QWD) 793 +|ex: #5QSR3<cr>|Target travel speed<div class="wikimodel-emptyline"></div> 552 552 553 - ====== __25. QueryFirmware (**QF**)__======795 +Configure Speed in RPM (**CSR**)<div class="wikimodel-emptyline"></div> 554 554 555 -Ex: #5QF<cr> might return *5QF11<cr> 797 +Ex: #5CSR45<cr><div class="wikimodel-emptyline"></div> 798 +Using the CSR command sets the servo's maximum speed which is saved in EEPROM. In the example above, the servo's maximum speed will be set to 45rpm. When the servo is powered on (or after a reset), the CSR value is used. Note that CSD and CSR are effectively the same, but allow the user to specify the speed in either unit. The last command (either CSR or CSD) received is what the servo uses for that session.<div class="wikimodel-emptyline"></div> 799 +</div></div> 800 +{{/html}} 556 556 557 - Theinteger in the reply represents thefirmwareversionwith one decimal, in this example being 1.1802 +== Modifiers == 558 558 559 -====== __ 26. QueryStatus(**Q**)__ ======804 +====== __Speed (**S**, **SD**) modifier__ ====== 560 560 561 -Ex: #5Q<cr> might return *5Q6<cr>, which indicates the motor is holding a position. 806 +{{html wiki="true" clean="false"}} 807 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 808 +Example: #5P1500S750<cr><div class="wikimodel-emptyline"></div> 809 +Modifier (S) is only for a position (P) action and determines the speed of the move in microseconds per second. A speed of 750 microseconds would cause the servo to rotate from its current position to the desired position at a speed of 750 microseconds per second. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 810 +Example: #5D0SD180<cr><div class="wikimodel-emptyline"></div> 811 +Modifier (SD) is only for a position (D) or relative position (MD) action and determines the speed of the move in degrees per second. A speed modifier (SD) of 180 would cause the servo to rotate from its current position to the desired absolute or relative position at a speed of 180 degrees per second.<div class="wikimodel-emptyline"></div> 812 +Query Speed (**QS**)<div class="wikimodel-emptyline"></div> 813 +Example: #5QS<cr> might return *5QS300<cr><div class="wikimodel-emptyline"></div> 814 +This command queries the current speed in microseconds per second.<div class="wikimodel-emptyline"></div> 815 +</div></div> 816 +{{/html}} 562 562 563 -|*Value returned|**Status**|**Detailed description** 564 -|ex: *5Q0<cr>|Unknown|LSS is unsure 565 -|ex: *5Q1<cr>|Limp|Motor driving circuit is not powered and horn can be moved freely 566 -|ex: *5Q2<cr>|Free moving|Motor driving circuit is not powered and horn can be moved freely 567 -|ex: *5Q3<cr>|Accelerating|Increasing speed from rest (or previous speeD) towards travel speed 568 -|ex: *5Q4<cr>|Traveling|Moving at a stable speed 569 -|ex: *5Q5<cr>|Decelerating|Decreasing from travel speed towards final position. 570 -|ex: *5Q6<cr>|Holding|Keeping current position 571 -|ex: *5Q7<cr>|Stepping|Special low speed mode to maintain torque 572 -|ex: *5Q8<cr>|Outside limits|{More details coming soon} 573 -|ex: *5Q9<cr>|Stuck|Motor cannot perform request movement at current speed setting 574 -|ex: *5Q10<cr>|Blocked|Similar to stuck, but the motor is at maximum duty and still cannot move (i.e.: stalled) 818 +====== __Timed move (**T**) modifier__ ====== 575 575 576 -====== __27. Query Voltage (**QV**)__ ====== 820 +{{html wiki="true" clean="false"}} 821 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 822 +Example: #5P1500T2500<cr><div class="wikimodel-emptyline"></div> 577 577 578 -Ex: #5QV<cr> might return *5QV11200<cr> 824 +Timed move can be used only as a modifier for a position (P, D, MD) actions. The units are in milliseconds, so a timed move of 2500 milliseconds would cause the servo to rotate from its current position to the desired position in 2.5 seconds. The onboard controller will attempt to ensure that the move is performed entirely at the desired velocity, though differences in torque may cause it to not be exact. This command is in place to ensure backwards compatibility with the SSC-32 / 32U protocol.<div class="wikimodel-emptyline"></div> 825 +**Note:** If the calculated speed at which a servo must rotate for a timed move is greater than its maximum speed (which depends on voltage and load), then it will move at its maximum speed, and the time of the move may be longer than requested.<div class="wikimodel-emptyline"></div> 826 +</div></div> 827 +{{/html}} 579 579 580 - Thenumberturnedhas one decimal, so inthecaseabove, servo with ID 5 has an input voltageof 11.2V(perhapsa three cell LiPobattery).829 +====== __Current Halt & Hold (**CH**) modifier__ ====== 581 581 582 -====== __28. Query Temperature (**QT**)__ ====== 831 +{{html wiki="true" clean="false"}} 832 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 833 +Example: #5D1423CH400<cr><div class="wikimodel-emptyline"></div> 583 583 584 -Ex: #5QT<cr> might return *5QT564<cr> 835 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately halt and hold position.<div class="wikimodel-emptyline"></div> 836 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 837 +</div></div> 838 +{{/html}} 585 585 586 - Theunits are in tenths of degrees Celcius, so inheexample above, the servo'sinternal temperatureis 56.4 degreesC.To convert fromdegrees Celcius toegrees Farenheit, multiply by 1.8 and add 32. Therefore56.4C=133.52F.840 +====== __Current Limp (**CL**) modifier__ ====== 587 587 588 -====== __29. Query Current (**QC**)__ ====== 842 +{{html wiki="true" clean="false"}} 843 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 844 +Example: #5D1423CL400<cr><div class="wikimodel-emptyline"></div> 589 589 590 -Ex: #5QC<cr> might return *5QC140<cr> 846 +This has servo with ID 5 move to 142.3 degrees but, should it detect a current of 400mA or higher before it reaches the desired position, will immediately go limp.<div class="wikimodel-emptyline"></div> 847 +This modifier can be added to the following actions: D; MD; WD; WR.<div class="wikimodel-emptyline"></div> 848 +</div></div> 849 +{{/html}} 591 591 592 -T heunits are in milliamps, so in theexampleabove,the servois consuming 140mA, or 0.14A.851 +== Telemetry == 593 593 594 -====== __ 30.RC Mode (**CRC**)__ ======853 +====== __Query Voltage (**QV**)__ ====== 595 595 596 -This command puts the servo into RC mode (position or continuous), where it will only respond to RC pulses. Note that because this is the case, the servo will no longer accept serial commands. The servo can be placed back into smart mode by using the button menu. 855 +{{html wiki="true" clean="false"}} 856 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 857 +Ex: #5QV<cr> might return *5QV11200<cr><div class="wikimodel-emptyline"></div> 858 +The number returned is in milliVolts, so in the case above, servo with ID 5 has an input voltage of 11.2V.<div class="wikimodel-emptyline"></div> 859 +</div></div> 860 +{{/html}} 597 597 598 -|**Command sent**|**Note** 599 -|ex: #5CRC<cr>|Stay in smart mode. 600 -|ex: #5CRC1<cr>|Change to RC position mode. 601 -|ex: #5CRC2<cr>|Change to RC continuous (wheel) mode. 602 -|ex: #5CRC*<cr>|Where * is any number or value. Stay in smart mode. 862 +====== __Query Temperature (**QT**)__ ====== 603 603 604 -EX: #5CRC<cr> 864 +{{html wiki="true" clean="false"}} 865 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 866 +Ex: #5QT<cr> might return *5QT564<cr><div class="wikimodel-emptyline"></div> 867 +The units are in tenths of degrees Celcius, so in the example above, the servo's internal temperature is 56.4 degrees C. To convert from degrees Celcius to degrees Farenheit, multiply by 1.8 and add 32. Therefore 56.4C = 133.52F.<div class="wikimodel-emptyline"></div> 868 +</div></div> 869 +{{/html}} 605 605 606 -====== __ 31.RESET__ ======871 +====== __Query Current (**QC**)__ ====== 607 607 608 -Ex: #5RESET<cr> or #5RS<cr> 873 +{{html wiki="true" clean="false"}} 874 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 875 +Ex: #5QC<cr> might return *5QC140<cr><div class="wikimodel-emptyline"></div> 876 +The units are in milliamps, so in the example above, the servo is consuming 140mA, or 0.14A.<div class="wikimodel-emptyline"></div> 877 +</div></div> 878 +{{/html}} 609 609 610 - Thiscommand does a "softreset" (no power cyclerequired) and reverts allcommandsto those storedinEEPROM (i.e. configurationcommands).880 +====== __Query Model String (**QMS**)__ ====== 611 611 612 -====== __32. DEFAULT & CONFIRM__ ====== 882 +{{html wiki="true" clean="false"}} 883 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 884 +Ex: #5QMS<cr> might return *5QMSLSS-HS1<cr><div class="wikimodel-emptyline"></div> 885 +This reply means that the servo model is LSS-HS1: a high speed servo, first revision.<div class="wikimodel-emptyline"></div> 886 +</div></div> 887 +{{/html}} 613 613 614 - Ex:#5DEFAULT<cr>889 +====== __Query Firmware (**QF**)__ ====== 615 615 616 -This command sets in motion the reset all values to the default values included with the version of the firmware installed on that servo. The servo then waits for the CONFIRM command. Any other command received will cause the servo to exit the DEFAULT function. 891 +{{html wiki="true" clean="false"}} 892 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 893 +Ex: #5QF<cr> might return *5QF368<cr><div class="wikimodel-emptyline"></div> 894 +The number in the reply represents the firmware version, in this example being 368.<div class="wikimodel-emptyline"></div> 895 +The command #5QF3<cr> can also be sent and the servo will reply with a 3 numbers firmware version, for example, 368.29.14<div class="wikimodel-emptyline"></div> 896 +</div></div> 897 +{{/html}} 617 617 618 - EX:#5DEFAULT<cr>followedby#5CONFIRM<cr>899 +====== __Query Serial Number (**QN**)__ ====== 619 619 620 -Since it it not common to have to restore all configurations, a confirmation command is needed after a firmware command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 901 +{{html wiki="true" clean="false"}} 902 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 903 +Ex: #5QN<cr> might return *5QN12345678<cr><div class="wikimodel-emptyline"></div> 904 +The number in the response (12345678) would be the servo's serial number which is set and should not be changed by the user.<div class="wikimodel-emptyline"></div> 905 +</div></div> 906 +{{/html}} 621 621 622 - Notethat after the CONFIRMcommand is sent, the servo will automatically perform a RESET.908 +== RGB LED == 623 623 624 -====== __ 33. UPDATE&CONFIRM__ ======910 +====== __LED Color (**LED**)__ ====== 625 625 626 -Ex: #5UPDATE<cr> 912 +{{html wiki="true" clean="false"}} 913 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 914 +Ex: #5LED3<cr><div class="wikimodel-emptyline"></div> 915 +This action sets the servo's RGB LED color for that session.The LED can be used for aesthetics, or (based on user code) to provide visual status updates. Using timing can create patterns.<div class="wikimodel-emptyline"></div> 916 +0=Off (black); 1=Red 2=Green; 3=Blue; 4=Yellow; 5=Cyan; 6=Magenta; 7=White;<div class="wikimodel-emptyline"></div> 917 +Query LED Color (**QLED**)<div class="wikimodel-emptyline"></div> 918 +Ex: #5QLED<cr> might return *5QLED5<cr><div class="wikimodel-emptyline"></div> 919 +This simple query returns the indicated servo's LED color.<div class="wikimodel-emptyline"></div> 920 +Configure LED Color (**CLED**)<div class="wikimodel-emptyline"></div> 921 +Ex: #5CLED3<cr><div class="wikimodel-emptyline"></div> 922 +Configuring the LED color via the CLED command sets the startup color of the servo after a reset or power cycle. Note that it also changes the session's LED color immediately as well. The command above will configure the servo's LED to a Blue color.<div class="wikimodel-emptyline"></div> 923 +</div></div> 924 +{{/html}} 627 627 628 - Thiscommand sets in motion the equivalent ofa longbutton presswhenthe servoisnot powered in order to enter firmware update mode. This is useful should the button be broken orinaccessible. Theservo then waits for theCONFIRMcommand. Any other command received will cause the servo to exit the UPDATE function.926 +====== __Configure LED Blinking (**CLB**)__ ====== 629 629 630 -EX: #5UPDATE<cr> followed by #5CONFIRM<cr> 928 +{{html wiki="true" clean="false"}} 929 +<div class="cmdcnt"><div class="cmdpad"></div><div class="cmdtxt"> 930 +This command allows you to control when the RGB LED will blink the user set color (see RGB LED command for details). This is very useful when visually seeing what the servo is doing. You can turn on or off blinking for various LSS status. The command requires that the servo be RESET. Here is the list and their associated value:<div class="wikimodel-emptyline"></div> 631 631 632 -Since it it not common to have to update firmware, a confirmation command is needed after an UPDATE command is sent. Should any command other than CONFIRM be received by the servo after the firmware command has been received, it will leave the firmware action. 932 +(% style="width:195px" %) 933 +|(% style="width:134px" %)**Blink While:**|(% style="width:58px" %)**#** 934 +|(% style="width:134px" %)No blinking|(% style="width:58px" %)0 935 +|(% style="width:134px" %)Limp|(% style="width:58px" %)1 936 +|(% style="width:134px" %)Holding|(% style="width:58px" %)2 937 +|(% style="width:134px" %)Accelerating|(% style="width:58px" %)4 938 +|(% style="width:134px" %)Decelerating|(% style="width:58px" %)8 939 +|(% style="width:134px" %)Free|(% style="width:58px" %)16 940 +|(% style="width:134px" %)Travelling|(% style="width:58px" %)32 941 +|(% style="width:134px" %)Always blink|(% style="width:58px" %)63<div class="wikimodel-emptyline"></div> 633 633 634 -Note that after the CONFIRM command is sent, the servo will automatically perform a RESET. 943 +To set blinking, use CLB with the value of your choosing. To activate blinking in multiple status, simply add together the values of the corresponding status. See examples below:<div class="wikimodel-emptyline"></div> 944 +Ex: #5CLB0<cr> to turn off all blinking (LED always solid)<div class="wikimodel-emptyline"></div> 945 +Ex: #5CLB1<cr> only blink when limp (1)<div class="wikimodel-emptyline"></div> 946 +Ex: #5CLB2<cr> only blink when holding (2)<div class="wikimodel-emptyline"></div> 947 +Ex: #5CLB12<cr> only blink when accel or decel (accel 4 + decel 8 = 12)<div class="wikimodel-emptyline"></div> 948 +Ex: #5CLB48<cr> only blink when free or travel (free 16 + travel 32 = 48)<div class="wikimodel-emptyline"></div> 949 +Ex: #5CLB63<cr> blink in all status (1 + 2 + 4 + 8 + 16 + 32)<div class="wikimodel-emptyline"></div> 950 +RESETTING the servo is needed.<div class="wikimodel-emptyline"></div> 951 +</div></div> 952 +{{/html}} 953 + 954 += RGB LED Patterns = 955 + 956 +The LED patterns below do not include those which are part of the button menu, which can be found here: [[LSS Button Menu>>doc:lynxmotion-smart-servo.lss-button-menu.WebHome]] 957 + 958 +[[image:LSS - LED Patterns.png]]
- LSS - LED Patterns.png
-
- Author
-
... ... @@ -1,0 +1,1 @@ 1 +xwiki:XWiki.RB1 - Size
-
... ... @@ -1,0 +1,1 @@ 1 +116.3 KB - Content